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Phase-separation dynamics of circular domain walls in the
degenerate optical parametric oscillator
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We study the dynamics of the formation of circular domain walls, which are large-intensity structures, in a
degenerate optical parametric oscillator. We show that the mean-field and the propagation models predict the
same increase in the domain size proportional to t1/3.  2000 Optical Society of America
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The existence and stability of circular domain walls in a
single-longitudinal-mode degenerate optical paramet-
ric oscillator were recently reported for three different
limits above the oscillation threshold: close to the
threshold, where the field is described by a Swift–
Hohenberg equation,1 and away from the threshold,
either in the mean-field limit,1,2 which averages the
propagation effects inside the cell, or out of the mean-
field limit.3 The circular domain walls result from
the existence of two solutions, A and Ap � A exp�ip�,
with the same intensity. Robust structures are
generated in the form of circular or striped4 walls sep-
arating domains in which either of the two solutions
exists. The Swift–Hohenberg equation describes
small-amplitude solutions of the Maxwell–Bloch
equations. Large-amplitude solutions, which can-
not be described by a Swift–Hohenberg equation,
exist in a wide range of parameters.5 In this case
a circular domain wall of small diameter is formed,
with a large peak amplitude in its center after a long
transient.2,3 The predictions of the mean-field and the
propagation models for the intensity and the stability
of these peaks were recently compared.5 Only quali-
tative agreement between the models was found, in a
limited range of the input pump amplitude in which
the signal intensities were not too large. However,
the dynamics of the peak formation obeys simple power
laws, and there are good reasons to suspect that these
power laws are generic. The conjecture is therefore
that the power laws should be verif ied by the mean-
field and the propagation models, even when these
models are not compatible. The purpose of this Letter
is to report on the confirmation of this conjecture.

The kinetics of localized pattern formation in optics
was recently shown to be slow6,7 and governed by the
same power laws as phase separation in solid8,9 and
f luid10 systems, in which, in the late time dynamics of
grain formation (or spinodal decomposition), the grain
size varies according to the Lifshitz–Slyozov–Wagner
0146-9592/00/070487-03$15.00/0
power law, �t1/3; this regime is often followed by a
linear power-law regime.

The mean-field equations for the pump and the
signal field amplitudes, A0 and A1, respectively, are11

≠tA0 � E 2 �g 1 iD0�A0 1
i
2

��
2A0 2 A1

2,

≠tA1 � 2�1 1 iD1�A1 1 i��
2A1 1 A0A1

�,

where E is the driving field amplitude, g � g0�g1 is
the ratio of cavity-decay rates, D0 � �v0 2 vext��g�,
D1 � �v1 2 vext�2��g�, and ��

2 is the transverse
Laplace operator. The propagation model3,5 consists
of the propagation equations for the pump and the
signal field amplitudes inside the medium along the
longitudinal coordinate z:

≠za0 �
i
2

��
2a0 1 ia1

2exp�izDk� ,

≠za1 � i ��
2a1 1 ia0a1

�exp�2izDk� ,

where lDk � 2u1 2 u0 is the phase mismatch between
the pump and the signal, with l as the cavity length,
and the boundary conditions at the cell incoupling
mirror are

a0�0, x, y, t� � a0
in 1 R0 exp�iu0�a0�l,x,y, t 2 t� ,

a1�0, x, y, t� � R1 exp�iu1�a1�l,x,y, t 2 t� .

The variables in the two models are connected by the
relations �A0, A1, E, D0, 1� � b�ia0, a1, ia0

inb, 2u0, 1�
and �t, x

p
b �MF � b�t, x�propag, with 1 2 R1 � 1�b. t

is the delay time.
To characterize the pattern kinetics we measure the

average domain size, defined as R�t� � 2NxNy��nx�t� 1
ny �t��, where nx�t� and ny�t� are the total number of
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sign changes of the real part of the signal field in
the transverse x and y directions, respectively. The
power laws that we seek are R�t� � ta . Two different
methods were used to solve the mean-field model, with
similar conclusions for the power laws: the explicit
Euler method with periodic transverse boundary con-
ditions and the implicit Crank–Nicolson method, in
both time and transverse space with Neuman bound-
ary conditions. For the propagation equations a split-
step method was used, with Nx � Ny � 192. The noise
amplitude was 1022 to 1021. The calculations were
done with the homogeneous input-pump field ampli-
tude plus a small-amplitude inhomogeneous random
signal.

The mean-field model was investigated for D0 �
D1 � 0. With Neuman boundary conditions, there is a
single power-law regime with a slope of �1�3, followed
by an abrupt increase of the domain size. For periodic
boundary conditions one can clearly distinguish after a
short transient two successive power-law regimes, with
a slope of �1�2 for 20 , t , 90, followed by a slope of
�1�3 for 90 , t , 1310, and finally a regime showing a
rapid variation of R�t�, corresponding to the shrinking
of the large negative domain toward a single small neg-
ative circular domain. The propagation model with
D0 � D1 � 0 displays mainly the t1/3 regime, which cov-
ers the range 200 , tprop � 10t , 8100 (see Fig. 1).
Similar results were obtained for other mistunings.
Figure 2 displays the phase separation of the real part
of the signal amplitude for 10 , t , 1200. A stable
profile is reached for t � 1400. The same results were
also obtained by use of two simpler propagation models
defined previously.3

A striking result of these simulations is the conver-
gence of the results of the three propagation models
and the mean-field model toward the t1/3 power law,
despite the fact that the peak formation is ten times
slower in the mean-field model than in the propagation
models.

The t1/3 power law seems to be a fairly general law
found in many systems and generated by different
mechanisms. Other power laws have been derived
in similar contexts.12 For instance, Siggia10 predicted
an increase of the grain size with R�t� � t after the
coalescence stage, R�t� � t1/3, in concentrated f luid
systems. This result is limited: It holds only in three
dimensions, as shown by San Miguel et al.,13 who
instead found a power law R�t� � t1/2 that is not
continued in two dimensions by the R�t� � t regime
reported by Siggia. However, this result is clearly
model dependent, as shown, for example, by the results
obtained in Refs. 14 and 15.

In gradient systems with potential F �A� of the form
≠tA � 2dF�dA, one can show that a t1/2 power law
is associated with the stage of contraction (or expan-
sion) of a large circular domain of radius r0, provided
that the order parameter A�x, y� is a function of the
radial variable r only. Indeed, in this case1 the two-
and one-dimensional potentials obey the relation F2D �
2pr0F1D. Then the radial velocity of the large ring
is dr0�dt � 2�≠tF�≠r0���2p

R
�≠tA�≠r�2rdr� � 1�r0, and

therefore r0 � t1/2. In our study the formation of peaks
occurs well above threshold, i.e., outside the validity
range of gradient-form amplitude equations (of the
Ginzburg–Landau type for positive detuning or the
Swift–Hohenberg type for negative detuning). More-
over, the signal amplitude A1�x, y� is not a function of
the radial variable, because several peaks are located
inside the large circular domain. Coalescence of these
peaks is observed during contraction of the large cir-
cular domain. Actually the contraction of the large
circular domains containing several peaks is ruled by
the �t1/3 power law for all the models analyzed in this
Letter.

Fig. 1. Plot of log10 R versus log10 t. The solid line
and the filled circles are obtained from the mean-field
model. The dotted line and the open circles correspond to
the propagation model. The propagation parameters are
u0 � u1 � 0, a0

in � 0.03, R0, 1 � 0.9, and b � 10. The
corresponding mean-field parameters are D0 � D1 � 0 and
E � 3. The grid step size is 0.06.

Fig. 2. Time evolution of the real part of the signal
amplitude with the propagation model. (a) t � 10,
(b) t � 30, (c) t � 100, (d) t � 250, (e) t � 800, (f ) t � 1200.
The parameters are the same as in Fig. 1.
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The formation of localized structures or circular
phase domains was first reported in a parameter
range in which homogeneous steady-state solution
Ā1 is modulationally stable.1 – 3 Nevertheless, it was
proved in the propagation models that such struc-
tures also occur beyond the modulational instability
threshold of the nontrivial branch in a large range
of parameter values. In this case a circular domain
with large negative amplitude is formed inside a
small-amplitude square or a hexagonal solution. The
dynamics of such structures also displays the t1/3
regime.

The t1/3 regime was first observed in optics during
the formation of a striped localized structure in the
presence of long-wavelength instability, with quadratic
Laplacian operators playing the role of surface tension,
with both the mean-field and the Swift–Hohenberg
models.6 The present study shows that the t1/3 power
law also appears during the formation of intense peaks,
in a large range of parameters above the threshold at
which no small-amplitude equation is valid.

Finally, we emphasize that the law R�t� � t1/3 is a
scaling law for the peak formation averaged over many
different initial conditions; i.e., this law corresponds to
a domain of self-similarity. That this is so has been
shown with the help of the correlation function for the
formation of the peaks.
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