
Phase separation in binary hard-core mixtures 

Marjolein Dijkstra and Daan Frenkel 
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands 

Jean-Pierre Hansen 
Laboratoire de Physique, Uniti de recherchg 1325 Associke au CNRS, Ecole Normale Sup&ieiwe de Lyon, 
46, All&e d’ltalie, 69364 Lyon Cidex 07, France 

(Received 14 March 1994; accepted 1 April 1994) 

We report the observation of a purely entropic demixing transition in a three-dimensional binary ’ 
hard-core mixture by computer simulations. This transition is observed in a lattice model of a binary 
hard-core mixture of parallel cubes provided that the size asymmetry of the large and small particles. 
is sufficiently large (33, in the present case). In addition, we have performed simulations of a single 
athermal polymer in a hard-core solvent. As we increase the chemical potential of the solvent, we 
observe a purely entropy-driven collapse of the polymer: the scaling of the radius of gyration R, of 
the polymer with the number of segments N changes from that of a polymer in a good solvent to that 
of a collapsed polymer. Both for the study of the hard-core demixing and of the polymer collapse, 
it was essential to use novel collective Monte Carlo moves to speed up equilibration. We show that ; 
in the limit ~t/oz-+O, the pair distribution function for an off-lattice binary hard-core mixture of 
parallel cubes with side lengths ol and cr2 diverges at contact for the large particles. For the lattice 
system, we calculated the pair distribution functions g(r) up to the fourth virial coefficient. The 
difference in g(r) at contact for a binary system and a pure system at the same packing fraction 
gives a rough criterion, whether the mixture phase separates, 

1. INTRODUCTION 

One of the most striking phenomena in mixtures is phase 
separation. Until recently, it was generally believed that 
phase separation in simple mixtures is induced by energetic 
effects. An important question is therefore whether a phase 
separation can take place in an “athermal” mixture, i.e., a 
mixture for which the energy of mixing depends linearly on 
composition. The simplest model for an athermal mixture is 
a binary system containing large and small hard spheres. In 
1964, Lebowitz and Rowlinson3 showed that, within the 
Percus-Yevick closure of the Ornstein-Zernike equation, 
fluid hard sphere mixtures are stable with respect to phase 
separation. Thus far, -computer simulations4-s found no evi- 
dence for fluid-fluid phase separation in additive hard sphere 
mixtures. In this context, additive means 
~~~ = (o-& -t- (7&/2, where aij denotes the distance of clos- 
est approach of particles of type i and j. In contrast, it is 
usually possible to have phase separation in a mixture with 
positive nonadditivity, i.e., a,,> (0;1~ f ~aB)/2,a-i’ be- 
cause for such systems, the pure phases can till space more 
effectively than the mixture. However, recently Biben and 
Hansen” showed’that within the ‘Rogers-Young closure of 
the Ornstein-Zernike equation, additive hard sphere mix- 
tures will be unstable at high densities for diameter ratios 
larger than 5. For hard spheres, this thermodynamically self- 
consistent closure is known to be more accurate than the 
Percus-Yevick approximation. Similar predictions have sub- 
sequently been made using other approximations.‘3 In prin- 
ciple, computer simulation is a suitable tool to investigate 
whether phase separation can take place in purely athermal 
mixtures. Unfortunately, direct simulation of phase separa- 
tion in mixtures of very dissimilar spheres is difficult be- 

cause of slow equilibration.14 The numerical’ difficulties are 

less severe for lattice models of hard-core.mixtures. We have 
therefore performed simulations of lattice models of additive 

hard-core particles. 
The results of grand canonical Monte Carlo simulations 

of a mixture of large and small cubes’ with side ratios of 2 or 
3 on a cubic lattice are reported in this paper. In Sec. II, the 
simulation method is discussed and the results are presented. 
The more technical aspects of the simulation method are ex- 
plained in the Appendices. A question related to phase seps- 
ration induced by purely entropic effects is whether an ather- 
ma1 polymer in a hard-core solvent undergoes a collapse 
transition. The results of a simulation of an athermal polymer 
in a hard-core solvent are reported in Sec. III. In Sec. IV, we 
show that in an off-lattice system of large and small parallel 
cubes, the pair distribution function of the large cubes di- 
verges at contact in the limit oi/oi+O, where cr, and cr2 are 
the side lengths of the cubes. This tendency of the large 
cubes to stick.together is strongly suggestive of phase sepa- 
ration. For the lattice system, we computed the pair distribu- 
tion functions of the binary hard-cube mixture and compared 
them with the pair distribution functions for a pure system at 
the same packing fraction. 

II. COMPUTER SIMULATIONS OF A BINARY MIXTURE 
OF HARD PARALLEL CUBES 

A. Simulation method 

The model that we consider is a mixture of large and 
small parallel hard cubes on a lattice. The diameter of each 
cube corresponds to an even number of lattice spacings. This 
model is clearly additive: at close packing we can fill space 
just as well in the mixed phase as in the pure phases. Hence 
there is no trivial volume-driven demixing. In our simula- 

tions, we considered mixtures of cubes with side ratios of 2 
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or 3 on a lattice with, respectively, 28X28X28 and 30 
X30X30 lattice points. In both cases, the side of the small 
cubes is equal to 2. We performed grand-canonical Monte 
Carlo (GCMC) simulations, where the independent variables 
are the fugacities of the large and the small cubes zI and Z, . 
Three types of trial moves can be performed: 

(i) random displacement of a particle in the box; 
(ii) changing the identity of a particle (large to small or 

vice versa); 
(iii) removal or insertion of a particle. 
However, the acceptance ratio fdr a random displace- 

ment of a large particle is small in a dense system of small 
particles, as the displacement of .a large particle is ‘strongly 
hindered by the small ‘particles. In order to speed up equili- 
bration, we used collective particle moves that employed a 
generalization of ‘the configurational-bias Monte Carlo 
scheme of Ref. 15. In this -approach, the large particle was 
moved to a random trial position. Typically several small 
particles would occupy this region in space. These particles 
were then moved to the volume vacated by the laige particle 
and inserted using RosenblGth sampling.14 The trial move 
was then accepted with a probability deterniined by the ratio 
of the Rosenbluth weights of the new and old configurations. 
Of course, a trial move would be rejected immediately if it 
resuIted in overlap of two or more large particles. In order to 
investigate the ipfluen.ce of the surface-to-volume ratios on 
phase separation, we also, performed simulations of a three- 
dimensional system of hard .parallel platelets (size 6X6)<2) 
and cubes (size 2y2X2) on a cubic lattice of 30X30X30. 
For the sake of. comparison, we also. simulated a two- 
dimensional mixture gf hard squares (size 6X6 and 2X2) 
and a two-dimensional system of hard squarqs. (size 2X2) 
and parallel hard rods (18X2). 

b. Results ~I . . _-*,_ 

GCMC simulations were performed on a mixture of 
large and small cubes for a range of different values for the 
fugacities z1 and zS. In each simulation, we computed the 
volume fractions of the large and small cubes. To allow 
faster equilibration, subsequent runs were started from pre- 
viously equilibrated configurations at a higher or lower 
fugacity. Most runs’donsisted of 1X105-1X106 cycles per 
particle. In each cycle, we attempt a random displacement of 
a particle in the box, and we try to change the identity of a 
random particle. Once every ten cycles, -a removal or inser- 
tion of a particle 5n the box is attempted. In Figs. 1 and 2, the 
fugacity of the large cubes is plotted vs the volume fraction 
of the large cubes and vs the volume fraction of the small 
cubes for a mixture of side ratio 3. The different curves in the 
figures are computed at constant fugacity of the small cubes. 
In Fig. 3, we plot the fugacity of the large cubes versus the 
volume fraction of the large cubes for a mixture of cubes 
with size 4X4X4 and 2X2X2. For a side ratio of 3, we 
observed that upon increasing the fugacity of the solvent 
(i.e., of the small particles), the slope of the curves of con- 
stant solvent fugacity tends to zero at the inflection point. For 
still higher solvent fugacity, we find two. different volume 
fractions of the large cubes for the same fugacity of the large 
particles (see Fig. l)..In Fig. 2, .we observe the same flatten- 
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FIG. 1. The fugacity of the large cubes (size 6X6X6))vs the volume fraction 
of the large cubes at different fugacities (z,=O, 100, 500, 1X103, 1.5X 103, 
2X103, and 5X103) of the small particles (size 2X2X2). The star denotes 
the critical pdint (zl=6.02X-1C17; zb= 1.63X 103, and &se=0.57) and is 
derived by a global fit of all isofugacity curves. The rest of the binodal 
(dashed) curve could not be estimated as accurately as the critical point. 
This curve should therefore reconsidered as a guide to the eye. 

ing of the isofugacity curves. For still higher solvent fugac- 
ity, we again find DVO different volume fractions of the small 
cubes for the same fugacity for the large cubes. This is ex- 
actly what we expect for a demixing transition. The critical 
point can now be derived from a global fit of all isofugacity 
curves. When we take this into account, we can sketch the 
demixing region, as shown in Fig. 1. As the cubes are 
equally likely to be found on all lattice sites in both phases 
(i.e., there is no sublattice ordering), the present phase tran- 
sition corresponds most closely to liquid-liquid coexistence 
in an off-lattice system. The simulations in the demixing re- 
gion are very time consuming and therefore we have not 
attempted to locate the binodal curve more accurately. For a 
side ratio of 2, we find no evidence for a similar flattening of 
the isofugacity curves and we did not fiild two different vol- 
ume fractions of the large cubes for the same fugacity of the 
large particles. Thus we find no evidence for a demixing 
transition in the less asymmetric system. However, if-instead 
of cubes, .we consider platelets, with a comparable volume 
(6X6X2, instead of 4X4X4), we again observe demixing 
(see Figs. 4 and 5). This is plausible as the clustering of the 
particles is controlled by depletion forces. When two large 
particles are brought into contact, the volume accessible to 
the small particles increases by an amount that is propor- 
tional to the diameter of the small particles and the area of 
contact of the large particles. The resulting gain in entropy of 
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PIG. 2. The fugacity of the large cubes (size 6X6x6) vs the volume fraction 
of the small cubes at diierent fugacities (z,= 0, 100, 500, 1 X 103, 1.5X 103, 
2X 103, and 5X IO’) of the small particles (size 2X2X2). 
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PIG. 3. The fngacity of the large cubes (size 4X4X4) vs the volume fraction 
of the large cubes at different fugacities (z,= 100, 1X 103, 1X104, and 
1x10s) of the small particles (size 2X2X2). 
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PIG. 4. The fugacity of the platelets (size 6X6X2) vs their volume fraction 
at different fugacities (z,=SX lo’, 103, 1O4a 5X104, 10’. 2X105, and 
5X 10”) of the small particles (cubes of size 2~2x2). 

the solvent is the driving force that makes the large particles 
cluster. The larger the surface-to-volume ratio ‘of the large 
particles, the stronger is the tendency to demix. 

In a two-dimensional ‘mixture of squares with size 6X6 
and 2X2, we did not tind demixing. At thesame “volume 
ratio,” but with rods of size 18X2 instead of the large 
squares, the system appeared to approach a spinodal, but we 
were not able to reach it. 

111. SIMULATIONS OF AN ATHERMAL POLYMER 

The driving force that makes the particles cluster de- 
pends on the surface-to-volume ratio of the large particles. 
This argument should apply not only to rigid particles, such 
as rods and disks, but also to flexible particles, such as linear 
polymers. We therefore also looked for entropic demixing in 
an athermal polymer solution. In fact, in this case, we did not 
study the demixing directly. Rather, we looked for a closely 
related phenomenon, namely, the solvent-induced collapse of 
an isolated polymer. This collapse signals the transition from 
the good-solvent to the poor-solvent regime. There are com- 
pelling theoretical arguments to assume that a polymer col- 
lapse must occur in an athermal polymer solution when the 
polymer-solvent interaction is nonadditive.“’ In order to in’- 
vestigate if such a collapse can occur in an “additive” ather- 
ma1 polymer solution, we performed simulations of a single 
hard-core polymer in a solvent of cubes, where the size of 
the cubic monomers. of the polymer is the same as the size of 
the solvent molecules, namely, 2X2X2 in units of the lattice 
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FIG. 5. The fugacity of the platelets (size 6X6X2) vs volume fraction of the 
small cubes at different fugacities (z;=SXlO’, 103, 104, 5X104, lo?, 
2X 10’. and 5X 10’) of the small particles (cubes of size 2X2X2). 

spacing. For the simulation of the hard-cork poljriner in a 
solvent, we used the con@ura&onal bias Monte Carlo 
(CBMC) method15 for generating polymer conformations 
and the GkMC method for the solvent. Thus, we performed 
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FIG. 6. The mean square of the radius of gyration (Ri) of a polymer with 
cubic monomers (size 2X2X2) with and without solvent (cubes of size: 
2X2X2) vs the number of segments. Average solvent volume fraction 0.0 
(circles), 0.3 (crosses), and 0.7 (open diamonds). Note that R: scales as d” 
with the number of monomers (N). For the two low density runs, we End 
~=.0.56t0.02 (for a polymer in a good solvent ~-0.58). The high density 
run yields 1~0.34rtO.02. Fdr a collapsed polymer, we expect “Euclidian” 
scaling Y= l/3. 

FIG. 7. A snapshot of conformation of a hard-core lattice poiymer (N 
= 100) without hard-core solvent (top) and in a solution of hard-core mono- 
mers with a volume fraction of 0.7 (bottom). Note the solvent-induced col- 
lapse. 

the simulations on a system with fixed volume and tempera- 
ture and at constant chemical potential of the solvent. The 
following trial moves have been performed: 

(i) random displacement of a solvent molecule in the 
box; 

(ii) removal or insertion of a solvent molecule; 
(iii) regrowing a fraction of the polymer at either end of 

th5 chain; 
(iv) regrowing a fraction of the polymer that does not 

include a free chain-end: 
The last trial move was essential for a faster equilibra- 

tion of the polymer and is explained in more detail in Ap- 
pendices B and C. The dependence of the radius of gyration 
R, on the number of monomers N is shown in Fig. 6 at 
different chemical potentials of the solvent. Figure 6 shows 
that when the chemical potential, and hence the volume frac- 
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tion of the solvent, is increased, the polymer undergoes a 
collapse transition. We find that the square of the radius of 
gyration Ri scales as N2’. For the two low chemical poten- 
tials that correspond to solvent volume fractions of 0 and 
about 0.3, we find v=O.56?0.02, which corresponds to the 
case of a polymer in a good solvent (~0.58). For high 
chemical potential (average solvent volume fraction of 0.7), 
we find v=0.34?0.02. For a collapsed polymer we expect 
“Euclidian” scaling v= l/3. Figure 7 shows the very drastic 
change in the polymer shape when we go to high chemical 
potential of the solvent. 

IV. VIRIAL EXPANSIONS FOR A BINARY MIXTURE OF 
HARD PARALLEL CUBES 

A. Continuous system-behavior of g**(r) for y+O 

In order to gain a better understanding of the physical 
origin of phase separation in a hard-cube mixture, we ana- 
lyzed the density expansions of the pair-distribution function 
of a closely related model, viz., parallel hard cubes off lat- 
tice. For the one-component parallel hard-cube model, the 
virial expansion of the pressure and the pair correlation func- 
tion has been reported in the literaturei6-l8 up to terms of 
order p’. Here we consider the virial expansion of the same 
quantities for the binary mixture. For two cubes with side 
length cl and era at rl and r.,, the Mayer function is defined 

bY 

f12hvr2)=-II @(c+12-lrl,i-r2,il), 
i=l 

(1) 

where a(x) is the Heavyside step function and 
cri2=(oi+a2)/2. We computed the virial coefficients, up to 
the fourth, for the pair distribution function of the large par- 
ticles, i.e., g2a(x,y,z), as the latter quantity is expected to 
show evidence of incipient clustering that precedes demix- 
ing. If we define +=&x,y,z) as the potential energy of a 
pair of particles, one at the origin and the other at (x,y ,z), 
the virial expansion for g22(x,y,z)exp(P+) in the densities 
p1 and p2 ist9 

The diagrams consist of circles and bonds. The circles 
represent the particle coordinates and the sizes of the circles 
denote the sizes of the particles. Open circles correspond to 
coordinates that are not integrated over; the black circles 
represent the variables of integration. The bonds between the 
circles are associated with the Mayer function. For example, 
the first diagram in the pair distribution function denotes 

I dr3 f13(rl,r31f23(r22r3), (3) 

where particles 1 and 2 are large cubes and particle 3 is a 
small cube. Note that the three-dimensional integral factor- 
izes into a product of three one-dimensional integrals. We 

calculated s22i~2,~2.~&q@#4 and g22~0,0,~2kq@4~ 
up to the fourth virial coefficient. The expressions for these 
pair distribution functions in terms of the packing fractions 
q 'ofpI and R= dp2 are 

=1+771+772+777 

3 3 
-~‘~,+zT;z +A 

A2 11 19 
+v1v2 q-2h+5+r +z +9& (5) 

where X is~ equal to a1/02. For cubes facing each other 
(O,O,gJ, the divergence in g22(x,y,z) for A+0 already ap- 
pears in the third virial coefficient, while for cubes diagonal 
to each other (c2,g2,02), the divergence only appears at the 
fourth virial coefficient. This is plausible because depletion 
forces are stronger when the area of contact of the large 
particles is larger. Thus, in the first case, the depletion effect 
is stronger.. In Table I, the values of the one-dimensional 
integrals are listed that correspond to the graphs. 

a.d5~/,Z)exp(P4) = 1 +PI A 

+ Pz A 
2 T. 

-q&J b +dsJ t’pq +.pg ). 

+y-%n +dq +4&J +2&+2pq, 

+cgn +4F;b +BB +pg) 

+ . . . . . . 
(2) 
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TABLE I. Values of the one-dimensional integrals that correspond to the 
graphs with v12= $0, + qj. 
= = 

= 

value for 5 = g 

01 

value for x = 0 
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B. Discrete systems-co;$pufation of &,(;) 

In order to make contact with the simulations described 
before, we also calculated the virial coefficients of g.&r) for 
the discrete model of a binary hard-cube mixture, i.e., a cu- 
bic lattice with parallel hard cubes occupying 4 or o$ lattice 
points. As the virial coefficients are computed by counting 
lattice sites, it was necessary to fix the absolute size of the 
cubes rather than just their size ratio. We computed g**(r) 
for a system of cubes with size ratio 3 and size ratio 2. In 
both cases, the diameter of the small cubes was equal to 2. In 
Tables II and III, the values for the one-dimensional integrals 
are listed that correspond to the graphs. We define a suitably 
averaged pair-distribution function by- averaging over all val- 
ues of gZ2(r) on the surface of a cube with side length r, 
analogous to the one used in Ref. 18. 

I 
i i gdx,y,z=r). gav’r)‘(2r+ II2 x=--T y=-r (6) 
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FIG. 8. (Top) gdr) vs r for a binary mixhke of cubes (size 6X6X6 and 
2X2X2) at equal packing fractions for the large and small cubes. (Bottom) 
g,(r) vs r for a system with only large cubes. In both pictures, the total 
packing fraction 71 is (solid line) ~=0.2; (dashed-dotted) r]=OA; (dashed) 
q=O.6; and (long dashed) 71=0.8. 

In Figs. 8 and 9, we have plotted g,(r) vs r at different 
packing fractions and different size ratios. We see in Fig. 8 
that for the binary mixture of hard parallel cubes with sizes 
(r,=2 and 17~=6, g,(r= a2) for the large cubes is signifi- 
cantly higheithan for a system with only large cubes at the 
same total packing fraction. Thus the addition of small cubes 
has the effect that the large cubes tend to stick together. On 
the contrary, for a binary mixture of cubes with size length 
rr,=2 and u.=4, g&r= a,) is somewhat lower than for the 
pure system and the large particles are not prone to clustering 
w&n small cubes are added (see Fig. 9). However, if we 
consider a mixture of parallel platelets (size 6X6X2) and 
cubes (size 2X2X2) with a volume ratio comparable to the 
previous system, we see in Table V that g,(r= cr2) in the 
binary mixture is larger than for a pure system with only 
platelets. This can be explained by the larger surface-to- 
volume ratio of the platelets. The depletion effect is stronger 
when the area of contact of the two large particles that stick 
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TABLE II. The values of the one-dimensional integrals that correspond to the graphs for g&r)exp(@$) are 
given for a discrete binary mixture of hard cubes with side lengths 6 and 2 in. units of the lattice spacing. 

i- -~-A!x-N-lNRSaN~NBB~~~ 
0 7 11 -19 -47 -91” 19 47 47 91 49 77 121 -19 -47 -91 

1 6 10 -18 -46 -90 17 45 41, 85 36 60 100 -16 -40 -80 

2 5 9 -15 -43 -87 14 42 34 78 25 45 81 -13 ‘-33 -69 

3 4 8 -12 -39 -82 11 38 27 70 16 32 64 -10 -26 -58 

4 3 7 -9 -34 -75 8 ’ 33 20 61 9 21 49 -7 -19 _ -47 

5 2 6 -6 -28 -66 5 27 13 51 4 12 36 -4 -12 -36 

6- 1 5 -3 -21 -55 2 20 6 40 1 5 25 -1 -5 -25 

7 4 -1. -15 -45 14 30 16 -16 

8 3 -10 -36 9 21 9 -9 

9 2 -6 -28 5 13 4 -4 

10 1 -3 -21 2 6 1 -1 

11 -1 -15 

12 -10 

13 -6 

14 -3 

15 -1 

together is larger. The averaged g,,(r) is now obtained by 
averaging over all values for gzz(r> on the surface of a plate- 
let. In Table II and IV, the values for the one-dimensional 
integrals are listed that correspond to the.graphs that are 
needed to compute g(r) in this binary system of platelets and 
cubes. In Table VI, we see that for a two-dimensional system 
of squares with a side ratio of 3, g,(r = aa) is not larger for 
a binary mixture, compared with a pure system at the same 
total packing fraction. 

V. CONCLUSIONS 

In Sec. IV A, we showed that for a binary hard-core 
mixture of parallel h&d cubes with side lengths al and cZ2, 
the pair distribution function for the large particles diverges 
at contact in the limit ‘crll/cri+O. Thus, we expect, on ‘the 
basis of these calculations, a~demixing transition for mixtures 
with sufficiently large size asymmetry. In a binary mixture of 
hard spheres with diameters al and u.., a similar divergence 

of the pair distribution function was found within the 
Percus-Yevick approximation in the limit c~~/cr..+O.*~ By 

computer simulations, we do indeed see a demixing transi- 

tion in a lattice model of such a mixture provided that the 

size asymmetry of the large and small particles is larger than 

2. When the size ratio of the cubes equals 3, we found clear 

evidence of a demixing transition in our simulations, but 

such demixing was not observed for a cube side ratio of 2. 

However, if we consider platelets instead of the large cubes 
of comparable volume, the system will again become un- 

stable with respect to phase separation. This can be explained 
by a stronger depletion effect for platelets. In a two- 
dimensional mixture of squares of size 6X6 and 2X2, we 
found no evidence for d&nixing. At the same “volume ra- 

ti’o,” but with rods of size 18X2 instead of the large squares, 
the system appeared to approach a spinodal. The simulations 
support the theoretical predictions by Sanchez*l of the exist- 
ence of entropy-driven demixing in binary solutions. He 

. 
TABLE III. The values of the one-$mensional integrals that correspond to the graphs for gzz(r)exp@$) are 
given for a discrete binary mixture of hard cubes with side lengths 4 and 2 in. units of the lattice spacing. 

f 
0 

1 

AAb bb !-I 6aRRtiBbQBMM @I it?! 
5 7 -13 -23 -37 13 23 23 37 25 35 49 -19 -23 -37 -- 

_ 4, 6 -12 -22 .-36 11 21 19 33 16 24 36 -10 -18 -30 
3 5 -9 -19 -33 8 18 14 28 9 15 25 -7 -13 -23 

2 4 -6 -15 -28 5 14 9 22 4 8 16 -4 -8 -iS 
1 3 -3 -10 7 -21 2 9 4- 15 1 --, 3 9 -1 ..-3 -9 

2 -1 -6 -15 5 9 4 -4 

1 -3 -10 2 4 1’ -1. 

-1 -6 
-3 
-1 
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FIG. 9. (Top) g,,(r) vs r for a binary mixture of cubes (size 4X4X4 and 
2~2x2) at equal packing fractions for the large and small cubes. (Bottom) 
g&r) vs r for a system with only large cubes. In both pictures, the total 
packing fraction is (solid line) ~=0.2; (dashed-dotted) ~=0.4; (dashed) 
~=0.6; and (long dashed) ~=0.8. 

showed that the compressible nature of binary solutions and 
differences in the pure-component equation of state proper- 
ties play an important role in solution thermodynamics. For 
instance, the description of phase stability separates into a 
constant volume @Compressible) contribution and a volume 
fluctuation (compressible) contribution. In most theories, the 

TABLE IV. The values of the one-dimensional integrals that correspond to 
the graphs for g(r)e.xp(@) are shown here for a discrete system of hard 
cubes with side length 2 in. units of the lattice spacing. 
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TABLE V. The values for the averaged g,(r=h) are tabulated for a dis- 
crete system of hard parallel platelets of size 6X6X2 and packing fraction 
n and with’ cubes of side length 2 and packing fraction ~, . 

rh+o1 q,=o.o r/,=0.2 q-1=0.4 qj=O.6 77,=0.8 

0.1 1.088 83 
0.2 ‘1.180 29 
0.3 1.27436 1.465 28 
0.4 1.371 05 1.55950 
0.5. 1.470 37 1.656 35 1.98181 
0.6 1.57230 1.75581 2.078 80 
0.7 1.676 X5 1.857 89 2.178 42 2.638 43 
0.8 1.784 62 I.962 60 2.280 65 2.738 19 
0.9 1.893 81 2.069 92 2.38551 2.84058 3.435 13 

latter quantity has been neglected. However, this is only cor- 
rect when the pure components have identical equation of 
state properties and interact neutrally with one another. 
When we take volume fluctuations into account, the system 
is able to explore other regions of configuration space corre- 
sponding to larger volumes and lower free energies. A com- 

pressible solution is, hence, thermodynamically less stable 
than an incompressible solution. In binary hard-core mix- 
tures with sufficiently large size asymmetry, the equation of 
state properties of the pure components will be sufficiently 
diffirent, so that compYessibility contributions will play an 
important role in the description of phase stability. 

In this context, it is interesting to consider what happens 
in the high-density limit. In that case, every lattice site will 
be occupied by either a large or a small particle. This .can 
only be achieved if all particles order on a sublattice. How- 
ever, once this spatial ordering has taken place, there is no 
longer any gain in entropy associated with demixing. Hence, 
at high densities, the system will mix again. In Sec. IV B, we 
computed the averaged pair distribution function at contact 
gaV(a.& for the large particles up to the fourth virial coeffi- 
cient for severa systems. We found that a comparison of the 
computed values for gav(c2) for a binary mixture and for a 
pure system with only large particles at the same total pack- 
ing fraction provides an indication of the tendency of..the 
system to demix. jh particular, we found a larger value of 
g,(crJ only for the binary mixture of cubes with size ratio’ 3 
and the mixture of platelets and small cubes. By computer 
simulations, we indeed observed only in these systems a de- 

- 

TABLE VI. The values for the averaged g&r=6) are tabulated, for a 
two-dimensional discrete system of hard sqbares of size 6X6 and packing 
fraction n and squares with side length 2 and packing fraction rll. 

0 3 -7 7 9 -7 
12 -6 5 4 -4 
2 1 -3 2 1 -1 
3 0 -1 0 0 0 

772+ 771 q,=o.o 77,=0.2 77L'O.4 77,=0.6 9,=0.8 

0.1 1.116 93 
0.2 1.251 90 
0.3 1.404 91 1.36601 
0.4 1.575 97 153391 
0.5 1.765 08 1.719 85 1.670 47 
0.6 1.972-22 1.923 84 1.87130 
0.7 2.197 41 2.145 86 2.090 17 2.03032 
0.8 2.44065 2.38594 2.327 08 2.26408 
0.9 2.701 92 2.644 05 2.58204 2.515 87 2.445 56 
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mixing transition. For the mixture of cubes with size ratio 2 
and the two-dimensional system of hard squares, we-found a 
lower value for the pair distribution functions at contact, 
compared to the pure systems. In the simulations of these 
systems, we found no phase separation. Thus the calculation 
of the pair distribution functions of the large particles at con- 
tact gives a rough estimate whether the mixture is stable 
against phase separation. 
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(2) if the large particle at its new position overlaps with 
another large particle, this move is immediately rejected; 

(3) if there is no such overlap, the n small particles that 
overlap with the large particle at its new position are 
determined; 

(4) the y1 small particles are inserted into the volume vacated 
by the displacement of the large particle to its new posi- 
tion. 

Finally, we performed simulations of a hard-core poly- 
mer in a hard-core solvent. By increasing the solvent fugac- 
ity in this athermal polymer solution, we can make the poly- 
mer collapse. It is important to note that the collapse of the 
polymer chain in a solvent is, in a sense, counterintuitive. If 
one considers exclusively the polymer chain, there is a large 
amount of entropy lost by the collapsed polymer. However, 
the increase in entropy of the solvent molecules overrides 
this apparent loss. The observation of such a solvent-induced 
polymer collapse immediately implies the existence of a de- 
mixing transition in this athermal polymer solution. Also in 
this case, the polymer will expand again at high densities, as 
the gain in entropy associated with the polymer collapse will 
disappear for the same reason as mentioned above. The 
present simulations support existing theoretical predictions 
of the occurrence of entropy-driven demixing in polymer 
blends and solutions. In particular, Freed and Bawendiz2 
have argued on theoretical grounds that polymer blends in 
which monomers extend over several lattice sites, and there- 
fore have different sizes and shapes, can demix. Similarly, 
Sanchez” has-considered the inclusion of compressibility ef- 
fects into the theory of polymer mixtures. Again, an entropy- 
driven phase separation is predicted. Hariharan and Kumar2” 
studied the effect of compressibility in an athermal mixture 
of short and long chains in the vicinity of a hard wall by 
computer simulations. In such a mixture, the short chains 
(which lose less entropy per segment) partition preferentially 
to the surface in order to minimize the entropy loss due to 
the presence of the wall, and Hariharan and Kumar find that 
the compressibility of the mixture enhances this effect. 
Simulations of athermal polymer solutions have been re- 
ported before,” but a purely entropic polymer collapse has, 
to our knowledge, not been observed. 

The insertion of the 12 small particles into the frees vol- 
ume is not simple as the probability of random insertion of y1 
particles into a restricted volume is small. We therefore used 
a method similar to the one proposed by Siepmann and Fren- 
kel for polymer systems.25 When i - 1 small particles have 
already been inserted, we attempt to insert the ith particle. 

(i) For all k lattice sites that become free after displace- 
ment of a large particle, the external Boltzmann factor 
exp( - &@I for inserting a small particle on that lattice 

point is computed. The external energy is the energy of the 
small particle due to interaction with all the large and small 
particles in the system. For hard-core particles, this Boltz- 
mann factor is either zero in the case of overlap, or one when 
there is no overlap with other particles. 

(ii) One of the k lattice sites, say-w,‘, is selected with a 
probability 

PWt= 
exp( - PU,) 

z{wh 

with 

(Al) 

k 

~Z{w},; IS exp(-@,.I. J ~.~ 
j=l 

W) 

The subscript {wji means that wf is one of the k trial lattice 
sites, i.e. wi E{w}~ . The ith small particle is inserted at this 
lattice point and the corresponding partial “Rosenbluth 
weight” is stored 

Zhh 
I @‘=--F. 643) 

(iii) These steps are repeated until all n small particles 
have been inserted., 
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APPENDIX A 

In a dense system of small cubes, random displacement 
of a large particle is difficult. To overcome this problem, we 
remove the small particles that hinder the displacement of 
the large particle and reinsert them into the space vacated by 
the large particles. The algorithm formoving a big particle 
gqes as follows: 

(1) choose a random displacement of a large particle: 

Within the configurational bias method, we used the de- 
tailed balance condition in the Metropolis f&ml5 to deter- 
mine the probability of acceptance 

1 acc(alb) =min 1, 
P&d - PU,) 

I P@xp( -/HJ,) ’ 644) 

where P, and P, are, respectively, the probabilities that the 
system is in the original conformation a and in the new con- 
formation b, and lJ, and Uh are the total energies of these 
two conformations. The probability that the system is found 
in the new conformation b is equal to the probability of 
inserting the n small particles into the free volume 

n 

b=I-I 

exp( - Puwjb) 

i=l zwib 
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Since Ub = .$L~~&~, + ZL~,~~ b + uwRSt and the Rosenbluth 

factor is equal to 

. -_ 
L46) 

we arrive at 

PJexp( -.PU,J =(exp[ -/3(ui,arge,b+ u,,!]k”fW~)-‘:- 
. 

(A7) 

Substitutionof Eq. (A7) in Eq. (A4) gives 

acc(alb)-min 
Gi??;,.’ L : 

1, w expT:TP(Ue,,,,-Uw,,,,,,)] 
u 

iI .:*_ c. 

(448) 
: .., 

APPiN’LiX B ‘. __ 

For a faster equilibration of the polymer during simula- 
tions, we regrow’ parts in the middle of the. chain with a 
modified CBMC method.t4 In this case, -we have to take.care 
that the end parts of the chain will be connected again. We 
shall first describe how we regrow a part in the middle of the 
chain within a modified Rosenbluth scheme. Then we shall 
describe how to implement this in a CBMC scheme, such 
that detailed balance is satisfied. The regrowth algorithm 
goes as follows: 

(1) Choose a part at random in the middle of the chain, say 
L segments, and remove this part. 

(2) Regrow this part of the chain segment by segment. When 
we have already grown i-~1 segments, we try to add 
segment i. For all k possible.directions of segment i, we 
compute the external. and the internal energies. Note that 
the numberof trial directions k is equal to 6 on a cubic 
lattice. The external energy is the energy of the trial seg- 
ment due to interaction with the polymer and the solvent 
molecules. Since we have only hard-core interactions in 
our system, the external energy is either zero for an un- 
occupied lattice site or infinity for an occupied one. The 
internal energy is equal to the number of ideal random 
walks Ni; that connect the trial segment with the other 

end part of the chain in L-i steps. This number can be 
calculated easily (see-Appendix C), and for the sake of 
efficiency, we have tabulated these numbers. The role of 
this internal energy is to ensure that the end parts of the 
chain will be connected again., 
Select one of the trial segments, say wi , with a probabil- 
ity . 

(3) 

. . 

pwi= 
NE: expi - Puw,> 

‘fwli ’ 
I- 

:. 
(Blj 

where we have defined 

k 

j- Zrwl,=~ Nty exp(-puwjj. .I- - 
j=l 

032) 
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The subscript (~}~.means that wi is one -of the segments of 
the trial directions, i.e., wi E {w}i . We add this segment to the 
chain and store the corresponding partial “Rosenbluth 
weight” .- 

. . . 
‘twli 

“=-z--. I (B3) Z 

We repeat steps (2) and (3) until the chain is connected 
again. 

For the configurational bias method, we used the de- 
tailed balance condition in the tietropdlis form given by Eq. 
(A4); where P, and P, are. now, respectively, the probabili- 
ties that the part of the chain is in conformation a or b. The 
probability that the regrown part of the chain, consisting of L 
segments, has conformation b is equal to 

L 

pb=II 

Nzz expi - Puwib) 

@4) 
Z=l z{wlf* * 

Since U, = Zf= tuib and the Rosenbiuth factor is equal to’ 

L ‘Iwli, 
LybZ fl k, .) :.~ - CB5) 

i=l 

we arrive at 

Gh 
Phfexp(-PUb)=~ W) 

with 

L 

G,=fl Ntw. @7) 
i=l 

Substitution of E-q. (B6) in Eq. ?? gives 

ucc(~lb)=min(l,~bGbl/~~~Gn’). u38) 

In other words, this modified configurational bias Monte 
Carlo (CBMC) scheme works as follows: 

(1) generate a trial conformation for the selected part of the 
chain by using the Rosenbluth scheme, as described 
above; 

(2) compute the Rosenbluth weights times the weight func- 
tions _ _ 

%&G~~ and qtialGGi 

(3) of the trial conformation and of the old conformation; 
accept the trial move with probability 

min( 1 ;‘%+“~,tG,~/9Y0tdG,l~). 

*. :. 

.” . . . 

APPENDIX C 

.The number of ideal random walks from lattice. point 
(O,&$ to lattice point (Ax,Ay,Azj in N steps can be com- 
puted as follows: we start with the expression for the number 
of possible ideal random walks consisting of N steps with a 
fixed number of steps in all directions 
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N! 
NRw(~,x,Y,y,z,Z;N)~x!~,v,~,z,~, f _ ~;_ (Cl) 

(O&O) to (Ax,Ay,A~)~.we have to sum over the number of 

._. . . . . . random walks with N steps with all possible values of x, X, y, F. 
” j, z, and Z subject to’the constraints that 

Lr’ 

The number of steps in the positive x, y, and z directions are 
given by x, y, and z, while X, j;, and Z are the number of steps 
in the negative directions. Note that the sum of all steps must 

Ax=x-2, Ay=y--y, AZ=Z-5. (C3) 

be equal to N, 

xi-,f+y+j+z+Z=N. G9 
The number of ideal random walks of N steps resulting in 
displacements Ax, Ay, and AZ in the x, y, and z directions 

To obtain the required number of ideal random walks from~ then reduces to 

.: 
1 -~ =I -. 

N--j N- 

NRW(Ax,Ay,Az;N)= c -‘c - - 
iv! 

I_- 

-i==o F-0 
x!(x+Ax)!y!(y+Ay)!(N~--.+!(N+.-x-y)! 

‘1 _. .; /.I_ ‘_. r 

I.r.i .,, : 

(C4) 

with N-==(N-Ax-Ay-A~)12 and I3 H N. W. Lekkerkerker and A. Stroobants, Phys. Status Solidi A 195, 387 

N+=(N-An-Ay+Az)/2. (1993). 
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