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ABSTRACT

In this thesis, we establish the underlying research background necessary for tackling the problem

of phase-shifting in the wavelet transform domain. Solving this problem is the key to reducing the

redundancy and huge storage requirement in Image-Based Rendering (IBR) applications, which

utilize wavelets. Image-based methods for rendering of dynamic glossy objects do not truly scale

to all possible frequencies and high sampling rates without trading storage, glossiness, or com-

putational time, while varying both lighting and viewpoint. This is due to the fact that current

approaches are limited to precomputed radiance transfer (PRT), which is prohibitively expensive

in terms of memory requirements when both lighting and viewpoint variation are required to-

gether with high sampling rates for high frequency lighting of glossy material. At the root of the

above problem is the lack of a closed-form run-time solution to the nontrivial problem of rotating

wavelets, which we solve in this thesis.

We specifically target Haar wavelets, which provide the most efficient solution to solving the triple-

product integral, which in turn is fundamental to solving the environment lighting problem. The

problem is divided into three main steps, each of which provides several key theoretical contribu-

tions. First, we derive closed-form expressions for linear phase-shifting in the Haar domain for

one-dimensional signals, which can be generalized to N-dimensional signals due to separability.
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Second, we derive closed-form expressions for linear phase-shifting for two-dimensional signals

that are projected using the non-separable Haar transform. For both cases, we show that the coeffi-

cients of the shifted data can be computed solely by using the coefficients of the original data. We

also derive closed-form expressions for non-integer shifts, which has not been reported before. As

an application example of these results, we apply the new formulae to image shifting, rotation and

interpolation, and demonstrate the superiority of the proposed solutions to existing methods. In the

third step, we establish a solution for non-linear phase-shifting of two-dimensional non-separable

Haar-transformed signals, which is directly applicable to the original problem of image-based ren-

dering. Our solution is the first attempt to provide an analytic solution to the difficult problem of

rotating wavelets in the transform domain.
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1 INTRODUCTION

Wavelets have been gaining an ever increasing popularity among scientists and researchers from

various disciplines and fields. Many fields have witnessed a migration from the conventional

Fourier Transform to the younger Wavelet Transform. Those fields include image processing,

signal processing, database systems, computer vision and computer graphics, to mention a few.

In signal and image processing, wavelets have been particularly instrumental in methods of con-

structing “optimal” basis that are often used in various image processing applications, such as

classification and identification [CK93, SC94, SC95, DV, DAV99, DV00], and restoration or de-

noising [CW94, CD95, Don95, FBN07, HW95]. In graphics applications, wavelets have been

applied to many problems including level-of-detail (LOD) control for editing and rendering curves

and surfaces [FS94, BC90, CG91, FB88, PS83, WW92], surface reconstruction from contours

[MSS92], 3D modeling [DJL92][EDD95][HDD94], radiosity and global illumination [CSS96,

CW93, GSC93, HSA91, SGC93, SGC94, SS95a] and animation [Coh92]. Wavelets’ ubiquity

in so many disciplines is attributed to their fairly simple mathematical ground and the great variety

of possible applications in which they can be used.
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One of the major applications in computer graphics that started using wavelets, or more specifically

Haar wavelets, in the recent few years is Image Based Rendering (IBR). Haar wavelets are being

used to represent and compress the light, material and visibility functions required to solve the IBR

problem. This is due to their high localization property and their efficiency in dealing with mul-

tiresolution data as opposed to Spherical Harmonics - the Fourier transform analog on the sphere.

Furthermore, Haar wavelets provide an efficient solution to the triple-product integral, which is

fundamental to solving the lighting integral in IBR applications. However, representing the func-

tions involved in the lighting integral using Haar wavelets, forces the application to store multiple

instances of those functions according to their possible and varying orientations. This amounts to

gigabytes of redundant data in storage. This is due to the fact that there is no known method for

phase-shifting data once the Haar transform is applied. This is referred to in the literature as lack

of shift-invariance, which is considered the main disadvantage of using wavelets as opposed to

the shift-invariant Fourier Transform and Spherical Harmonics. The ability to phase-shift is com-

monly intertwined with the shift-invariance property. In this proposal, we present a method for

phase-shifting signals without necessarily having the shift-invariance property. For the purpose of

IBR applications, the main goal is to be able to shift the data in the Haar transform domain, which

does not necessarily require shift-invariance. Basically, achieving phase-shifting, without having

shift-invariance, is what results in reducing the storage and producing a more efficient solution to

the problem of image-based rendering, which is the main goal of our research.

In this thesis, we aim to establish the grounds for our work by first giving a brief but necessary

background to wavelets and their current research state in regards to shift-invariance and phase-
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shifting. We then introduce our motivation for the work that we have done to solve the phase-

shifting problem for the classical shift-variant Haar wavelets. As mentioned earlier, the lack of

a method for phase-shifting wavelets is considered the main disadvantage of using wavelets as

opposed to the Fourier Transform and Spherical Harmonics. We present a solution to linear phase-

shifting of one-dimensional discrete Haar wavelets, which can be easily generalized to the N-

dimensional case. We also present a solution for linear phase-shifting of the two-dimensional

non-separable case. These two solutions achieve phase-shifting without having to establish shift-

invariance. They also rely solely on the original data and do not introduce any modifications to

the classical Haar wavelets. We finally discuss image-based environment lighting, which is a term

we use interchangeably with IBR and the necessity for phase-shifting in such an application. We

present an innovative method for non-linear phase-shifting of two-dimensional compressed data

using the non-separable Haar transform. The phase-shift essentially is a rotation of the spherical

data required in the application. Our method provides the first analytic solution to the rotation of

Haar wavelets required by image-based environment lighting applications.

1.1 THIS CHAPTER: A SUMMARY

The purpose of this chapter is twofold: to provide an introduction to classical wavelets and to moti-

vate our work. The chapter first gives a short background and a history of the evolution of wavelets.

It then provides an introduction to wavelets from different viewpoints, namely, functional analysis,

3



multiresolution theory, and signal processing. We alternate between the different viewpoints as

we deem necessary to better explain the design and properties of the wavelet transforms. We then

discuss different desired properties including the shift-invariance property and explain their advan-

tages. We discuss two main trends in designing wavelets that aspire to achieve shift-invariance

without compromising too many other important properties. Finally, we present the motivation

behind our work and detail the organization of this thesis.

More details on the introductory topics covered in this chapter can be found in Burrus, Gopinath

and Guo [BGG97], Chui [Chu92], Daubechies [Dau92], Mallat [Mal98], Stollnitz [ES95], Strang

and Nguyen [SN97], Vetterli and Kovacevic [VK95] and Vetterli [Vet86].

1.2 INTRODUCTION TO WAVELETS

1.2.1 A LITTLE HISTORY

The roots of wavelets go back to Karl Weierstrass [Wei95] who in 1873 described a family of

fractal functions that are everywhere continuous and nowhere differentiable. These functions are

constructed by superimposing scaled copies of a given basis function. In 1910, Alfred Haar con-

structed an orthonormal system of basis functions now known as the Haar basis [Haa10]. In 1946,

Dennis Gabor [Gab46] introduced a non-orthogonal system with unbounded support based on

4



translated sinusoids modulated by the Gaussian function. However, it wasn’t until 1980 that the

name “wavelets” emerged in the literature. Goupillaud, Morlet and Grossmann [GGM84, GM84]

needed an alternative to Fourier that is more localized in terms of time - We will explain local-

ization in the next section. They replaced the modulation by complex exponentials in the Fourier

transform by scaling operations of a prototype function. Localization was achieved by shifting the

prototype function over the signal at different scales. They called the prototype function and its

different scales “ondelettes”, which means “small wave” in French. Later, it was translated into

English as “wavelets”.

1.2.2 WAVELETS FROM A FUNCTIONAL ANALYSIS POINT OF VIEW

Wavelets are expansion functions ψ
j

k (t) that can be used to produce all functions f (t) ∈ L2(R),

where L2(R) is the space of square integrable functions:

f (t) = ∑
j,k

b
j
k ψ

j
k (t) (1.1)

where b
j
k are weights called coefficients that decide the contribution of each expansion function

towards the reconstruction of f (t). Wavelets have the additional characteristic that they are all

functions ψ
j

k (t) that are constructed from a single “prototype” function called the mother wavelet

through shifting and dilation. A wavelet ψ
j

k (t) is a dilated and shifted version of the mother wavelet

ψ(t), where j is the number of dilations and k is the number of shifts. The following formula

5
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Figure 1.1: The Haar wavelets at different scale levels

explains the relationship between ψ
j

k (t) and the mother wavelet ψ(t):

ψ
j

k (t) =
√

2
j
ψ(2 jt − k), where

√
2

j
maintains a constant norm independent of scale j (1.2)

Figure 1.1 shows an example of a mother wavelet, in this case, the Haar mother wavelet, and its

daughter wavelets at different scales.
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1.2.3 THE THEORY OF MULTIRESOLUTION ANALYSIS

The different scales of dilation give rise to the theory of multiresolution analysis (MRA) [Mal89].

That is, a signal can be represented at different resolutions allowing for operations like compression

and successive reconstruction. Multiresolution analysis is based on the concept of nested spaces

V 0 ⊂V 1 ⊂V 2 ⊂ ... ⊂ L2(R).

As mentioned earlier, L2(R) is the space that contains all functions which have a finite, well-

defined integral of the square, that is,

f (t) ∈ L2 ⇔
∫

| f (t)|2dt = E < ∞ (1.3)

V j has a dimension v( j) and contains functions of the same size as its dimension. V j is defined as

the span of a set of linearly independent basis functions called the Scaling Functions φ
j

k . That is,

V j = span{φ
j

0 (t),φ
j

1 (t), ...,φ
j

v( j)−1
(t)} (1.4)

Similar to wavelets, the scaling functions φ
j

k (t) are also defined in terms of a parent function φ(t)

using the following formula:

φ
j

k (t) =
√

2
j
φ(2 jt − k) (1.5)

Figure 1.2 shows an example of a parent scaling function, in this case, the Box function, and its

children scaling functions at different scales.
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Figure 1.2: The Box scaling functions at different scale levels

The wavelet space W j is defined as the complement of V j in V j+1 (1.3). That is:

V j+1 = V j ⊕W j (1.6)

L2 can now be represented as follows:

L2 = V 0 ⊕W 0 ⊕W 1 ⊕ ... (1.7)

or equivalently,

L2 = V j ⊕W j ⊕W j+1 ⊕ ... (1.8)
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j can be positive, negative or even ∞ or −∞, which allows us to express L2 as follows:

L2 = V ∞ (1.9)

= V−∞ ⊕ ... ⊕W−2 ⊕W−1 ⊕W 0 ⊕W 1 ⊕W 2 ⊕ ... ⊕W ∞ (1.10)

where,

V−∞ = {0} (1.11)

V0W1 W0W2

W2 ┴ W1 ┴ W0 ┴ V0

V3 V2 V1 V0⊃⊃ ⊃

Figure 1.3: Scaling function and wavelet spaces

Note that defining W j as the complement of V j in V j+1 establishes orthogonality between all

functions that belong to V j and those that belong to W j. In other words, the inner product of φ
j

k

and ψ
j

l is equal to zero when k 6= l:

〈φ j
k (t),ψ

j
l (t)〉 =

∫

φ
j

k (t)ψ
j

l (t)dt = 0, when k 6= l (1.12)
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Also, note that the space that contains high resolution signals will contain those of lower resolution

also figure (1.3). We can write:

f (t) ∈V j ⇔ f (2t) ∈V j+1 (1.13)

This means that if φ(t) is in V 0 then it is also in V 1, the space spanned by φ(2t). Therefore, φ(t)

can be expressed in terms of a weighted sum of shifted φ(2t) as:

φ(t) = ∑
n

h0(n)
√

2φ(2t −n),n ∈ Z (1.14)

where the coefficients h0(n) are a sequence of real or complex numbers called the Scaling Function

Coefficients and
√

2 maintains a constant norm.

Similarly, since W 0 is a subset of V 1, ψ(t) can be written as a weighted sum of shifted φ(2t) as:

ψ(t) = ∑
n

h1(n)
√

2φ(2t −n),n ∈ Z (1.15)

The coefficients h1(n) are a sequence of real or complex numbers called the Wavelet Function

Coefficients. We later discuss how the sequences h0(n) and h1(n) can be used to construct the

wavelet transform.

Following from the above formulation in (1.7), any function f (t) ∈ L2(R) can be written as:

f (t) =
∞

∑
k=−∞

ckφk(t)+
∞

∑
j=0

∞

∑
−∞

d
j
kψ

j
k (t) (1.16)

Orthogonality allows coefficients ck and d
j
k to be calculated as the following inner products:

ck = 〈 f (t),φk(t)〉 =

∫

f (t)φk(t)dt (1.17)

d
j
k = 〈 f (t),ψ

j
k (t)〉 =

∫

f (t)ψ
j

k (t)dt (1.18)
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It also establishes the following simple relationship between h0(n) and h1(n):

h1(n) = (−1)nh0(1−n) (1.19)

1.2.4 FILTER BANKS AND THE WAVELET TRANSFORM

In the signal processing discipline, the scaling function coefficients h0(n) and the wavelet function

coefficients h1(n) are referred to as lowpass and highpass filters respectively. Convolution of a

signal x(n) with a filter h(n) is calculated through the following formula:

y(n) =
N−1

∑
k=0

h(k)x(n− k) (1.20)

To perform a one-level transformation on a signal x(n)∈V j, the signal is convolved by the lowpass

and highpass filters h0(n) and h1(n) and then downsampled to give the Scaling Coefficients c j−1

and Wavelet Coefficients d j−1 at level j−1.

h0(n) and h1(n) are alternatively referred to by their Z-transform equivalents H0(z) and H1(z).

Filtering in the Z-transform domain becomes a multiplication rather than a convolution, which is

a much less expensive process. Figure 1.4 shows the building block for the wavelet transform.

The diagram in figure 1.4 represents the following sequence of operations:

1. Filter an input signal x(n) ∈V j with the filter whose Z-transform is H0(z).

11



H0(z)

H1(z)

 2

 2

y0

y1

x

Figure 1.4: The analysis building block

2. Downsample the filter output by 2 to give output coefficients y0(n), or equivalently the scal-

ing coefficients c j−1.

3. Filter the input signal x(n) with the filter whose Z-transform is H1(z).

4. Downsample the filter output by 2 to give output coefficients y1(n), or equivalently the

wavelet coefficients d j−1.

To continue transforming the signal, these steps are successively applied to the output of the low-

pass filter H0(z), i.e. the scaling coefficients. In other words, a signal x(n) is transformed by

successively applying the highpass and lowpass filters to the scaling coefficients from the previous

iteration followed by downsampling at the end of each iteration. Figure 1.5 shows an example of a

four-level transformation.

Together, the lowpass and highpass filters form filter banks, where the lowpass filter is designed

based on a discrete scaling basis φ(n) and the highpass filter is designed based on a discrete wavelet

basis ψ(n) [GB92, Vai93]. The lowpass and highpass filters (together with downsampling) sepa-
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H1(z)
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 2

y000 H0(z)
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 2

 2
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Level 2
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Level 4

y0000

y0001

Figure 1.5: A 4-level wavelet transformation

rate the signal into two parts, each half the size of the original signal: a lower resolution part and a

complementing part that contains the necessary details for reconstruction.

Another set of lowpass and highpass filters g0(n) and g1(n) respectively, together with upsampling

is used to reconstruct the decomposed signal. The set of filters used for the forward transform is

called the Analysis Filters and the one used for the inverse transform is called the Synthesis Filters.

The Z-transform of the lowpass and highpass synthesis filters are denoted by G0(z) and G1(z).

This notation is used by Vetterli in [Vet86].

The building block for the inverse transform is shown in figure 1.6.

G0(z)

G1(z)

 2

 2

y0

y1

z+

Figure 1.6: The synthesis building block

The building block represents the following operations:
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1. Upsample the lowpass coefficients y0, or equivalently the scaling coefficients c j−1, by 2.

2. Filter the upsampled signal with G0(z).

3. Upsample the highpass coefficients y1, or equivalently the wavelet coefficients d j−1, by 2.

4. Filter the upsampled signal with G1(z).

5. Add the two filtered signals together to get the scaling coefficients at level V j.

We can use this block repeatedly in order to recover the original sequence from the wavelet trans-

form coefficients:

1. Use the block to reconstruct y000 from y0000 and y0001.

2. Reconstruct y00 from y000 and y001.

3. Reconstruct y0 from y00 and y01.

4. Reconstruct x(n) from y0 and y1.
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1.2.5 A LINEAR-ALGEBRAIC VIEWPOINT

Representing signals as vectors and convolution by filters as matrices allows us to express filtering

operations as matrix-vector multiplications [Vet87]. The scaling coefficients can be represented

as a vector c j = [c
j
0, ...,c

j

v( j)−1
]. Similarly, the wavelet coefficients can be represented as a vector

d j = [d
j
0, ...,d

j

w( j)−1
]. Convolution by analysis filters and downsampling can also be expressed by

multiplying the coefficients by matrices A j and B j:

c j−1 = A jc j (1.21)

d j−1 = B jc j (1.22)

where A j is a v( j−1)× v( j) dimensional matrix and B j is a w( j−1)× v( j) dimensional matrix.

On the other hand, convolution by the synthesis filters and upsampling, i.e. the reconstruction

operation, can be expressed using matrices P j and Q j as follows:

c j = P jc j−1 +Q jd j−1 (1.23)

P j and Q j are matrices that have v( j)× v( j−1) and w( j)×w( j−1) dimensions, respectively.

We use the notation:

Φ j(t) = [φ
j

0 (t), ...,φ
j

v( j)−1
(t)] (1.24)

to represent a single row matrix of all scaling basis at level j. Similarly, we use the notation

Ψ j(t) = [ψ
j

0(t), ...,ψ
j

w( j)−1
(t)] (1.25)
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to represent a single row matrix of all wavelet basis at level j, where v( j) and w( j) are the dimen-

sions of the spaces V j and W j, respectively. The relationship between spaces V j and V j−1 can

therefore be expressed through the following equations:

Φ j−1(t) = Φ j(t)P j (1.26)

Φ j(t) = Φ j−1A j (1.27)

Similarly, the relationship between spaces V j and W j−1 can be expressed through the following

equations:

Ψ j−1(t) = Φ j(t)Q j (1.28)

Φ j(t) = Ψ j−1B j (1.29)

Note that Ψ j−1 can be obtained using the scaling basis Φ j. This is because Ψ j−1, by its very

definition as V j−1’s complement, is a subspace of V j figure (1.3).

Algebraic representation is beneficial for explaining certain properties, such as orthogonality and

perfect reconstruction. However, matrix multiplications are avoided whenever implementation is

concerned because of their inefficiency.
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1.3 IMPORTANT PROPERTIES AND DEFINITIONS

As we mentioned earlier, our main goal is to reduce the storage requirement and to improve the

efficiency of IBR applications through phase-shifting. The availability of a method for phase-

shifting nullifies the need for storage. In this section, we give a more in-depth description of

shift-invariance. We also describe and explain certain properties that tend to get sacrificed in the

pursuit of phase-shifting by means of achieving shift-invariance. These properties are namely:

• Orthogonality and Orthonormality.

• Perfect Reconstruction.

• Localization.

1.3.1 ORTHOGONALITY AND ORTHONORMALITY

A set of wavelet basis functions are orthonormal if the following inner products hold for all j, k

and l:

〈φ j
k |φ

j
l 〉 = δk,l (1.30)

〈ψ j
k |ψ

j
l 〉 = δk,l (1.31)

〈φ j
k |ψ

j
l 〉 = 0 (1.32)
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If the result of the inner product is the delta function multiplied by a scalar the basis functions are

orthogonal. An orthogonal system can be normalized by dividing by the norm ‖ f (t)‖ = 〈 f | f 〉.

As mentioned earlier, orthogonality allows the scaling coefficients ck and the wavelet coefficients

d
j
k to be calculated as the following inner products:

ck = 〈 f (t),φk(t)〉 =

∫

f (t)φk(t)dt (1.33)

d
j
k = 〈 f (t),ψ

j
k (t)〉 =

∫

f (t)ψ
j

k (t)dt (1.34)

It also establishes the following simple relationship between filters h0(n) and h1(n):

h1(n) = (−1)nh0(1−n) (1.35)

Furthermore, it implies the following relationships between the analysis and synthesis matrices:

A j = (P j)−1 = (P j)T (1.36)

B j = (Q j)−1 = (Q j)T (1.37)

The above relations, in turn, ensure perfect reconstruction.

1.3.2 PERFECT RECONSTRUCTION

A system has the perfect reconstruction property if the combination of a forward and reverse

wavelet transform leaves any signal unchanged. In other words, perfect reconstruction is the abil-
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ity to reconstruct a signal back to its original form without any loss of data. Orthogonality allows

for perfect reconstruction but is not mandatory. By examining relations (1.26), (1.27), (1.28) and

(1.29), one can easily see that the required relationship between matrices P j and A j, and between

Q j and B j for a perfect reconstruction is as follows:

A j = (P j)−1 (1.38)

B j = (Q j)−1 (1.39)

In other words, for a system to have the perfect reconstruction property A j, B j, P j and Q j have to

be invertible.

In signal processing literature, [Vet86] shows that perfect reconstruction is ensured using the fol-

lowing formulae:

H0(z)G0(z)+H1(z)G1(z) = 2 (1.40)

H0(−z)G0(z)+H1(−z)G1(z) = 0 (1.41)

1.3.3 PARSEVAL’S THEOREM AND LOCALIZATION

If the scaling functions and wavelets form an orthonormal basis, the Parseval’s theorem can be used

to relate the energy of the signal f (n) to the energy in each of the components and their wavelet
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coefficients. Parseval’s theorem is as follows:

∑
n

| f (n)|2 = ∑
l

|c(l)|2 +∑
j
∑
k

|d j
k |2 (1.42)

Parseval’s theorem tells us that the signal energy can be partitioned on the time-scale domain,

where k corresponds to time and j corresponds to scale.

A signal in the time domain is localized with respect to time. That means that at any given time

t, the strength of the signal is known. For example, if the signal is a simple pulse, the location

of that pulse is the localization in time. The signal in the time domain is not, however, localized

with respect to frequency, that is, one cannot tell what the frequency is at a given time t because

frequency is a function of the entire signal. On the other hand, a signal in the Fourier frequency

domain is localized with respect to frequency but not time. In other words, the strength of a given

frequency f is always known but there is no way of telling the times t at which that frequency

occurred. For example, if a Fourier series expansion of a signal has only one large coefficient,

then the signal is essentially a single sinusoid at the frequency determined by the index of the

coefficient. Diagrams (1.7-b) and (1.7-c) show the localization of energy in the discretized time

and Fourier domains.

One of the first attempts to achieve time-localization in the frequency domain was by using the

Short-Time (windowed) Fourier Transform (STFT). However, the STFT has a fixed time-frequency

resolution of the basis functions (1.7-d), which means that either the time or the frequency resolu-
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tion is poor and the trade-off is inflexible. Furthermore, the STFT doesn’t lend itself to represent

the signal at different scales, therefore, making it unsuitable for multiresolution analysis.

In contrast to Fourier, which is localized only in frequency, and to STFT, which is localized in both

frequency and time but is not suitable for multiresolution analysis, the wavelet transform is local-

ized with respect to both frequency and time and is well-suited for MRA. A wavelet representation

gives the location in both time and frequency simultaneously. Burrus et al. [BGG97] gives a nice

analogy for localization; a wavelet representation is much like a musical score where the location

of the notes tells when the tones occur and what their frequencies are figure (1.7-e).

1.3.4 SHIFT-INVARIANCE

Shift-invariance is the property where the total energy of the coefficients in any subband is un-

affected by translations applied to the original image. Due to localization, which is established

through critically sampling the signal and, therefore, violating the Nyquist criterion, shifting the

signal causes the energy to redistribute among the different subbands of the transform, unless that

shift is a multiple of each of the sampling factors in the system. Simoncelli et al. [SFA92] high-

lighted the problem of shift-invariance for critically-sampled orthogonal wavelet transforms. They

developed a two-dimensional pyramid transform that preserves the energy within each subband

by introducing redundancy and relaxing the orthogonality requirement in the system to overcome
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the critical sampling. Their decomposition is, however, non-separable and has the disadvantage of

non-perfect reconstruction.

Simoncelli et al. [SFA92] were not the first to mention the lack of shift-invariance in the classic

critically-sampled wavelet transforms. Strang mentions it as a primary weakness [Str89] and Mal-

lat uses the zero-crossings of the wavelet subbands to create a shift-invariant transform [Mal91].

In the next sections, we discuss the two main trends in the literature to obtain shift-invariance.

We also present the progress, advantages and disadvantages of each trend, specifically in terms of

the above mentioned properties of orthogonality, perfect reconstruction and localization. Further

criteria we look at for evaluating the suitability of those methods for our IBR application are

speed, storage cost and preservation of the original design of the wavelet transform. We require

no modification to the Haar wavelet transform in specific since no other transform is as efficient in

solving the required triple product of the IBR application.

1.4 FRAMES AND REDUNDANT WAVELETS

There has been two trends in responding to the shift-invariance requirement. The earlier literature

has been focusing on modifying the classical real wavelets to enforce shift-invariance, while at-

tempting to preserve other desired properties. This approach was rediscovered by various authors
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independently, and bears different names such as Algorithme à Trous [MT89, Dut89, Mal98], Re-

dundant Wavelets [BGG97] and Undecimated Wavelets [LGO96] to name a few.

For a set of functions to be considered as basis it must contain independent elements. In other

words, no function in the set can be written as a linear combination of the others. If the set of

functions contains functions that are dependent on the others in the same set, the set is then called

a frame. A frame is a spanning set, which is not independent. For an expansion set φk(t) to be a

frame for some space, it must satisfy

A‖g‖2 ≤ ∑
k

|〈φk,g〉|2 ≤ B‖g‖2, where 0 < A, B < ∞ for all signals g(t) in the space (1.43)

If A = B then the frame is a tight frame and

A‖g‖2 = ∑
k

‖〈φk,g〉‖2 (1.44)

which is a generalization of the Parseval’s theorem. A is a measure of redundancy for the frame.

Redundant Wavelet Transforms (RWT) have different redundancies at each scale. Except for that

fact, RWT’s are very much like tight frames, in that they support a form of Parseval’s theorem

for energy partitioning, which means that they have the time-localization property. The redun-

dancy adds the very desirable shift-invariance property, where the energy is preserved within each

subband.

The major drawbacks of this approach, of course, are the undesirable side-effect of overly redun-

dant representation and the high computational cost, since each set of coefficients contains the same

number of samples as the input signal. This level of redundancy essentially defeats the purpose of
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using wavelets for compressing the functions involved in the lighting integral in IBR applications,

and oppose our aim for reducing redundancy.

1.5 COMPLEX WAVELETS

In order to alleviate these side-effects, more recently a second approach has been investigated in

the literature that attempts to directly construct shift-invariant wavelets. This line of research has

led to a new class of wavelets with complex coefficients. Few examples are the Gabor wavelets

for texture processing [MM96], harmonic wavelets for vibration and acoustic analysis [New93,

New99] and the Complex Wavelet Transform (CWT) for motion estimation [MK96]. In addition

to shift-invariance, one particular advantage of complex wavelets is directionality that is similar to

the steerable pyramids [SF95]. Complex wavelets prove to be useful in solving the shift-invariance

problem without compromising many other properties. However, their major drawbacks are lack of

speed and often also poor inversion properties, which means that the signal cannot be reconstructed

perfectly. A more successful attempt in this category is perhaps the dual-tree complex wavelet

transform (DT-CWT) and its variations [RK99, RK00]. Although, DT-CWT provides a good trade-

off between fully decimated wavelets and the redundant wavelet transform, it does so by trading off

the compression capabilities and computational time of the classical real wavelets. Furthermore,

these wavelets lack the orthogonality property, which is essentially what allows the Haar transform

to efficiently provide a solution to the IBR triple product.
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1.6 PHASE-SHIFTING VS SHIFT-INVARIANCE

The main focus in the wavelet literature has been on establishing phase-shifting by means of estab-

lishing shift-invariance. Achieving shift-invariance, however, relies on either introducing redun-

dancy or relaxing orthogonality or the perfect reconstruction properties. These methods all oppose

our goal of a more efficient solution to the IBR problem. This leads us to deduce that we have to

design our solution for phase-shifting while preserving shift-variance in order not to sacrifice the

orthogonality, perfect reconstruction and localization properties of the Haar transform.

In the next section we describe our motivation in more detail.

1.7 THE MOTIVATION BEHIND OUR WORK

In the previous sections, we mentioned two main trends in the literature for achieving phase-

shifting by means of shift-invariance. The first is introducing redundancy to the transform and

the second is using complex transforms. Both trends aim at achieving shift-invariance while not

compromising too many other desirable properties that we discussed above. However, redundancy

always relaxes the elegant orthogonal property. Complex wavelet transforms trade off the com-

pression capabilities and computational time of the classical real wavelets. Speed, symmetry and

separability are other properties that can get sacrificed.
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We have initiated and investigated a third line of approach to achieve phase-shifting. Instead of

modifying a classical wavelet or introducing a new complex wavelet, our goal is to determine in

what way the wavelet coefficients in a fully decimated transform are related to those of a shifted

signal. Of course such relation would be wavelet-dependent and may not be a straightforward re-

lation as in redundant wavelets, where the shift in the input results in a shift in the output. The key

idea is that as long as the relation is known, one can achieve phase-shifting, since all the coeffi-

cients of a shifted signal can be mapped to those of the original signal. On the other hand, we don’t

require shift-invariance, which means we don’t compromise speed, compression or other desired

properties. Furthermore, establishing the explicit and direct relations between the coefficients of

a signal and its shifted version, would allow us to perform compressed domain processing of sig-

nals or images without requiring a chain of forward and backward transforms. This is particularly

of interest in applications such as data compression and progressive transmission, or more recent

applications in compressed sensing [RN06, MW07, HN05]. Our focus in this dissertation is on

the Haar wavelet transform due to additional desirable properties of separability and symmetry.

According to [Dau92], there are no wavelets other than Haar that are at once orthogonal, com-

pactly supported and symmetric. Most importantly, our focus on Haar is because of the fact that it

provides the most efficient solution to the triple product in IBR applications.

We present a solution to linearly phase-shift the Haar coefficients in the transform domain solely

using the available coefficients of the unshifted transformed signal, which we refer to as the 0-shift

signal. Our solution generalizes readily to an N-dimensional signal due to separability. We also

show how our solution can be extended to non-integer phase shifts. To demonstrate the power of
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the proposed approach and to evaluate it, we performed extensive experiments on the problem of

accurate image rotation [AF08b, UTY95].

We also present a solution for linearly phase-shifting the 2D non-separable Haar transform. We

derive the explicit expressions for shifting the Haar compressed data in the transform domain solely

based on using the available coefficients of the original 0-shift signal. We also show how our

solution can be expanded for non-integer phase shifts, and evaluate our approach against popular

interpolation methods in terms of accumulation of errors through successive shifts [AF08a].

We finally present an innovative method for non-linearly shifting the 2D non-separable Haar

wavelets, which is directly applicable to the environment lighting application in Computer Graph-

ics. As we mentioned earlier, Haar wavelets have been used recently to represent and compress

the environment lighting, material reflection and the visibility functions involved in the lighting

integral due to their proficiency in multi-scale information representation, which translates in the

application into different degrees of specularity and shadowing. Haar wavelets proved very useful

in solving the lighting integral. A major disadvantage, however, as we also mentioned is the lack of

a method for phase-shifting the integral terms in the Haar transform space, which results in forcing

the application to store multiple instances of the same data according to its possible and varying

orientation. Hence, the usefulness and applicability of our method, which allows us to compute

the required information during run-time rather than store it in advance.
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1.8 ORGANIZATION OF THE PROPOSAL

In the next chapter, we first introduce the notations used and briefly describe the Haar transform

tree. We then derive our expressions for describing the explicit relations between the Haar coef-

ficients of a 0-shift and a linearly shifted signal for both fully and partially transformed signals.

These results are then extended for sub-pixel shifting, followed by full evaluation and testing of the

results on image rotation and interpolation problems. The chapter concludes with a brief discussion

and some remarks on the proposed new ideas.

In the third chapter, we also start by introducing additional notations and the two-dimensional

Haar transform tree. We follow by deriving the formulae for computing the coefficients of a lin-

early shifted signal. We also show how our method can be also extended to sub-pixel shifting

and evaluate the performance of our method against popular interpolation methods in terms of

accumulation of errors through successive shifts.

In the last chapter, we introduce the environment lighting problem. We discuss the different meth-

ods that have been used so far in synthetic lighting literature. We finally present our solution for

non-linear phase-shifting, which we demonstrate by rendering realistic environment-lit synthetic

scenes.
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Figure 1.7: (a) A signal in the time domain. (b) The signal in time-frequency space. (c) The

Fourier-transformed signal in the time-frequency space. (d) The STFT-transformed signal in the

time-frequency space. (e) The wavelet-transformed signal in the time-frequency space.
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2 PHASE-SHIFTING IN THE DISCRETE HAAR DOMAIN

2.1 THE ONE-DIMENSIONAL HAAR TRANSFORM TREE

Let x(n) be a one-dimensional signal of size 2N , where N is a positive integer. The Haar transform

of x(n), namely H(x(n)), has the form:

H(x(n)) = {A0
0,d

0
0 ,d1

0 ,d1
1 , ...,dl

i , ...,d
N−1
0 , ...,dN−1

2N−1−1
} (2.1)

such that A0
0 is the dc value of the signal and dl

i is the ith wavelet coefficient at level l, where

l = 0, ...,N −1 and i = 0, ...,2l −1.

Transforming a signal using Haar wavelets can be easily done by successively convolving the

scaled part of the signal by box and Haar filters until the signal is fully transformed (see for instance

[VK95] for more details).

We choose to express the Haar transformation using a tree as in Fig. 2.1. The tree is constructed

of N levels with x(n) residing at the leaves, i.e. the Nth level. The ith node at level l in the tree
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Figure 2.1: The Haar coefficients tree contains at each level the scaling and the wavelet coefficients

Al
i and dl

i , respectively. The Haar transform of the one-dimensional signal x(n) is composed of the

dc value A0
0 and the wavelet coefficients dl

i , where l = 0, ...,N −1 and i = 0, ...,2l −1. The scaling

coefficients Al
i at each level are used to derive the analytic expressions for phase-shifting the signal

x(n), but the final expressions are independent of the scaling coefficients. Note that the leaves of

the tree, which are composed of the signal x(n) can be considered as the scaling coefficients at

level N, namely AN
i .

can be made to hold the 0-shift ith scaling and wavelet coefficients, Al
i and dl

i , respectively, where

l = 0, ...,N −1 and i = 0, ...,2l −1.

Each level in the tree corresponds to a reduction step k = 1, ...,N, with the untransformed original

signal corresponding to k = 0. The signal is partially transformed with k reduction steps if 0 < k <
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N and is said to be fully transformed if k = N. At each reduction level k, one obtains the partially

transformed signal Hk(x(n)). Hk(x(n)) is composed of the scaling coefficients at level k followed

by the wavelet coefficients at the same level and all subsequent reduction levels that are less than k

and greater than 1. That is:

Hk(x(n)) = {AN−k
0 , ...,AN−k

2N−k−1
,dN−k

0 , ...,dN−k

2N−k−1
, ...,dl

i , ...,d
N−1
0 , ...,dN−1

2N−1−1
} (2.2)

Where, l = N−k, ...,N−1 and i = 0, ...,2l . Note that HN(x(n)) = H(x(n)) is the fully transformed

signal.

We use the tree to examine the behavior of the wavelet coefficients with respect to shifting. Note

that we can denote x(i) as AN
i , in which case dN

i = 0. By using this notation, l now has the

range 0, ...,N. Also, note that the scaling coefficient Al
i is related to its parent at level l −1 by the

following relation:

Al
i =















Al−1
i/2

+ dl−1
i/2

, i is even

Al−1
⌊i/2⌋−dl−1

⌊i/2⌋, i is odd

(2.3)

Now, let Dl
i be the difference between the dc value at the root of the tree A0

0 and the scaling

coefficient Al
i . Then

Al
i = A0

0 +Dl
i (2.4)
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By substituting (2.4) in (2.3), Dl
i can be computed recursively solely in terms of the wavelet coef-

ficients using the following relation:

Dl
i =































Dl−1
i/2

+ dl−1
i/2

, i is even

Dl−1
⌊i/2⌋−dl−1

⌊i/2⌋, i is odd

0, l = i = 0

(2.5)

It can be verified that Dl
i can be computed recursively with a complexity of O(l) for fully-transformed

signals, which in itself is very cheap, or be simply tabulated for even a faster retrieval. Also, note

that for partially transformed signals, a combination of (2.5) and (2.4) has to be used to evaluate

Dl
i:

l = N − k :

Dl
i = Al

i −A0
0

l > N − k :

Dl
i =















Dl−1
i/2

+ dl−1
i/2

, i is even

Dl−1
⌊i/2⌋−dl−1

⌊i/2⌋, i is odd

(2.6)

The complexity for the above equation is even less than that of (2.5) because the recursion needs

to go a maximum depth of k rather than a maximum depth of N. In other words, the complexity

for the above equation is O(k− l)

At level N − k, there are 2k non-redundant coefficient sets each of size 2N−k [SB97], where k =

1, ...,N. A shift s = 0, ...,2N −1 can be one of the following possibilities:

• A shift that is divisible by 2k.
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• An odd shift.

• An even shift that is not divisible by 2k.

In the following sections, we first analyze the behavior of the wavelet coefficients based on the

above three possibilities for a fully transformed signal. We then analyze the behavior of the scaling

coefficients for signals that are partially transformed. The final analytic solutions that we provide

are capable of evaluating the coefficients of the shifted signal solely using the original coefficients

of the 0-shift signal, which is the goal of this chapter.

2.2 SHIFTING FULLY TRANSFORMED SIGNALS

2.2.1 SHIFTING BY A MULTIPLE OF 2k

This is the simplest case. A shift s in the discrete domain that is equal to 2ku is a circular shift of

the 0-shift wavelet coefficients at level N − k by u, that is,

dN−k
inew

= dN−k

(i+u)%2N−k , k = 1, ...,N (2.7)

where 0 ≤ u ≤ 2N−k − 1 and % is the mod operation. Note that for levels N − (k− 1),N − (k−

2), ...,N −1 a shift of 2ku of the original signal is a circular shift of the coefficients at those levels

by 2u,22u, ...,2k−1u, respectively. In other words, a shift of 2ku of the original signal shifts the
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coefficients at level N − k by u, while shifting the coefficients at level N − (k − 1) by twice as

much, and the coefficients at level N − (k−2) by four times as much and so on.

2.2.2 SHIFTING BY AN ODD AMOUNT

By examining the tree in figure (2.1), we notice that:

dN−k
inew

= ((x(2ki+s)%2N + ...+ x(2k−1(2i+1)+s−1)%2N )

− (x(2k−1(2i+1)+s)%2N + ...+ x(2k(i+1)+s−1)%2N ))/2k

(2.8)

In other words, dN−k
inew

is the sum of the leaves shifted into its left branch minus the leaves shifted

into its right branch divided by 2k. To simplify the above equation, we set the indices as follows:

i1 = 2ki+ s

i2 = 2k−1(2i+1)+ s

i3 = 2k(i+1)+ s

Using the notation AN
i for xi, (2.8) now becomes:

dN−k
inew

= ((AN
i1%2N + ...+AN

(i2−1)%2N )

− (AN
i2%2N + ...+AN

(i3−1)%2N ))/2k (2.9)
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Substituting (2.4) and then (2.5) in (3.6) and cancelling out the A0
0’s, the relation for computing

dN−k
inew

for a shift s that is odd becomes:

dN−k
inew

= (DN−1
i1%2N−1 +2

i2−1

∑
m=i1+1

DN−1
m%2N−1 −2

i3−1

∑
m=i2+1

DN−1
m%2N−1

− DN−1
i3%2N−1−dN−1

i1%2N−1+2dN−1
i2%2N−1−dN−1

i3%2N−1)/2k

where,

i1 = 2k−1i+ ⌊s/2⌋

i2 = 2k−2(2i+1)+ ⌊s/2⌋

i3 = 2k−1(i+1)+ ⌊s/2⌋ (2.10)

Note that for k = 1, i2 would be a non-integer value, in which case we must set dN−1
i2%2N−1 to 0.

2.2.3 SHIFTING BY AN EVEN AMOUNT THAT IS NOT DIVISIBLE BY 2k

In this case, s is divisible by 2t , for 1 ≤ t ≤ k− 1 and 2t is the highest power of 2 by which s is

divisible. This allows us to let s = 2tu, where 0 ≤ u ≤ 2N−t − 1. This means that the coefficients

at levels N − 1, ...,N − t follow the first case. In other words, the 0-shift coefficients at levels

N − 1,N − 2, ...,N − t are circularly shifted by 2t−1u,2t−2u, ...,u, respectively. Since 2t is the

highest power of 2 by which s is divisible, u must be odd. This allows us to treat this case as an

odd shift of the scaling coefficients at level N − t. In other words, at level N − k, dN−k
inew

can be
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evaluated using the following modification of equation (3.6):

dN−k
inew

= ((AN−t
i1%2N−t + ...+AN−t

(i2)−1%2N−t )

− (AN−t
i2%2N−t + ...+AN−t

(i3−1)%2N−t ))/2k−t

where,

i1 = 2k−t i+ s/2t

i2 = 2k−t−1(2i+1)+ s/2t

i3 = 2k−t(i+1)+ s/2t (2.11)

Following the same steps, the above can be rewritten as:

dN−k
inew

= (DN−t−1
i1%2N−t−1 +2

i2−1

∑
m=i1+1

DN−t−1
m%2N−t−1

− 2
i3−1

∑
m=i2+1

DN−t−1
m%2N−t−1 −DN−t−1

i3%2N−t−1

− dN−t−1
i1%2N−t−1 +2dN−t−1

i2%2N−t−1 −dN−t−1
i3%2N−t−1)/2k−t

where,

i1 = 2k−t−1i+ ⌊s/2t+1⌋

i2 = 2k−t−2(2i+1)+ ⌊s/2t+1⌋

i3 = 2k−t−1(i+1)+ ⌊s/2t+1⌋

and,

dN−1
i2%2N−1 = 0, if i2 is non-integer. (2.12)
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Note that the second case is the same as the third case when t = 0. That leaves us with the following

formula:

k > t :

dN−k
inew

= (DN−t−1
i1%2N−t−1 +2

i2−1

∑
m=i1+1

DN−t−1
m%2N−t−1

− 2
i3−1

∑
m=i2+1

DN−t−1
m%2N−t−1 −DN−t−1

i3%2N−t−1

− dN−t−1
i1%2N−t−1 +2dN−t−1

i2%2N−t−1 −dN−t−1
i3%2N−t−1)/2k−t

k ≤ t :

dN−k
inew

= dN−k

(i+s/2k)%2N−k

where,

i1 = 2k−t−1i+ ⌊s/2t+1⌋

i2 = 2k−t−2(2i+1)+ ⌊s/2t+1⌋

i3 = 2k−t−1(i+1)+ ⌊s/2t+1⌋

and,

dN−t−1
i2%2N−1 = 0, if i2 is a non-integer (2.13)

The above relation can now be used to evaluate the new wavelet coefficients of the Haar transform

at all different levels after any shift s = 0, ...,2N −1 using only the coefficients of the 0-shift signal.

The worst case complexity for evaluating dN−k
inew

using (2.13) is O(log(L)), where L is the size of

the signal x(n) (see the complexity analysis section for more details).
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2.3 SHIFTING PARTIALLY TRANSFORMED SIGNALS

Depending on the application, the original signal might not be fully transformed. As we mentioned

earlier, a signal that has k degrees of reduction has the form:

Hk(x(n)) = {AN−k
0 , ...,AN−k

2N−k−1
,dN−k

0 , ...,dN−k

2N−k−1
, ...,dl

i , ...,d
N−1
0 , ...,dN−1

2N−1−1
} (2.14)

Where, 1 ≤ k ≤ N −1, l = N − k, ...,N −1 and i = 0, ...,2l .

A signal that is partially transformed is composed of both scaling coefficients and wavelet coef-

ficients. Equation (2.13) shows how to evaluate the wavelet coefficients of a fully transformed

shifted signal, which also applies to evaluating the wavelet coefficients of a partially transformed

signal. In this section we show how to evaluate the scaling coefficients at reduction step k for a

signal that has been decomposed k times and shifted by the integer amount s in the time domain.

2.3.1 SHIFTING BY A MULTIPLE OF 2k

Similar to evaluating the wavelet coefficients case, a shift s in the discrete domain that is equal to

2ku is a circular shift of the 0-shift scaling coefficients at level N − k by u, that is,

AN−k
inew

= AN−k

(i+u)%2N−k , k = 1, ...,N −1 (2.15)

where 0 ≤ u ≤ 2N−k −1.
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2.3.2 SHIFTING BY AN ODD AMOUNT

By examining the tree in figure (2.1), we notice that:

AN−k
inew

= ((x(2ki+s)%2N + ...+ x(2k−1(2i+1)+s−1)%2N )

+ (x(2k−1(2i+1)+s)%2N + ...+ x(2k(i+1)+s−1)%2N ))/2k

(2.16)

In other words, AN−k
inew

is the sum of the leaves shifted into its left branch plus the leaves shifted into

its right branch divided by 2k. To simplify the above equation, we use only the starting and ending

coefficients and we also use the notation AN
i for xi:

AN−k
inew

= (AN
i1%2N + ...+AN

(i2−1)%2N )/2k (2.17)

Where,

i1 = 2ki+ s

i2 = 2k(i+1)+ s

Substituting (2.3) in the above, we get

AN−k
inew

= (A0
0 +DN

i1%2N + ...+A0
0 +DN

(i2−1)%2N )/2k (2.18)

The number of A0
0’s is equal to the number of coefficients Al

i being summed, which is equal to 2k.

We factor out A0
0:

AN−k
inew

= A0
0 +(DN

i1%2N + ...+DN
(i2−1)%2N )/2k (2.19)
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Substituting (2.5) and simplifying, we get the analytic solution for evaluating AN−k
inew

under an odd

shift s:

AN−k
inew

= A0
0 +(DN−1

i1%2N−1 +2
i2−1

∑
m=i1+1

DN−1
m%2N−1 +DN−1

i2%2N−1

−dN−1
i1%2N−1 +dN−1

i2%2N−1)/2k

where,

i1 = 2k−1i+ ⌊s/2⌋

i2 = 2k−1(i+1)+ ⌊s/2⌋ (2.20)

2.3.3 SHIFTING BY AN EVEN AMOUNT THAT IS NOT DIVISIBLE BY 2k

For a shift s = 2tu, where 0 ≤ u ≤ 2N−t −1 and t < k, we can treat this case as an odd shift of the

coefficients at level N − t, which is similar to what we did in evaluating the wavelet coefficients

under a shift s = 2tu. AN−k
inew

can now be evaluated using the following equation:

AN−k
inew

= (AN−t
i1%2N−t + ...+AN−t

(i2−1)%2N−t )/2k−t (2.21)

Proceeding as we did in the odd shift case, we get the following solution:
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AN−k
inew

= A0
0 +(DN−t−1

i1%2N−t−1 +2
i2−1

∑
m=i1+1

DN−t−1
m%2N−t−1 +DN−t−1

i2%2N−t−1

−dN−t−1
i1%2N−t−1 +dN−t−1

i2%2N−t−1)/2k−t

where,

i1 = 2k−t−1i+ ⌊s/2t+1⌋

i2 = 2k−t−1(i+1)+ ⌊s/2t+1⌋ (2.22)

Combining the three cases, the final result becomes:

k > t :

AN−k
inew

= A0
0 +(DN−t−1

i1%2N−t−1 +2
i2−1

∑
m=i1+1

DN−t−1
m%2N−t−1 +DN−t−1

i2%2N−t−1

−dN−t−1
i1%2N−t−1 +dN−t−1

i2%2N−t−1)/2k−t

k ≤ t :

AN−k
inew

= AN−k

(i+s/2k)%2N−k

where,

i1 = 2k−t−1i+ ⌊s/2t+1⌋

i2 = 2k−t−1(i+1)+ ⌊s/2t+1⌋ (2.23)

The above relation can now be used to evaluate the new scaling coefficients of a partially trans-

formed signal with k reduction steps after any shift s = 0, ...,2N −1 using only the coefficients of
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the 0-shift signal. The worst case complexity for evaluating AN−k
inew

using (2.23) is O(log(L)), where

L is the size of the signal x(n) (see the complexity analysis section for more details).

2.4 NON-INTEGER SHIFTING

In this section, we show how our solution can be extended to achieve non-integer shifts. Although,

our model is based on up-sampling the original signal, the final relations that are derived require

using only the coefficients of the original signal. Up-sampling by a factor of 2 can be modeled as

adding levels to the lowest part of the transform tree and setting the wavelet coefficients in those

levels to zero, with the lowest level being N−1. On the other hand, shifting the up-sampled signal

by an amount u is equivalent to shifting the original signal by u
2
, which is a precision of 1

2
. More

generally, adding h levels would enable us to obtain a precision of 1
2h .

Let the size of the signal be 2N , N′ = N +h and k = 1+h, ...,N +h, where h is the number of added

levels. Equation (2.13) can now be modified to allow for non-integer shifting by a precision of 1
2h

43



as follows:

k > t :

dN′−k
inew

= (DN′−t−1

i1%2N′−t−1
+2

i2−1

∑
i1+1

DN′−t−1

m%2N′−t−1

− 2
i3−1

∑
i2+1

DN′−t−1

m%2N′−t−1
−DN′−t−1

i3%2N′−t−1

− dN′−t−1

i1%2N′−t−1
+2dN′−t−1

i2%2N′−t−1
−dN′−t−1

i3%2N′−t−1
)/2k−t

k ≤ t :

dN′−k
inew

= dN′−k

(i+s/2k)%2N′−k

where,

i1 = 2k−t−1i+ ⌊s/2t+1⌋

i2 = 2k−t−2(2i+1)+ ⌊s/2t+1⌋

i3 = 2k−t−1(i+1)+ ⌊s/2t+1⌋

and,

dN′−t−1

i2%2N′−1
= 0, if i2 is a non-integer (2.24)

On the other hand, we can verify that D
N+h0
i = DN

⌊i/2h0⌋, where 0 ≤ h0 ≤ h. Using (2.5), we also

know that:

DN
i =















DN−1
i/2

+ dN−1
i/2

, i is even

DN−1
⌊i/2⌋−dN−1

⌊i/2⌋, i is odd

The above result allows us to modify (2.24) in such a way that avoids having to up-sample the

signal for non-integer shifts, saving thus memory space in actual implementation, especially that
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the size increases exponentially. However, We have to split the equation into two cases. The first

is when h ≥ t + 1, which is when the coefficients at the added levels are being used to evaluate

dN′−k
inew

. The second is when t is large enough for the coefficients at the original levels of the tree to

45



be used. This leads to the new form of the phase shifting relation for non-integer values as follows:

h ≥ t +1 :

dN′−k
inew

= (DN

⌊ i1%2N′−t−1

2N′−t−t
⌋
+2

i2−1

∑
i1+1

DN

⌊m%2N′−t−1

2N′−t−t
⌋

−2
i3−1

∑
i2+1

DN

⌊m%2N′−t−1

2N′−t−t
⌋
−DN

⌊ i3%2N′−t−1

2N′−t−t
⌋
)/2k−t

h < t +1 :

k > t :

dN′−k
inew

= (DN′−t−1

i1%2N′−t−1
+2

i2−1

∑
i1+1

DN′−t−1

m%2N′−t−1

− 2
i3−1

∑
i2+1

DN′−t−1

m%2N′−t−1
−DN′−t−1

i3%2N′−t−1

− dN′−t−1

i1%2N′−t−1
+2dN′−t−1

i2%2N′−t−1
−dN′−t−1

i3%2N′−t−1
)/2k−t

k ≤ t :

dN′−k
inew

= dN′−k

(i+s/2k)%2N′−k

where,

i1 = 2k−t−1i+ ⌊s/2t+1⌋

i2 = 2k−t−2(2i+1)+ ⌊s/2t+1⌋

i3 = 2k−t−1(i+1)+ ⌊s/2t+1⌋

and,

dN′−t−1

i2%2N′−1
= 0, if i2 is a non-integer (2.25)
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The worst case complexity of the above formula is O(log(L+2h)) (again please refer to the Com-

plexity Analysis section for more details).

2.5 N-DIMENSIONAL SHIFT

Due to separability, an N-dimensional standard Haar transform is constructed by applying the one-

dimensional transform along each dimension. As a result, the above solution can also be easily

generalized to N-dimensional signals by applying it along each dimension separately.

2.6 COMPLEXITY ANALYSIS

In this section we explain in further detail the complexity of evaluating dN−k
inew

using equation (2.13),

AN−k
inew

using equation (2.23) and dN−k
inew

using equation (2.25).

By examining (2.13), it is easy to verify that the complexity of evaluating dN−k
inew

can be expressed

by the difference of the bounds of the two sums in the equation, that is O(i3 − i1). Substituting the

values for i1 and i3, the complexity can be shown to be O(2k−t−1) when k > t. When k ≤ t the

complexity becomes O(1). Therefore, one can determine that the worst case is when t = 0, that

is when the shift is odd. In that case the complexity of computing dN−k
inew

becomes O(2k−1). Let
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L = 2N be the size of the signal, then the number of the wavelet coefficients in a fully transformed

signal is L− 1 = 2N − 1. At reduction level k = N, i.e. the root, the complexity of evaluating

d0
0new

is O(2N−1) = O(L
2
) with a probability of 1

L−1
. At the next reduction level k = N − 1, the

complexity is O(2(N−1)−1) = O( L
22 ) with a probability of 2

L−1
. Table (2.6) shows the complexity

and its probability at each reduction level k.

Table 2.1: Table of the complexity and probability at each reduction level k for the one-dimensional

wavelet coefficient dN−k
inew

.

Reduction Level Complexity Probability=Number of Coefficients at k
Number of Coefficients

k = N O(L
2
) 1

L−1

k = N −1 O( L
22 )

2
L−1

k = N −2 O( L
23 )

22

L−1

k = N −3 O( L
24 )

23

L−1

: : :

k = 1 O( L
2N ) 2N−1

L−1

By multiplying the complexities and the probabilities in table (2.6) and summing them up, the

average performance of the worst case for evaluating dN−k
inew

is found to be O(log(L)).

By following a similar analysis and examining (2.23), one can find that the complexity for eval-

uating AN−k
inew

is O(log(L)) as well. Also, by examining (2.25) one can find that complexity for
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evaluating dN−k
inew

after a non-integer shift is O(log(L +2h)), where h is the number of levels added

to achieve the shift.

2.7 EXPERIMENTAL VALIDATION

We validate our results on the problem of accurate image rotation using the decomposition of the

rotation matrix described in [KG85, Pae86, DH92, UTY95]. The choice of this application is

driven by the fact that it allows us to evaluate all aspects such as integer and non-integer shifts, and

the separability property.

2.7.1 IMAGE ROTATION

We implement rotation as a sequence of sheers using the following factorization [KG85, Pae86,

DH92, UTY95]:

R(θ) =









cos(θ) − sin(θ)

sin(θ) cos(θ)









=









1 − tan(θ
2
)

0 1









×









1 0

sin(θ) 1









×









1 − tan(θ
2
)

0 1









(2.26)
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A sheer is in fact a sequence of shifts that are row-dependent, if the sheer is horizontal, and column-

dependent if it is vertical. That is, each row is shifted by ∆x =−y · tan θ
2

in a horizontal sheer while

each column is shifted by ∆y = x · sinθ in a vertical sheer. Note that ∆x and ∆y are in general

non-integer values, hence, the applicability of our phase-shifting relations derived in the previous

sections. Figure (2.2-b) shows the application of our method to the 3-step shearing image rotation

with h = 3. Figure (2.3) shows a magnified portion of the image under different h values. An

integer shift (h = 0) results in a jagged effect. This effect is eliminated, leading to higher quality

results, as we increase the value of h. Note that visually satisfactory results are obtained even with

h = 2.

As noted in [UTY95], the worst scenario occurs when the errors get accumulated. Therefore, in

order to quantify the performance, we computed the residual error, using an experiment similar to

the one adopted in [UTY95]. In other words, we successively rotated an input image by π
8

until

it rotated back to its original position. Figures 2.4 and 2.5 show the results and the associated

residual errors on two standard test images for our method as compared to the nearest-neighbor,

bilinear, bicubic, and the sinc method. Note that the image in Figure 2.4, which was also used

by [UTY95], is specificaly designed for capturing accumulated errors in successive rotations. We

tested and compared our method extensively on many images, some of which are shown in table

3.7.
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Figure 2.2: Original image, and the rotated one by 45 degrees using (2.25) with h = 3.

Table 2.2: Quantification and comparison of the accumulated residual error on several test images.

Nearest Neighbor 23.2451 15.3117 23.2249 19.3687 26.9128 13.8441 22.1845 7.2702 11.8229 18.3561

Bilinear 21.9343 12.7582 21.9399 18.3487 26.5292 12.0671 20.0879 6.2334 10.3405 17.02

Bicubic 15.2645 7.0842 14.5404 11.4509 17.2482 6.7327 11.6671 4.7183 5.9234 9.6489

Sinc 8.4349 1.8098 4.7284 4.0193 6.4774 2.3743 2.9468 2.2373 2.042 2.4533

Our Method 3.3738 1.5586 3.0092 2.4095 3.4965 1.5173 2.3753 1.1139 1.3243 2.0574
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h = 0 h = 1 h = 2

h = 3 h = 4 h = 5

Figure 2.3: A magnified portion of the image rotated using equation (2.25). a. integer shift. b.

non-integer shift with precision of 1
2
. c. non-integer shift with precision of 1

22 . d. non-integer shift

with precision of 1
23 . e. non-integer shift with precision of 1

24 . f. non-integer shift with precision

of 1
25 .
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original image nearest neighbor bilinear

bicubic our method nearest neighbor

rms error = 28.95

bilinear bicubic our method

rms error = 18.31 rms error = 7.38 rms error = 2.60

Figure 2.4: The above images show the results of successively rotating the original image 16 times

by a degree of π
8

for different methods including ours
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original image nearest neighbor bilinear

bicubic our method nearest neighbor

rms error = 15.93

bilinear bicubic our method

rms error = 15.53 rms error = 9.08 rms error = 2.54

Figure 2.5: The above images show the results of successively rotating the original image 16 times

by a degree of π
8

for different methods including ours
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3 PHASE-SHIFTING IN THE NON-SEPARABLE HAAR

DOMAIN

3.1 NOTATIONS AND SETUP

Let x(n,m) be a two-dimensional signal of size 2N × 2N , where N is a positive integer. The Haar

transform of x(n,m), namely H(x(n,m)), has the form shown in figure (3.1).

such that A0
0,0 is the dc value of the signal and al

i, j, bl
i, j and cl

i, j are the ijth horizontal, vertical

and diagonal wavelet coefficients respectively at level l, where l = 0, ...,N −1 for the 0-shift shift,

i = 0, ...,2l −1 and j = 0, ...,2l −1.

Transforming a signal using Haar wavelets can be expressed using a tree as in fig (3.2). The tree

is constructed of N levels with x(n,m) residing at the leaves, i.e. the Nth level. The ijth node at

level l in the tree is made to hold the ijth scaling coefficient Al
i, j and the wavelet coefficients aN

i, j,

bN
i, j and cN

i, j, where l = 0, ...,N − 1, i = 0, ...,2l − 1 and j = 0, ...,2l − 1. We denote x(i, j) as AN
i, j

and let l = 0, ...,N with aN
i, j = 0, bN

i, j = 0 and cN
i, j = 0. For brevity, we will sometimes refer to the

horizontal, vertical and diagonal wavelet coefficients by a, b and c, respectively.
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Figure 3.1: Two dimensional Haar transform

Let

X l
i, j = al−1

⌊i/2⌋,⌊ j/2⌋ +bl−1
⌊i/2⌋,⌊ j/2⌋ + cl−1

⌊i/2⌋,⌊ j/2⌋

Y l
i, j = −al−1

⌊i/2⌋,⌊ j/2⌋ +bl−1
⌊i/2⌋,⌊ j/2⌋− cl−1

⌊i/2⌋,⌊ j/2⌋

Zl
i, j = al−1

⌊i/2⌋,⌊ j/2⌋−bl−1
⌊i/2⌋,⌊ j/2⌋− cl−1

⌊i/2⌋,⌊ j/2⌋

W l
i, j = −al−1

⌊i/2⌋,⌊ j/2⌋−bl−1
⌊i/2⌋,⌊ j/2⌋ + cl−1

⌊i/2⌋,⌊ j/2⌋ (3.1)

The following formula shows the relation between the scaling coefficient Al
i, j and its parent at level

l −1:

Al
i, j =















































Al−1
i/2, j/2

+X l
i/2, j/2

, i is even, j is even

Al−1
i/2,⌊ j/2⌋ +Y l

i/2,⌊ j/2⌋, i is even, j is odd

Al−1
⌊i/2⌋, j/2

+Zl
⌊i/2⌋, j/2

, i is odd, j is even

Al−1
⌊i/2⌋,⌊ j/2⌋ +W l

⌊i/2⌋,⌊ j/2⌋, i is odd, j is odd

(3.2)
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Figure 3.2: The Haar transform of the two-dimensional signal x(m,n) is composed of the dc

value A0
0,0 and the wavelet coefficients al

i, j, bl
i, j and cl

i, j, where l = 0, ...,2N−1, i = 0, ...,2l − 1

and j = 0, ...,2l −1. The scaling coefficients Al
i, j at each level are used to help derive the equation

for phase-shifting the signal x(m,n), but are not used in the final form of the equation. Only the

first three levels of the tree are shown with one l to avoid cluttering the figure.

We let Dl
i, j be the difference between A0

0,0 and Al
i, j, then

Al
i, j = A0

0,0 +Dl
i, j (3.3)
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By substituting (3.3) into (3.2), Dl
i, j can be computed recursively solely in terms of the wavelet

coefficients as follows:

Dl
i, j =































































Dl−1
i/2, j/2

+X l
i/2, j/2

, i is even, j is even

Dl−1
i/2,⌊ j/2⌋ +Y l

i/2,⌊ j/2⌋, i is even, j is odd

Dl−1
⌊i/2⌋, j/2

+Zl
⌊i/2⌋, j/2

, i is odd, j is even

Dl−1
⌊i/2⌋,⌊ j/2⌋ +W l

⌊i/2⌋,⌊ j/2⌋, i is odd, j is odd

0, i = j = l = 0

(3.4)

A two-dimensional signal can be shifted horizontally or vertically. Both types of shifts affect the

al
i, j, bl

i, j and cl
i, j at all levels. At level N − k, there are 2k ×2k non-redundant coefficient sets each

of size 2N−k × 2N−k [SB97], where k = 1, ...,N. A horizontal shift sh = 0, ...,2N − 1 or a vertical

shift sv = 0, ...,2N −1 can be one of the following possibilities:

• A shift that is divisible by 2k.

• An odd shift.

• An even shift that is not divisible by 2k.

We derive the formulae for evaluating the a wavelet coefficients under a horizontal shift sh, for

each of the three possibilities, followed by similar derivations for b and c wavelet coefficients.

Formulae for vertical shifts can be derived in a similar manner.
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3.2 HORIZONTAL COEFFICIENTS FOR HORIZONTAL SHIFT

3.2.1 SHIFTING BY A MULTIPLE OF 2k

This is the simplest case. A shift sh in the discrete time domain that is equal to 2ku is a horizontal

circular shift of the 0-shift wavelet coefficients at level N − k by u, that is,

aN−k
i, jnew

= aN−k

i,( j+u)%2N−k , k = 1, ...,N (3.5)

where 0 ≤ u ≤ 2N−k − 1 and % is the mod operation. Notice that for levels N − (k − 1),N −

(k− 2), ...,N − 1 a horizontal shift of 2ku in the time domain is a horizontal circular shift of the

coefficients at those levels by 2u,22u, ...,2k−1u respectively. In other words, a horizontal shift

of 2ku in the time domain shifts the coefficients at level N − k horizontally by u, while shifting

the coefficients at level N − (k − 1) horizontally by twice as much, and the coefficients at level

N − (k−2) by four times as much and so on.
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Figure 3.3: The above figures show the scaling coefficients at level l = 3. In (a), (b), and (c),

respectively, the rectangular windows show the coefficients included in evaluating a2
0,0new

, b2
0,0new

,

and c2
0,0new

under a horizontal odd shift of one. These are evaluated by summing and subtracting

the highlighted quadrants in the windows as shown in the diagrams.

3.2.2 SHIFTING BY AN ODD AMOUNT

By examining the tree in Fig. 3.2, we notice that:

aN−k
i, jnew

= (
2k(i+1)

∑
m=2ki

((AN
m, j1%2N + ...+AN

m,( j2−1)%2N )− (AN
m, j2%2N + ...+AN

m,( j3−1)%2N )))/4k

where,

j1 = 2k j + sh

j2 = 2k−1(2 j +1)+ sh

j3 = 2k( j +1)+ sh (3.6)
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The above equation evaluates aN−k
i, jnew

by summing the first half and subtracting the second half of

each row of scaling coefficients at the leaves level N, which fall inside the window determined

by the two corners (2ki,2k j + sh) and (2k(i + 1),2k( j + 1) + sh). Figure 3.3-(a) illustrates the

evaluation of a2
0,0 using the scaling coefficients at level l = 3 under a horizontal odd shift of one.

Substituting (3.3), (3.4) and then (3.1) into (3.6), we get the coefficients of the shifted signal as

follows:

aN−k
i, jnew

= (
2k−1(i+1)−1

∑
m=2k−1i

(DN−1
m, j1%2N−1 +2

j2−1

∑
n= j1+1

DN−1
m,n%2N−1

− 2

j3−1

∑
n= j2+1

DN−1
m,n%2N−1 −DN−1

m, j3%2N−1

− aN−1
m, j1%2N−1 +2aN−1

m, j2%2N−1 −aN−1
m, j3%2N−1))/22k−1

where,

j1 = 2k−1 j + ⌊sh/2⌋

j2 = 2k−2(2 j +1)+ ⌊sh/2⌋

j3 = 2k−1( j +1)+ ⌊sh/2⌋ (3.7)

Note that at k = 1, j2 is a non-integer value. When that is the case we set aN−1
i, j2%2N−1 to 0.
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3.2.3 SHIFTING BY AN EVEN AMOUNT THAT IS NOT DIVISIBLE BY 2k

In this case, sh is divisible by 2t , where 1 ≤ t ≤ k− 1 and 2t is the highest power of 2 by which

sh is divisible. This allows us to let sh = 2tu, where 0 ≤ u ≤ 2N−t − 1, which means that the

coefficients at levels N −1, ...,N − t follow the first case. In other words, the 0-shift coefficients at

levels N −1,N −2, ...,N − t are circularly shifted in the horizontal direction by 2t−1u,2t−2u, ...,u,

respectively. On the other hand, aN−k
i, jnew

is verified to be an odd shift of the scaling coefficients at

level N− t. In other words, at level N−k, aN−k
i, jnew

can be evaluated using the following modification

of equation (3.6):

aN−k
i, jnew

= (
2k−t(i+1)

∑
m=2k−t i

((AN−t
m, j1%2N−t + ...+AN−t

m,( j2−1)%2N−t )− (AN−t
m, j2%2N−t + ...+AN−t

m,( j3−1)%2N−t )))/4k−t

where,

j1 = 2k−t j + sh/2t

j2 = 2k−t−1(2 j +1)+ sh/2t

j3 = 2k−t( j +1)+ sh/2t (3.8)
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Following the same steps as above, we get:

aN−k
i, jnew

= (
2k−t−1(i+1)−1

∑
m=2k−t−1i

(DN−t−1
m, j1%2N−t−1 +2

j2−1

∑
n= j1+1

DN−t−1
m,n%2N−t−1

− 2

j3−1

∑
n= j2+1

DN−t−1
m,n%2N−t−1 −DN−t−1

m, j3%2N−t−1

− aN−t−1
m, j1%2N−t−1 +2aN−t−1

m, j2%2N−t−1 −aN−t−1
m, j3%2N−t−1))/22k−2t−1

where,

j1 = 2k−t−1 j + ⌊sh/2t+1⌋

j2 = 2k−t−2(2 j +1)+ ⌊sh/2t+1⌋

j3 = 2k−t−1( j +1)+ ⌊sh/2t+1⌋ (3.9)
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Note that the second case is the same as the third case where t = 0. This gives rise to the following

final formula for evaluating the a wavelet coefficients under a horizontal shift:

k > t :

aN−k
i, jnew

= (
2k−t−1(i+1)−1

∑
m=2k−t−1i

(DN−t−1
m, j1%2N−t−1 +2

j2−1

∑
n= j1+1

DN−t−1
m,n%2N−t−1

− 2

j3−1

∑
n= j2+1

DN−t−1
m,n%2N−t−1 −DN−t−1

m, j3%2N−t−1

− aN−t−1
m, j1%2N−t−1 +2aN−t−1

m, j2%2N−t−1 −aN−t−1
m, j3%2N−t−1))/22k−2t−1

k ≤ t :

aN−k
i, jnew

= aN−k

i,( j+sh/2k)%2N−k

where,

j1 = 2k−t−1 j + ⌊sh/2t+1⌋

j2 = 2k−t−2(2 j +1)+ ⌊sh/2t+1⌋

j3 = 2k−t−1( j +1)+ ⌊sh/2t+1⌋ (3.10)

3.3 VERTICAL COEFFICIENTS FOR HORIZONTAL SHIFT

For this section and the next one, again we let sh = 2tu be a horizontal shift, where 0 ≤ sh ≤ 2N −1,

0 ≤ t ≤ N, 2t is the highest power of 2 by which sh is divisible, and 0 ≤ u ≤ 2N−t − 1 is an odd
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positive integer. Then for all k ≤ t,

bN−k
i, jnew

= bN−k

i,( j+sh/2k)%2N−k (3.11)

To compute the bN−k
i, jnew

coefficient for k > t after a horizontal shift, we write bN−k
i, jnew

in terms of the

coefficients at level N − t:

bN−k
i, jnew

= (
2k−t−1(2i+1)−1

∑
m=2k−t i

(AN−t
m, j1%2N−t + ...+AN−t

m,( j2−1)%2N−t )

−
2k−t(i+1)−1

∑
m=2k−t−1(2i+1)

(AN−t
m, j1%2N−t + ...+AN−t

m,( j2−1)%2N−t ))/4k−t

where,

j1 = 2k−t j + sh/2t

j2 = 2k−t( j +1)+ sh/2t (3.12)

The above equation defines a window that encloses the scaling coefficients at level N − t that fall

between the two corners (2k−t i,2k−t j + sh/2t) and (2k−t(i+1),2k−t( j +1)+ sh/2t), which are the

same bounds used to compute aN−k
i, jnew

in (3.10). bN−k
i, jnew

is found by summing each row of scaling

coefficients in the upper half of the window and subtracting the sum of each row in the lower half.

Figure 3.3-(b) illustrates the computation of b2
0,0 using the scaling coefficients at level l = 3 under

a horizontal odd shift of one.
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By substituting (3.3), (3.4) and (3.1) in the above, and combining the result with (3.11) we get the

coefficients of the shifted signal:

k > t +1 :

bN−k
i, jnew

= (
2k−t−2(2i+1)−1

∑
m=2k−t−1i

(DN−t−1
m, j1%2N−t−1 +2

j2−1

∑
n= j1+1

DN−t−1
m,n%2N−t−1

+ DN−t−1
m, j2%2N−t−1 −aN−t−1

m, j1%2N−t−1 +aN−t−1
m, j2%2N−t−1)

−
2k−t−1(i+1)−1

∑
m=2k−t−2(2i+1)

(DN−t−1
m, j1%2N−t−1 +2

j2−1

∑
n= j1+1

DN−t−1
m,n%2N−t−1

+ DN−t−1
m, j2%2N−t−1 −aN−t−1

m, j1%2N−t−1 +aN−t−1
m, j2%2N−t−1))/22k−2t−1

k = t +1 :

bN−k
i, jnew

= (bN−k

i,( j+⌊sh/2k⌋)%2N−k − cN−k

i,( j+⌊sh/2k⌋)%2N−k

+ bN−k

i,( j+⌊sh/2k⌋+1)%2N−k + cN−k

i,( j+⌊sh/2k⌋+1)%2N−k)/2

k ≤ t :

bN−k
i, jnew

= bN−k

i,( j+sh/2k)%2N−k

where,

j1 = 2k−t−1 j + ⌊sh/2t+1⌋

j2 = 2k−t−1( j +1)+ ⌊sh/2t+1⌋ (3.13)

66



3.4 DIAGONAL COEFFICIENTS FOR HORIZONTAL SHIFT

Similar to 3.5 and 3.11, we can apply the following equation when the horizontal shift sh is divisible

by 2k:

cN−k
i, jnew

= cN−k

i,( j+sh/2k)%2N−k (3.14)

To compute the cN−k
i, jnew

coefficient for k > t after a horizontal shift, we write cN−k
i, jnew

in terms of

coefficients at level N − t:

cN−k
i, jnew

= (
2k−t−1(i+1)−1

∑
m=2k−t i

((AN−t
m, j1%2N−t + ...+AN−t

m,( j2−1)%2N−t )

− (AN−t
m, j2%2N−t + ...+AN−t

m,( j3−1)%2N−t ))

−
2k−t(i+1)−1

∑
m=2k−t−1(i+1)

((AN−t
m, j1%2N−t + ...+AN−t

m,( j2−1)%2N−t )

− (AN−t
m, j2%2N−t + ...+AN−t

m,( j3−1)%2N−t )))/4k−t

where,

j1 = 2k−t j + sh/2t

j2 = 2k−t−1(2 j +1)+ sh/2t

j3 = 2k−t( j +1)+ sh/2t (3.15)

The above equation defines a window which has the same bounds used to compute aN−k
i, jnew

and bN−k
i, jnew

in (3.10) and (3.13), respectively. By examining the example in Fig. 3.3-(c), one can see that cN−k
i, jnew

is computed by summing the first half and subtracting the second half of each row in the upper
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half of the window, while subtracting the first half and summing the second half of each row in the

lower half of the window, hence, the upper equation.

By substituting (3.3), (3.4) and (3.1) in the above, and combining the result with (3.14), we get:

k > t +1 :

cN−k
i, jnew

= (
2k−t−2(2i+1)−1

∑
m=2k−t−1i

(DN−t−1
m, j1%2N−t−1 +2

j2−1

∑
n= j1+1

DN−t−1
m,n%2N−t−1 −2

j3−1

∑
n= j2+1

DN−t−1
m,n%2N−t−1

− DN−t−1
m, j3%2N−t−1 −aN−t−1

m, j1%2N−t−1 +2aN−t−1
m, j2%2N−t−1 −aN−t−1

m, j3%2N−t−1)

−
2k−t−1(i+1)−1

∑
m=2k−t−2(2i+1)

(DN−t−1
m, j1%2N−t−1 +2

j2−1

∑
n= j1+1

DN−t−1
m,n%2N−t−1 −2

j3−1

∑
n= j2+1

DN−t−1
m,n%2N−t−1

− DN−t−1
m, j3%2N−t−1 −aN−t−1

m, j1%2N−t−1 +2aN−t−1
m, j2%2N−t−1 −aN−t−1

m, j3%2N−t−1))/22k−2t−1

k = t +1 :

cN−k
i, jnew

= (bN−k

i,( j+⌊sh/2k⌋)%2N−k − cN−k

i,( j+⌊sh/2k⌋)%2N−k

− bN−k

i,( j+⌊sh/2k⌋+1)%2N−k − cN−k

i,( j+⌊sh/2k⌋+1)%2N−k)/2

k ≤ t :

cN−k
i, jnew

= cN−k

i,( j+sh/2k)%2N−k

where,

j1 = 2k−t−1 j + ⌊sh/2t+1⌋

j2 = 2k−t−2(2 j +1)+ ⌊sh/2t+1⌋

j3 = 2k−t−1( j +1)+ ⌊sh/2t+1⌋ (3.16)
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The relations (3.10), (3.13), and (3.16) can now be used to compute the new wavelet coefficients of

the Haar transform at all different levels after any horizontal shift sh = 0, ...,2N −1 using only the

0-shift coefficients. The equations for a vertical shift sv = 0, ...,2N −1 can be derived following the

same steps that we used for horizontal shifting. They turn out to look the same as the horizontal

case after interchanging the a’s with b’s, i’s with j’s and m’s with n’s:

k > t +1 :

aN−k
i, jnew

= (
2k−t−2(2 j+1)−1

∑
n=2k−t−1 j

(DN−t−1
i1%2N−t−1,n

+2
i2−1

∑
m=i1+1

DN−t−1
m%2N−t−1,n

+ DN−t−1
i2%2N−t−1,n

−bN−t−1
i1%2N−t−1,n

+bN−t−1
i2%2N−t−1,n

)

−
2k−t−1( j+1)−1

∑
n=2k−t−2(2 j+1)

(DN−t−1
i1%2N−t−1,n

+2
i2−1

∑
m=i1+1

DN−t−1
m%2N−t−1,n

+ DN−t−1
i2%2N−t−1,n

−bN−t−1
i1%2N−t−1,n

+bN−t−1
i2%2N−t−1,n

))/22k−2t−1

k = t +1 :

aN−k
i, jnew

= (aN−k

(i+⌊sv/2k⌋)%2N−k, j
− cN−k

(i+⌊sv/2k⌋)%2N−k, j

+ aN−k

(i+⌊sv/2k⌋+1)%2N−k, j
+ cN−k

(i+⌊sv/2k⌋+1)%2N−k, j
)/2

k ≤ t :

aN−k
i, jnew

= aN−k

(i+sv/2k)%2N−k, j

where,

i1 = 2k−t−1i+ ⌊sv/2t+1⌋

i2 = 2k−t−1(i+1)+ ⌊sv/2t+1⌋ (3.17)
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k > t :

bN−k
i, jnew

= (
2k−t−1( j+1)−1

∑
n=2k−t−1 j

(DN−t−1
i1%2N−t−1,n

+2
i2−1

∑
m=i1+1

DN−t−1
m%2N−t−1,n

− 2
i3−1

∑
m=i2+1

DN−t−1
m%2N−t−1,n

−DN−t−1
i3%2N−t−1,n

− bN−t−1
i1%2N−t−1,n

+2bN−t−1
i2%2N−t−1,n

−bN−t−1
i3%2N−t−1,n

))/22k−2t−1

k ≤ t :

bN−k
i, jnew

= bN−k

( j+sv/2k)%2N−k,i

where,

i1 = 2k−t−1i+ ⌊sv/2t+1⌋

i2 = 2k−t−2(2i+1)+ ⌊sv/2t+1⌋

i3 = 2k−t−1(i+1)+ ⌊sv/2t+1⌋ (3.18)
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k > t +1 :

cN−k
i, jnew

= (
2k−t−2(2 j+1)−1

∑
n=2k−t−1 j

(DN−t−1
i1%2N−t−1,n

+2
i2−1

∑
m=i1+1

DN−t−1
m%2N−t−1,n

−2
i3−1

∑
m=i2+1

DN−t−1
m%2N−t−1,n

− DN−t−1
i3%2N−t−1,n

−bN−t−1
i1%2N−t−1,n

+2bN−t−1
i2%2N−t−1,n

−bN−t−1
i3%2N−t−1,n

)

−
2k−t−1( j+1)−1

∑
n=2k−t−2(2 j+1)

(DN−t−1
i1%2N−t−1,n

+2
i2−1

∑
m=i1+1

DN−t−1
m%2N−t−1,n

−2
i3−1

∑
m=i2+1

DN−t−1
m%2N−t−1,n

− DN−t−1
i3%2N−t−1,n

−bN−t−1
i1%2N−t−1,n

+2bN−t−1
i2%2N−t−1,n

−bN−t−1
i3%2N−t−1,n))/22k−2t−1

k = t +1 :

cN−k
i, jnew

= (aN−k

(i+⌊sv/2k⌋)%2N−k, j
− cN−k

(i+⌊sv/2k⌋)%2N−k, j

− aN−k

(i+⌊sv/2k⌋+1)%2N−k, j
− cN−k

(i+⌊sv/2k⌋+1)%2N−k, j
)/2

k ≤ t :

cN−k
i, jnew

= cN−k

(i+sv/2k)%2N−k, j

where,

i1 = 2k−t−1i+ ⌊sv/2t+1⌋

i2 = 2k−t−2(2i+1)+ ⌊sv/2t+1⌋

i3 = 2k−t−1(i+1)+ ⌊sv/2t+1⌋ (3.19)

Figures (3.4) show the horizontally, vertically and diagonally shifted images after reconstruction.
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horizontal shift vertical shift diagonal shift

Figure 3.4: The above images were phase-shifted in the transform domain and reconstructed to

demonstrate the shift.

3.5 SHIFTING PARTIALLY-TRANSFORMED SIGNALS

Equations (3.10), (3.13) and (3.16) can be used to evaluate the wavelet coefficients of a partially

transformed shifted signal as in the fully transformed signal case. In this section we show how

to evaluate the scaling coefficients at reduction step k for a two-dimensional signal that has been

decomposed k times and shifted horizontally by the integer amount sh in the time domain. The

formula for shifting the signal vertically can be derived using the same analysis. We provide that

formula at the end of this section.
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3.5.1 SHIFTING BY A MULTIPLE OF 2k

Similar to evaluating the wavelet coefficients for a fully-transformed 2D signal, a shift sh in the

discrete domain that is equal to 2ku is a circular shift of the 0-shift scaling coefficients at level

N − k by u, that is,

AN−k
i, jnew

= AN−k

i,( j+u)%2N−k , k = 1, ...,N −1 (3.20)

where 0 ≤ u ≤ 2N−k −1.

3.5.2 SHIFTING BY AN ODD AMOUNT

By examining the tree in Fig. 3.2, we notice that:

AN−k
i, jnew

= (
2k(i+1)

∑
m=2ki

(AN
m, j1%2N + ...+AN

m,( j2−1)%2N ))/4k

where,

j1 = 2k j + sh

j2 = 2k( j +1)+ sh (3.21)

The above equation evaluates AN−k
i, jnew

by summing the values of each row of scaling coefficients, at

the leaves level N, which fall inside the window determined by the two corners (2ki,2k j + sh) and

(2k(i+1),2k( j +1)+ sh).
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Substituting (3.2) in the above, we get

AN−k
i, jnew

= (
2k(i+1)

∑
m=2ki

(A0
0,0 +DN

m, j1%2N + ...+A0
0,0 +DN

m,( j2−1)%2N ))/4k (3.22)

The number of A0
0,0’s is equal to the number of coefficients Al

i, j being summed, which is equal to

4k. We factor out A0
0,0:

AN−k
i, jnew

= A0
0,0 +(

2k(i+1)

∑
m=2ki

(DN
m, j1%2N + ...+DN

m,( j2−1)%2N ))/4k (3.23)

Substituting (3.4) and simplifying, we get the analytic solution for evaluating AN−k
i, jnew

under an odd

horizontal shift sh:

AN−k
i, jnew

= A0
0,0 +(

2k−1(i+1)−1

∑
m=2k−1i

(DN−1
m, j1%2N−1 +2

j2−1

∑
n= j1+1

DN−1
m,n%2N−1 +DN−1

m, j2%2N−1

− aN−1
m, j1%2N−1 +aN−1

m, j2%2N−1))/22k−1

where,

j1 = 2k−1 j + ⌊sh/2⌋

j2 = 2k−1( j +1)+ ⌊sh/2⌋ (3.24)

3.5.3 SHIFTING BY AN EVEN AMOUNT THAT IS NOT DIVISIBLE BY 2k

For a shift sh = 2tu, where 0 ≤ u ≤ 2N−t −1 and t < k, we can treat this case as an odd shift of the

coefficients at level N − t, which is similar to what we did in evaluating the wavelet coefficients

74



under a shift sh = 2tu. AN−k
i, jnew

can now be evaluated using the following equation:

AN−k
i, jnew

= (
2k(i+1)

∑
m=2ki

(AN−t
m, j1%2N−t + ...+AN−t

m,( j2−1)%2N−t ))/4k

where,

j1 = 2k j + sh

j2 = 2k( j +1)+ sh (3.25)

Proceeding as we did in the odd shift case, we get the following solution:

AN−k
i, jnew

= A0
0,0 +(

2k−1(i+1)−1

∑
m=2k−1i

(DN−t−1
m, j1%2N−t−1 +2

j2−1

∑
n= j1+1

DN−t−1
m,n%2N−t−1 +DN−t−1

m, j2%2N−t−1

− aN−t−1
m, j1%2N−1 +aN−t−1

m, j2%2N−t−1))/22k−2t−1

where,

j1 = 2k−1 j + ⌊sh/2⌋

j2 = 2k−1( j +1)+ ⌊sh/2⌋ (3.26)
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Combining the three cases, the final result becomes:

k > t :

AN−k
i, jnew

= A0
0,0 +(

2k−1(i+1)−1

∑
m=2k−1i

(DN−t−1
m, j1%2N−t−1 +2

j2−1

∑
n= j1+1

DN−t−1
m,n%2N−t−1 +DN−t−1

m, j2%2N−t−1

− aN−t−1
m, j1%2N−1 +aN−t−1

m, j2%2N−t−1))/22k−2t−1

k ≤ t :

AN−k
i, jnew

= AN−k

i,( j+sh/2k)%2N−k

where,

j1 = 2k−1 j + ⌊sh/2⌋

j2 = 2k−1( j +1)+ ⌊sh/2⌋ (3.27)

Similarly, scaling coefficients AN−k
i, j after a vertical shift sv can be found to be the following:

k > t :

AN−k
i, jnew

= A0
0,0 +(

2k−1( j+1)−1

∑
n=2k−1 j

(DN−t−1
i1%2N−t−1,n

+2
i2−1

∑
m=i1+1

DN−t−1
m%2N−t−1,n

+DN−t−1
i2%2N−t−1,n

− bN−t−1
i1%2N−1,n

+bN−t−1
i2%2N−t−1,n

))/22k−2t−1

k ≤ t :

AN−k
i, jnew

= AN−k

(i+sv/2k)%2N−k, j

where,

i1 = 2k−1i+ ⌊sv/2⌋

i2 = 2k−1(i+1)+ ⌊sv/2⌋ (3.28)
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The above relation can now be used to evaluate the new scaling coefficients of a partially trans-

formed signal with k reduction steps after any horizontal shift sh = 0, ...,2N − 1 or vertical shift

sv = 0, ...,2N − 1 using only the coefficients of the 0-shift signal. The worst case complexity for

evaluating AN−k
i, jnew

using (3.27) is O(log(L)), where LxL is the size of the signal x(n,m) (see the

Experimental Results and Discussion section for more details).

3.6 SUBPIXEL SHIFTING

Let the size of the signal be 2N × 2N , N′ = N + h and k = 1 + h, ...,N + h, where h is the number

of added levels. Equations (3.10), (3.13) and (3.13) can now be modified to allow for non-integer

shifting by a precision of 1
2h by substituting N′ for each N in the equations.
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k > t :

aN′−k
i, jnew

= (
2k−t−1(i+1)−1

∑
m=2k−t−1i

(DN′−t−1

m, j1%2N′−t−1
+2

j2−1

∑
n= j1+1

DN′−t−1

m,n%2N′−t−1

− 2

j3−1

∑
n= j2+1

DN′−t−1

m,n%2N′−t−1
−DN′−t−1

m, j3%2N′−t−1

− aN′−t−1

m, j1%2N′−t−1
+2aN′−t−1

m, j2%2N′−t−1
−aN′−t−1

m, j3%2N′−t−1
))/22k−2t−1

k ≤ t :

aN′−k
i, jnew

= aN′−k

i,( j+sh/2k)%2N′−k

where,

j1 = 2k−t−1 j + ⌊sh/2t+1⌋

j2 = 2k−t−2(2 j +1)+ ⌊sh/2t+1⌋

j3 = 2k−t−1( j +1)+ ⌊sh/2t+1⌋ (3.29)
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k > t +1 :

bN′−k
i, jnew

= (
2k−t−2(2i+1)−1

∑
m=2k−t−1i

(DN′−t−1

m, j1%2N′−t−1
+2

j2−1

∑
n= j1+1

DN′−t−1

m,n%2N′−t−1

+ DN′−t−1

m, j2%2N′−t−1
−aN′−t−1

m, j1%2N′−t−1
+aN′−t−1

m, j2%2N′−t−1
)

−
2k−t−1(i+1)−1

∑
m=2k−t−2(2i+1)

(DN′−t−1

m, j1%2N′−t−1
+2

j2−1

∑
n= j1+1

DN′−t−1

m,n%2N′−t−1

+ DN′−t−1

m, j2%2N′−t−1
−aN′−t−1

m, j1%2N′−t−1
+aN′−t−1

m, j2%2N′−t−1
))/22k−2t−1

k = t +1 :

bN′−k
i, jnew

= (bN′−k

i,( j+⌊sh/2k⌋)%2N′−k
− cN′−k

i,( j+⌊sh/2k⌋)%2N′−k

+ bN′−k

i,( j+⌊sh/2k⌋+1)%2N′−k
+ cN′−k

i,( j+⌊sh/2k⌋+1)%2N′−k
)/2

k ≤ t :

bN′−k
i, jnew

= bN′−k

i,( j+sh/2k)%2N′−k

where,

j1 = 2k−t−1 j + ⌊sh/2t+1⌋

j2 = 2k−t−1( j +1)+ ⌊sh/2t+1⌋ (3.30)
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k > t +1 :

cN−k
i, jnew

= (
2k−t−2(2 j+1)−1

∑
n=2k−t−1 j

(DN′−t−1

i1%2N′−t−1,n
+2

i2−1

∑
m=i1+1

DN′−t−1

m%2N′−t−1,n
−2

i3−1

∑
m=i2+1

DN′−t−1

m%2N′−t−1,n

− DN′−t−1

i3%2N′−t−1,n
−bN′−t−1

i1%2N′−t−1,n
+2bN′−t−1

i2%2N′−t−1,n
−bN′−t−1

i3%2N′−t−1,n
)

−
2k−t−1( j+1)−1

∑
n=2k−t−2(2 j+1)

(DN′−t−1

i1%2N′−t−1,n
+2

i2−1

∑
m=i1+1

DN′−t−1

m%2N′−t−1,n
−2

i3−1

∑
m=i2+1

DN′−t−1

m%2N′−t−1,n

− DN′−t−1

i3%2N′−t−1,n
−bN′−t−1

i1%2N′−t−1,n
+2bN′−t−1

i2%2N′−t−1,n
−bN′−t−1

i3%2N′−t−1,n
))/22k−2t−1

k = t +1 :

cN′−k
i, jnew

= (aN′−k

(i+⌊sv/2k⌋)%2N′−k, j
− cN′−k

(i+⌊sv/2k⌋)%2N′−k, j

− aN′−k

(i+⌊sv/2k⌋+1)%2N′−k, j
− cN′−k

(i+⌊sv/2k⌋+1)%2N′−k, j
)/2

k ≤ t :

cN′−k
i, jnew

= cN′−k

(i+sv/2k)%2N′−k, j

where,

i1 = 2k−t−1i+ ⌊sv/2t+1⌋

i2 = 2k−t−2(2i+1)+ ⌊sv/2t+1⌋

i3 = 2k−t−1(i+1)+ ⌊sv/2t+1⌋ (3.31)

On the other hand, we can verify that D
N+h0
i, j = DN

⌊i/2h0⌋,⌊ j/2h0⌋, where 0 ≤ h0 ≤ h. This combined

with (3.4) allows us to modify (3.32), (3.33) and (3.34) in such a way that avoids having to actually

up-sample the signal for non-integer shifts, saving thus memory space in actual implementation,

especially that the size increases exponentially. However, We have to split the equation into two
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cases. The first is when h ≥ t +1, which is when the coefficients at the added levels are being used

to compute aN′−k
i, jnew

, bN′−k
i, jnew

and cN′−k
i, jnew

. The second is when t is large enough for the coefficients at

the original levels of the tree to be used. This leads to the phase shifting relation for non-integer

values as follows:

h ≥ t +1 :

aN′−k
i, jnew

=
2k−t−1(i+1)−1

∑
m=2k−t−1i

(DN

⌊ m
N′−t−1

⌋,⌊ j1%2N′−t−1

N′−t−1
⌋
+2

j2−1

∑
n= j1+1

DN

⌊ m
N′−t−1

⌋,⌊ n%2N′−t−1

N′−t−1
⌋

− 2

j3−1

∑
n= j2+1

DN

⌊ m
N′−t−1

⌋,⌊ n%2N′−t−1

N′−t−1
⌋
−DN

⌊ m
N′−t−1

⌋,⌊ j3%2N′−t−1

N′−t−1
⌋
)/22k−2t−1

h < t +1 :

k > t :

aN′−k
i, jnew

=
2k−t−1(i+1)−1

∑
m=2k−t−1i

(DN′−t−1

m, j1%2N′−t−1
+2

j2−1

∑
n= j1+1

DN′−t−1

m,n%2N′−t−1

− 2

j3−1

∑
n= j2+1

DN′−t−1

m,n%2N′−t−1
−DN′−t−1

m, j3%2N′−t−1

− aN′−t−1

m, j1%2N′−t−1
+2aN′−t−1

m, j2%2N′−t−1
−aN′−t−1

m, j3%2N′−t−1
)/22k−2t−1

k ≤ t :

aN′−k
i, jnew

= aN′−k

i,( j+sh/2k)%2N′−k

where,

j1 = 2k−t−1 j + ⌊sh/2t+1⌋

j2 = 2k−t−2(2 j +1)+ ⌊sh/2t+1⌋

j3 = 2k−t−1( j +1)+ ⌊sh/2t+1⌋ (3.32)
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h ≥ t +1, k > t +1 :

bN′−k
i, jnew

= (
2k−t−2(2i+1)−1

∑
m=2k−t−1i

(DN

⌊ m
N′−t−1

⌋,⌊ j1%2N′−t−1

N′−t−1
⌋

+ 2

j2−1

∑
n= j1+1

DN

⌊ m
N′−t−1

⌋,⌊ n%2N′−t−1

N′−t−1
⌋
+DN

⌊ m
N′−t−1

⌋,⌊ j2%2N′−t−1

N′−t−1
⌋
)

−
2k−t−1(i+1)−1

∑
m=2k−t−2(2i+1)

(DN

⌊ m
N′−t−1

⌋,⌊ j1%2N′−t−1

N′−t−1
⌋
+2

j2−1

∑
n= j1+1

DN

⌊ m
N′−t−1

⌋,⌊ n%2N′−t−1

N′−t−1
⌋

+ DN

⌊ m
N′−t−1

⌋,⌊ j2%2N′−t−1

N′−t−1
⌋
))/22k−2t−1

h < t +1, k > t +1 :

bN′−k
i, jnew

= (
2k−t−2(2i+1)−1

∑
m=2k−t−1i

(DN′−t−1

m, j1%2N′−t−1
+2

j2−1

∑
n= j1+1

DN′−t−1

m,n%2N′−t−1

+ DN′−t−1

m, j2%2N′−t−1
−aN′−t−1

m, j1%2N′−t−1
+aN′−t−1

m, j2%2N′−t−1
)

−
2k−t−1(i+1)−1

∑
m=2k−t−2(2i+1)

(DN′−t−1

m, j1%2N′−t−1
+2

j2−1

∑
n= j1+1

DN′−t−1

m,n%2N′−t−1

+ DN′−t−1

m, j2%2N′−t−1
−aN′−t−1

m, j1%2N′−t−1
+aN′−t−1

m, j2%2N′−t−1
))/22k−2t−1

h < t +1, k = t +1 :

bN′−k
i, jnew

= (bN′−k

i,( j+⌊sh/2k⌋)%2N′−k
− cN′−k

i,( j+⌊sh/2k⌋)%2N′−k

+ bN′−k

i,( j+⌊sh/2k⌋+1)%2N′−k
+ cN′−k

i,( j+⌊sh/2k⌋+1)%2N′−k
)/2

h < t +1, k ≤ t :

bN′−k
i, jnew

= bN′−k

i,( j+sh/2k)%2N′−k

where,

j1 = 2k−t−1 j + ⌊s/2t+1
h ⌋

j2 = 2k−t−1( j +1)+ ⌊sh/2t+1⌋ (3.33)
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h ≥ t +1, k > t +1 :

cN′−k
i, jnew

= (
2k−t−2(2i+1)−1

∑
m=2k−t−1i

(DN

⌊ m
N′−t−1

⌋,⌊ j1%2N′−t−1

N′−t−1
⌋

+ 2

j2−1

∑
n= j1+1

DN

⌊ m
N′−t−1

⌋,⌊ n%2N′−t−1

N′−t−1
⌋
−2

j3−1

∑
n= j2+1

DN

⌊ m
N′−t−1

⌋,⌊ n%2N′−t−1

N′−t−1
⌋

− DN

⌊ m
N′−t−1

⌋,⌊ j3%2N′−t−1

N′−t−1
⌋
)−

2k−t−1(i+1)−1

∑
m=2k−t−2(2i+1)

(DN

⌊ m
N′−t−1

⌋,⌊ j1%2N′−t−1

N′−t−1
⌋

+ 2

j2−1

∑
n= j1+1

DN

⌊ m
N′−t−1

⌋,⌊ n%2N′−t−1

N′−t−1
⌋
−2

j3−1

∑
n= j2+1

DN

⌊ m
N′−t−1

⌋,⌊ n%2N′−t−1

N′−t−1
⌋

− DN

⌊ m
N′−t−1

⌋,⌊ j3%2N′−t−1

N′−t−1
⌋
))/22k−2t−1

h < t +1, k = t +1 :

cN′−k
i, jnew

= (bN′−k

i,( j+⌊sh/2k⌋)%2N′−k
− cN′−k

i,( j+⌊sh/2k⌋)%2N′−k

− bN′−k

i,( j+⌊sh/2k⌋+1)%2N′−k
− cN′−k

i,( j+⌊sh/2k⌋+1)%2N′−k
)/2

h < t +1, k ≤ t :

cN′−k
i, jnew

= cN′−k

i,( j+sh/2k)%2N′−k

where,

j1 = 2k−t−1 j + ⌊sh/2t+1⌋

j2 = 2k−t−2(2 j +1)+ ⌊sh/2t+1⌋

j3 = 2k−t−1( j +1)+ ⌊sh/2t+1⌋ (3.34)
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3.7 EXPERIMENTAL RESULTS AND DISCUSSION

For integer shifting, our solution for Haar-domain phase shifting, given by (3.10), (3.13), and

(3.16), is exact and does not incur any errors. For the subpixel case, a shift is approximated

by modeling the process as upsampling by a factor of h followed by an integer shift. However,

our solution does not require to actually upsample the image - i.e. the solution derived performs

subpixel shifts directly from the original coefficients. For a factor of h, we can obtain a precision

of 1
2h , i.e. subpixel shifts are approximated by the closest value in multiples of 1

2h .

In order to evaluate the accuracy of our Haar-domain phase-shifting method, we shifted the test

images first by a large amount using our method. We then performed the same shift but using a

successive set of smaller shifts, and used the accumulated error as a measure for performance. We

performed this test on numerous images, some of which are shown in table 3.7. The performance

was compared with different interpolation methods such as bilinear, bicubic, and spline. As shown

in table 3.7, accumulated errors are on average an order of magnitude smaller in our method.
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Table 3.1: Quantification and comparison of the accumulated residual error on several test images.

Bilinear 30.3943 14.0688 21.6153 21.2099 28.244 18.2492 26.867 6.7089 13.6063 21.4582

Bicubic 19.7466 6.9046 13.0134 12.7079 20.2513 8.6019 14.9709 4.7218 6.3287 12.1973

Spline 14.975 4.4063 8.9801 8.1769 15.0742 5.5216 10.162 3.9943 4.2309 7.788

Our Method 0.7646 0.7212 0.6236 0.7845 0.714 0.7215 0.6625 0.7961 0.743 0.7123

On the other hand, the low complexity of the derived solutions allow for fast processing directly in

the transform domain. By examining (3.10) one can find that the complexity of evaluating aN−k
i, jnew

can be expressed by the difference of the bounds of the two inner sums in the equation multiplied

by the difference of the bounds of the outer sum, that is O(( j3 − j1)× (2k−t−1)). Substituting the

values for j1 and j3, the complexity is shown to be O(2k−t−1 × 2k−t−1) when k > t. When k ≤ t

the complexity becomes O(1). Therefore, one can determine that the worst case is when t = 0, that

is when the shift is odd. In that case the complexity of computing aN−k
inew

becomes O(2k−1 ×2k−1).

Let L× L = 2N × 2N be the size of the two-dimensional signal, then the number of the wavelet

coefficients is L2 − 1 = 4N − 1. The a wavelet coefficients are one third of the total number of

coefficients, i.e. 4N−1
3

. At reduction level k = N, i.e. the root, the complexity of computing a0
0,0new

is O(2N−1×2N−1) = O((L
2
)2) with a probability of 3

L2−1
. At the next reduction level k = N−1, the

complexity is O(2N−2 ×2N−2) = O(22 × ( L
22 )

2) with a probability of 22 × 3
L2−1

. Table (3.7) shows

the complexity and its probability at each reduction level k.
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Table 3.2: Table of the complexity and probability at each reduction level k for evaluating the 2D

wavelet coefficients aN−k
i, jnew

.

Reduction Level Complexity Prob.=Number of Coefficients at k
Number of Coefficients

k = N O((L
2
)2) 3

L2−1

k = N −1 O(( L
22 )

2) (21)2×3

L2−1

k = N −2 O(( L
23 )

2) (22)2×3

L2−1

k = N −3 O(( L
24 )

2) (23)2×3

L2−1

: : :

k = 1 O(( L
2N )2) (2N−1)2×3

L2−1

By multiplying the complexities and the probabilities in table (3.7) and summing them up, the

average performance of the worst case for evaluating aN−k
i, jnew

is found to be O(lg(L)). Following the

same analysis, one can find that the worst case complexities for evaluating bN−k
i, jnew

and cN−k
i, jnew

are

found to be O(lg(L)) as well.
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4 NON-LINEAR PHASE-SHIFTING

Figure 4.1: A scene rendered using our algorithm.

In the previous two chapters, we presented our work on linear phase-shifting of the Haar wavelets

for the one-dimensional case, which can be easily generalized to N dimensions. We also pre-

sented our work for the linear two-dimensional non-separable case. In this chapter, we present

an innovative method for non-linear phase-shifting that can be extended to the problem of en-
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vironment lighting in computer graphics. The non-linear phase-shifting in the two-dimensional

signal is essentially a linear phase-shifting of three-dimensional functions, which are represented

on the sphere. In other words, the non-linear phase-shifting in the two-dimensional signal is a

rotation of the three-dimensional data it maps. In this chapter, we first provide an introduction

to environment lighting and some background about recent related research. We then present a

summary of our contributions. We also explain the applicability of non-linearly phase-shifting the

2D non-separable Haar transform signals to the problem. We finally provide experimental results

and conclude with some remarks and discussion.

4.1 THE ENVIRONMENT LIGHTING PROBLEM

The demand for photorealism has been increasing ever since the first illumination models, which

handled only point light sources. Many attempts have been made since then to increase the real-

ism of a rendered scene. Phong [Pho75], Blinn [Bli98], and Cook and Torrance [CT81] generated

glossy highlights from point sources by using general specular reflection functions that are concen-

trated near the mirror direction. Cook, Carpenter and Porter [CPC88] used distributed ray tracing

to model glossy reflections for a specular reflection function and an arbitrary light distribution.

Blinn and Newell were the first to include the light coming from the whole environment using

environment maps to create mirror reflections [BN76]. Kajiya [Kaj86] introduced the Rendering
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Equation, which provided a unified framework for rendering different types of materials.

Lo(p,ωo) = Le(p,ωo)+

∫

H(~N)
fr(p,ωo,ωin)Lin(p,ωin)cosθin dωin (4.1)

where Lin is the function describing the light and fr is the function describing the material reflec-

tion. We will describe the equation in more detail in the following section. The rendering equation

provides a unified framework in the sense that Lin and fr can be any function, and therefore, can

represent any lighting scheme. For example, if fr is a delta function the rendering equation sim-

plifies to Blinn and Newell’s mirror model. If Lin is a delta function instead, the case becomes that

of a point light source. When fr is constant the result is Lambert’s law for diffuse reflection. For

arbitrary lighting and reflection functions, the radiance at any point can be determined by solving

the rendering equation.

4.2 THE RENDERING EQUATION

The rendering equation describes the interaction between incoming light and a surface material.

The following is the most general form of the equation:

Lo(p,ωo) = Le(p,ωo)+
∫

H(~N)
fr(p,ωo,ωin)Lin(p,ωin)V (p,ωin)cosθin dωin (4.2)

where,

• ωo is the outgoing direction.
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• Le(p,ωo) is the emitted light at point p in the direction ωo.

• Lo(p,ωo) is the radiance leaving the surface at a point p in the direction ωo.

• f (p,ωo,ωin) is the Bidirectional Reflectance Distribution Function (BRDF).

• Lin(p,ωin) is the incident radiance.

• θin is the angle between the unit normal ~N at the point p and ωin.

• V (p,ωin) is the function that describes the visibility at point p along direction ωin.

• H(~N) is the hemisphere of directions around the normal ~N.

p

N

θi

ωi ωo

Figure 4.2: Relationship between the incident light and the light leaving a point on an object

surface.

Put in words, the rendering equation integrates the product of the three contributing factors of

incoming light, BRDF, and the visibility function along all incident light directions. Figure 4.2
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shows the relationship between the incident light and the reflected light off the surface of an object

at a given point.

4.3 SOLVING THE LIGHT INTEGRAL

4.3.1 MONTE CARLO

One of the oldest and most straightforward approaches for solving the light integral equation is to

approximate the solution using the Monte Carlo method [KW86, Kaj86, DBB02]. Global illumi-

nation algorithms based on Monte Carlo are general enough to allow estimation of the integral for

any material type and light distribution.

Monte Carlo is a numerical integration method that uses sampling to estimate an average solution

for integration of any dimension. This is applicable to the lighting integral because the product

of the light, reflection and visibility functions is too complex to evaluate using a closed-form

approach.

Monte Carlo based algorithms are, however, very slow. The convergence rate for these algorithms

is O( 1√
n
), where n is the number of samples taken to estimate the integral. This means that to

cut the error in half, four times the number of samples must be taken. On the other hand, unless
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sufficient light samples are taken, Monte Carlo produces noisy results that manifest as pixels that

are too bright or too dark. Therefore, a substantial number of samples and accordingly more time

is typically required in order to render a realistic low-noise image.

Much research has gone into improving Monte Carlo’s performance without necessarily increasing

the number of samples. One of the techniques that has been most effective is importance sampling

[ARB03, KK03, ODJ04]. Importance sampling relies on sampling mostly in the “important” di-

rections, which is governed by the choice of a sampling distribution function that is similar in

shape to the integrand of the function that is being estimated [PH04].

Many attempts have been also made to speed the rendering time by splitting the scene synthesis

into an offline prefiltering preprocess and a rendering process. Prefiltering stores the result of

integrating the product of the BRDF and lighting over the visible upper hemisphere per normal

direction. Cabral et al. [CON99] used prefiltering to obtain a sparse 2D set of prerendered images

that were used during the rendering process to generate scenes at interactive rates. [KM00] and

[KVH00] subsequently proposed alternative methods for improving prefiltering methods.
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4.3.2 SOLVING THE INTEGRAL IN THE FREQUENCY DOMAIN

4.3.3 SPHERICAL HARMONICS

The first attempt to solve the integral in frequency domain was by Cabral et al. [CMS87] using

Spherical Harmonics as basis. Spherical harmonics are the analog of the Fourier transform for

representing functions on the unit sphere [Mac48]. They are the products of Associated Legendre

Functions with functions that are periodic with respect to the azimuth angle φ . The real spherical

harmonics are defined as follows:

Y m
l (θ ,φ) =































√
2Km

l cos(mφ)Pm
l (cosθ), m > 0

√
2Km

l sin(−mφ)P−m
l (cosθ), m < 0

K0
l P0

l (cosθ), m = 0

(4.3)

where,

Km
l =

√

(2l +1)

4π

(l −|m|!)
(l + |m|!) (4.4)

l ∈ N+, − l ≤ m ≤ l, and Pm
l (cosθ) is the associated Legendre function.

Cabral et al. [CMS87] simplified the integral by removing the emittance and the visibility func-

tions. They also made the assumptions that the viewing direction is fixed and that the BRDF is

isotropic. They then used spherical harmonics to expand the lighting function and the product

of the BRDF and the cosine function, with the viewing direction as the north pole. Projecting

the terms of the integral into the spherical harmonics space reduces the integration into an inner
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product because of the orthonormality of spherical harmonics:

Lo(p,ωo) =

∫

H(~N)
Lin(p,ωin) fr(p,ωo,ωin)cosθin dωin

≈
∫

H(~N)

M

∑
l=0

l

∑
m=−l

al
mY l

m(θin,φin)
M

∑
l′=0

l′

∑
m′=−l′

bl′
m′Y

l′
m′(θin,φin)dωin

=
M

∑
l=0

l

∑
m=−l

M

∑
l′=0

l′

∑
m′=−l′

al
mbl′

m′

∫

H(~N)
Y l

m(θin,φin)Y
l′
m′(θin,φin)dωin

=
M

∑
l=0

l

∑
m=−l

M

∑
l′=0

l′

∑
m′=−l′

al
mbl′

m′δ (l, l′)δ (m,m′)

=
M

∑
l=0

l

∑
m=−l

al
mbl

m

Ramamoorthi and Hanrahan [RH01] give explicit formulae in terms of the cartesian coordinates

of the surface normal and approximate the solution of the integral for diffuse materials using 9

coefficients only. Their solution was the first to use spherical harmonics for photorealistic real-

time rendering. Their formulae implicitly handle the required rotation of light coefficients into

the local space defined by the normal as its Y-direction. This rotation is required because of the

different coordinate spaces of the BRDF and the light function. The BRDF is sampled and pro-

jected into spherical harmonics’ frequency domain in local space, that is, the surface normal is

the Y-axis of the space. On the other hand, the light is sampled and projected in the global space,

that is, the up-direction is the Y-axis of the space. Kautz et al. [KSS02] extend the use of spher-

ical harmonics to arbitrary BRDF’s under low-frequency lighting. They represent the lighting

environment using 25 coefficients and rotate them for each vertex during real-time rendering at

interactive rates. They also combined their method with Precomputed Radiance Transfer [SKS02]

to handle interreflections and shadows. Functions represented by spherical harmonics can be ro-
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tated by a linear transformation of the representation coefficients [Gre03]. The existing procedures

[IR96, IR98, CJM99, KSS02], however, are slow and cause a bottleneck in the rendering process.

Křivánek et al. [KKP06] propose an efficient approximation of the spherical harmonic rotation

based on replacing the general spherical harmonic rotation matrix with its truncated Taylor expan-

sion. Their proposed rotation approximation is faster and has a lower computational complexity.

The approximation, however, is accurate only for small rotation angles and, therefore, applicable

only to certain applications that require small successive rotation angles.

Spherical harmonics are shift-invariant, which makes them suitable for representing functions on

the sphere. However, They are globally supported and, therefore, suffer from some of the same

difficulties as the Fourier transform on the line such as ringing. Furthermore, spherical harmonics

don’t have good localization, which means a large number of coefficients is required for represent-

ing high frequency functions. Also, to handle the visibility function, it has to be combined with

the BRDF and projected as one function, referred to as the Transfer Function, in order to be able

to convert the lighting integral into an inner product. This restricts the BRDF representation in the

sense that rather than having one representation for a certain material, there would be several rep-

resentations of the same material, each dependant on the object occlusion properties. Furthermore,

the redundancy of the BRDF information occurs per sample point per object due to the dependence

of occlusion on the position of the sample point.

Imposing constraints to simplify the integral to achieve real-time or interactive rates is a necessity

with spherical harmonics, when glossy or general BRDF’s are used. One method is to use low
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sampling rates, which is equivalent to band-limiting the illumination. This approach is used by

Sloan et al. in [SKS02], [SLS03] and [SHH03]. However, band-limiting removes high frequency

components, which blurs lighting detail. For diffuse materials, the error can be very low [RH01].

However, this approach is not suitable for glossy materials, which need the high frequency for an

efficient representation. Another approach is to reduce the dimensionality of the problem by fixing

the light or the viewing direction as in Kautz et al. [KSS02]. This approach, however, restricts the

dynamics of the scene.

4.3.4 HAAR WAVELETS

Ng et al. [NRH03] use non-linear wavelet approximation to achieve better localization than spher-

ical harmonics and are successful at representing different degrees of shadowing due to wavelets’

excellent capability in handling information at different scales. They, however, reduce the dimen-

sionality of the integral to simplify it by fixing the viewing direction. Ng et al. [NRH04] develop a

method for solving the triple-product integral using two-dimensional non-separable Haar wavelets

to avoid reducing the dimensionality of the problem and the low sampling rate inherent in spherical

harmonics methods. The following is the rendering equation reduced to a triple product:
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Lo(p,ωo) =
∫

S
Lin(p,ωin) fr(p,ωo,ωin)cosθinV (p,ωin)dωin (4.5)

=
∫

S
Lin(p,ωin) f̃r(p,ωo,ωin)V (p,ωin)dωin (4.6)

≈
∫

S
(∑

i

ai(p)Ψi(ωin))(∑
j

b j(p,ωo)Ψ j(ωin))(∑
k

ck(p)Ψk(ωin))dωin (4.7)

= ∑
i

∑
j
∑
k

ai(p)b j(p,ωo)ck(p)

∫

S
Ψi(ωin)Ψ j(ωin)Ψk(ωin)dωin (4.8)

= ∑
i

∑
j
∑
k

Ci jkai(p)b j(p,ωo)ck(p) (4.9)

where,

Ci jk =

∫

S
Ψi(ωin)Ψ j(ωin)Ψk(ωin)dωin

The above formulation is general and works for any basis. However, solving for Ci jk and efficiently

computing the triple sum in (4.9) is not a trivial matter. One can refer to [NRH04] for an in-depth

analysis of the computational complexity for the different methods to solve the triple sum.

Haar wavelets provide an efficient solution for solving the triple sum due to the following simple

theorem [NRH04]:

The Tripling Coefficient Theorem The integral of three 2D Haar basis functions is non-zero if

and only if one of the following three cases hold:

1. All three are the scaling function, that is, Ci jk = 1.

2. All three occupy the same wavelet square and all are different wavelet types, that is

Ci jk = 2l , where wavelets are at level l.
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3. Two are identical wavelets, and the third is either the scaling function or a wavelet that

overlaps at a strictly coarser level, that is, Ci jk = ±2l , where the third function exists at

level l.

The above theorem implies that most of the tripling coefficients are equal to zero because most

pairs of basis functions don’t overlap, which is the reason for the efficiency of using 2D Haar to

solve the triple product.

However, Haar wavelets are not rotation-invariant, therefore, the BRDF has to be sampled per

normal direction, which is storage demanding and has a limit on how much resolution it can afford.

Furthermore, Haar wavelets are parametrized in cube domains to represent spherical functions.

This makes it difficult or impossible to obtain an analytic rotation formula in the frequency domain.

This is due to the representation mechanism, which compresses each face of the cube as a separate

entity. To be able to rotate in the frequency domain data has to move from one face to another,

which is not feasible with the cube representation.

Schröder and Sweldens [SS95b] construct biorthogonal wavelets on the sphere using the lifting

scheme. Their method achieves better localization than spherical harmonics for high-frequency

materials and is defined directly on the sphere. However, it is also not rotation-invariant and

doesn’t lend itself to solving the triple integral in an efficient manner.

Wang et al. [WNL06] parametrize the spherical functions using geometry maps [PH03] and pro-

vide a solution for wavelet rotation using precomputed rotation matrices. They precompute and
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store the rotation matrices and use them to rotate the light coefficients into the local space of the

BRDF. However, their solution is brute force rather than analytic since it would be impossible to

derive rotation formulae for the frequency domain with the geometry map representation.

4.4 OUR CONTRIBUTIONS

Rotation directly in the Haar wavelet domain: We are the first to derive an explicit solution

for rotating functions directly in the Haar wavelet domain. The key idea that allows us to achieve

this result is the fact that for a standard non-separable Haar transform the horizontal, vertical, and

diagonal coefficients are simply first order finite difference approximations of horizontal, vertical,

and diagonal derivatives of the function at different scales. Therefore, we first derive the explicit

expressions in the spatial domain that describe rotations of a function defined over the unit sphere.

Using the chain rule, and the fact that differentiation is a linear operator, we then show how the

order of rotation and differentiation can be interchanged. As a result, we derive an explicit method

for rotating Haar wavelets.

Scalable solution for light transport: Direct Haar domain rotation completely removes the pre-

computation burden and the overly expensive storage requirement, since the rotations between

local and global coordinates for the BRDF, light, or visibility can be performed directly on the

wavelet coefficients during run-time. Throughout this chapter the term “run-time” refers to compu-
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tation of the radiance transfer without performing any precomputation. We thus call our approach

a run-time radiance transfer (RRT) method as opposed to PRT. Although, our approach provides

a run-time solution, as seen below, the first algorithm derived tends to be expensive. Fortunately,

however, we demonstrate that a simple reformulation of the algorithm reduces the time complexity

drastically. As a result, we obtain a solution that provides run-time rotation of the Haar coefficients

over the entire frequency range, without requiring any data-loss, precomputation, or extensive stor-

age: the rotated coefficients for the entire frequency range are computed recursively from only one

level of coefficients of the Haar transform of the original map prior to rotation. Therefore, our

solution does not have to sacrifice glossiness, against storage memory. We also don’t have to in-

terpolate between preprocessed data, whether it is the data itself or the rotation matrices, which

means our method is more accurate at any given rotation angle. This is important especially with

high frequency information because interpolation acts as a low-pass filter.

4.5 OUR METHOD

As mentioned earlier, the BRDF and the light function are represented under different coordinate

spaces. The BRDF is sampled and projected into frequency domain in local space, that is, the

surface normal is the Y-axis of the space. On the other hand, the light is sampled and projected

in global space, that is, the up-direction is the Y-axis of the space. This requires a rotation of one

of the coordinate spaces into the other before the triple product can be performed. Currently, the
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most efficient computation of the triple product is performed in the Haar domain [NRH04]. Thus

the key to solve the problem is to devise a method for rotating directly in the Haar domain, which

we describe in the next section.

4.5.1 ROTATING HAAR COEFFICIENTS

We describe our solution for the light. But, it equally applies to any function defined over the unit

sphere such as the visibility map or the BRDF. Our implementation, however, rotates the BRDF

data from local space into global space due to its higher degree of smoothness when mapped to a

two-dimensional square, which reduces errors incurred by rotation.

Original image f (θ ,φ) Image after rotation g(θ ,φ)

Let f (θ ,φ) be a function that describes the light map in a spherical coordinate system at some ini-

tial orientation1. Our first goal here is to derive the relations that describe rotation in the spherical

1We do not explicitly include the radius in spherical coordinates to imply that we are dealing with mappings over

a unit sphere.
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coordinate system. Let αl , βl and γl denote the Euler rotation angles from global to local space

along the cartesian axes X , Y , and Z, respectively. Then, the light map after rotation, denoted

hereafter by g(θ ,φ), can be derived in terms of f (θ ,φ) as follows:

Let p denote a point in the cartesian coordinate system after rotation, i.e. p ∈ g(θ ,φ). Then the

mapping from spherical coordinates to cartesian coordinates is given by:

p =

















x

y

z

















=

















sinθ sinφ

cosθ

sinθ cosφ

















where we assume a right-handed global coordinate system, with the Y -axis pointing up and the

Z-axis representing the depth. The position of the point prior to an arbitrary rotation R ∈ f (θ ,φ)

is determined by the following matrix equation:

p′ = RzRyRxp = Rp (4.10)

where Rx, Ry and Rz are the familiar rotation matrices along the corresponding X , Y and Z axes.

For brevity, we can write the elements of p′ as follows:

p′ =

































R1p

R2p

R3p

































(4.11)

where Ri, i = 1, ...,3 are the rows of the rotation matrix R.
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Assuming that the point prior to rotation has an elevation angle of θ ′ and an azimuth angle of φ ′,

we can readily verify that

g(θ ,φ) = f (θ ′,φ ′)

where

θ ′ = cos−1 (R2p) (4.12)

φ ′ = tan−1

(

R1p

R3p

)

(4.13)

Unfortunately, one can easily see from the above relations that the rotation is not a linear operation

in the spherical coordinate system. In other words, θ ′ and φ ′ are not linearly related to θ and φ .

The key observation that allows us to solve the problem is that we are specifically dealing with

Haar transform coefficients, which correspond to the first order finite difference approximations of

the horizontal, vertical and diagonal derivatives of the map f (θ ,φ) at different resolution levels

(scales).

Therefore, let θ ′ = Θ(θ ,φ) and φ ′ = Φ(θ ,φ), denote the non-linear mappings that relate the ele-

vation and azimuth angles before and after rotation, as given by (4.12) and (4.13). Then

g(θ ,φ) = f (Θ(θ ,φ),Φ(θ ,φ)) (4.14)

The horizontal, vertical and diagonal derivatives are essentially the derivatives with respect to the

angles φ , θ and φθ , respectively. The illuminating feature of (4.14) is that it indicates that the
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Figure 4.3: This figure shows an example of evaluating
dg
dφ

in equation (4.16) after a rotation along

the elevation angle by 20◦.

solution to our problem lies simply in the chain rule:

dg

dθ
=

∂ f

∂Θ

∂Θ

∂θ
+

∂ f

∂Φ

∂Φ

∂θ
(4.15)

dg

dφ
=

∂ f

∂Θ

∂ Θ

∂φ
+

∂ f

∂Φ

∂Φ

∂φ
(4.16)

d2g

dφdθ
=

∂ 2 f

∂Θ∂θ

∂Θ

∂θ
+

∂ 2 f

∂Θ

∂ 2Θ

∂φ∂θ

+
∂ 2 f

∂Φ∂θ

∂Φ

∂φ
+

∂ f

∂Φ

∂ 2Φ

∂φ∂θ
(4.17)

We concur from the above that finding the horizontal, vertical and diagonal Haar coefficients after

some rotation reduces to the problem of applying the chain rule to the coefficients of the Haar

transform of f prior to rotation - achieving, thus, rotation of the coefficients directly in the trans-

form domain. Again, this is true because Haar coefficients conveniently correspond to function

derivatives at different scales. Figure 4.3 shows an example of computing
dg
dφ

after a vertical eleva-

tion of αl = 20◦, where
∂ f
∂Θ

and
∂ f
∂Φ

are obtained from the vertical coefficients
∂ f
∂θ and the horizontal

coefficients
∂ f
∂φ , respectively, through an elevation by the same angle.
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This provides an elegant analytic solution to the rotation of Haar wavelets defined over a spherical

coordinate system. Furthermore, our method can be applied to any map other the longitude-latitude

as long as there exists a mathematical expression that maps the data from the sphere to all pixels

of a rectangular image. In other words, if Θ(θ ,φ) and Φ(θ ,φ) can be explicitly expressed mathe-

matically then our method for rotation can be used for spherical data represented using that map.

Taking advantage of the longitude-latitude map, one can reduce the complexity of the rotation

matrix R. Assuming that a rotation by θl along the elevation angle is aligned with the rotation

around the X-axis, then θl equals αl . This in turn means that a rotation by θl can be represented by

Rx. A rotation with respect to the azimuth angle by φl simply becomes a linear shift of the elevated

point. This reduces R from a multiplication of the three euler rotation matrices to one matrix and

a linear shift. This significantly reduces the number of cosine and sine terms int R and, therefore,

reducing its complexity.

4.5.2 MATHEMATICAL DESCRIPTION

The basic idea here is that the Haar coefficients at any level j +1 of a function f defined over the

spherical coordinates can be considered as the horizontal, vertical and the diagonal derivatives of

f with respect to the elevation and azimuth angles at that level (scale). Therefore, given the Haar

coefficients of f at level j +1, we can directly compute the derivatives gθ (θ ,φ) = dg

dθ
, gφ (θ ,φ) =
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dg

dφ
, and gθφ (θ ,φ) = d

2
g

dφdθ
of the rotated function g at level j + 1 by simply using the equations

(4.15)-(4.17). To obtain the Haar coefficients of g at level j we simply need to convolve these

derivatives with 2×2 averaging kernels and then downsample the results.

Simple inspection then shows that Haar coefficient at all coarser levels j−1, j−2, j−3, ... can be

computed directly from the derivatives gθ , gφ , and gθφ by a series of convolutions and downsam-

pling. We describe the main idea using the vertical coefficients as an example. Suppose we want to

compute the vertical coefficients v j−l at level j− l using the vertical derivatives gθ . This amounts

to convolving the vertical derivatives with two separate kernels as follows:

v j−l(θ ,φ) = ∑
ρ

hs, j−l(ρ −φ)∑
τ

gθ (θ ,φ)ht, j−l(τ −θ) (4.18)

where

ht, j−l(θ) =
(

2l+1 −|θ |
)

, θ ∈ [−2l+1 +1,2l+1 −1] (4.19)

and

hs, j−l(φ) =
1

2l+2
, φ ∈ [−2l+1 +1,2l+1 −1] (4.20)

followed by downsampling by a factor of 2l+2.

Horizontal Haar coefficients at level j− l can be similarly computed from gφ by interchanging the

role of ht and hs. The diagonal coefficients are simply computed by taking the cross-derivative

either using the horizontal or the vertical coefficients and convolving in both directions by hs.
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4.5.3 ALGORITHMIC OPTIMIZATION

The simple but powerful results derived in the previous section show that we can directly compute

the Haar coefficients of a rotated function at all levels j− l, l = 0,1,2, ... directly from the Haar

coefficients of the original function at only one level, i.e. level j + 1. However, it can be verified

from (4.18)-(4.20) that as l increases the time complexity of (4.18) increases exponentially. At a

first glance, this may seem disappointing, however, it turns out that this is rather misleading, and

there is a simple solution to reduce the complexity to provide run-time computation.

There are two measures that we can take to optimize the algorithm: First, note that the Haar coef-

ficients at all levels j− l, l = 0,1,2, ... are computed from the derivatives at level j +1. Second the

convolution kernels ht, j−l and hs, j−l increase exponentially in size as l increases. Both problems

can be alleviated by identifying the fact that the proposed computations in the previous section can

be performed recursively so that at each level the computation of the Haar coefficients depends

only on the Haar coefficients computed for the previous level. To this end, we note that for all

l ≥ 1, the kernel ht, j−l can be written as the convolution of two kernels:

ht, j−l = ht, j ∗hl
t, j (4.21)

where

hl
t, j(θ) =















ht, j

(

θ
2l

)

if θ
2l is an integer

0 otherwise

(4.22)

Note that except for three values, all the values in the kernel hl
t, j are zero. Essentially, hl

t, j is the

same kernel as ht, j, but upsampled by a factor of 2l , by zero padding all elements between the non-
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zero values. Therefore, the algorithm can be implemented recursively by repeated convolution

with the upsampled kernel hl
t, j for all l ≥ 1. The latter is very cheap since except for three values

all the the values in the kernel are zero. Simple inspection indicates that the reduced algorithm is

O(n).

In addition to the above algorithmic optimization for recursive computation of the Haar coeffi-

cients, we can further reduce the computational time by modifying also the rotation step based

on the chain rule described in Section 4.5.1. To this end note that without loss of generality we

can assume that the function to be rotated is initially aligned such that the x-axis coincide with

the θ -axis. The consequence of this assumption is that all rotations reduce to rotation around the

θ -axis (or the x-axis) followed by a simple shifting along the φ -axis, which is extremely cheap (i.e.

O(1)).

The following algorithm summarizes our method:

• For each pixel, determine the local outgoing direction and retrieve the BRDF transformed

map corresponding to that direction.

• Assuming the transformed BRDF data has 0...n−1 levels of resolution, the vertical, horizon-

tal and diagonal coefficients at level n− 1 are rotated by φ~N and θ~N , which are the azimuth

and elevation angles of the normal ~N at the current pixel.

• The coefficients at the lower resolution levels are subsequently evaluated by recursively con-

volving by the filters hs and ht , where hs and ht have a size of 2 and 3 coefficients respectively.
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• The rotated data is plugged in the triple integral computation.

The above algorithm has a complexity of O(N), where N is the number of coefficients. One might

argue that this is the same complexity as saving multiple levels of resolution of untransformed data

using a mipmap, rotating the required level spatially and then transforming. Representing the data

using a wavelet transform, however, is more compact than a mipmap, which saves storage space

as is our goal. It is also more convenient to store the data in its transformed state to be readily

available for use for the triple product computation.

We would also like to mention that one can start at any resolution level that is lower than n− 1.

In that case, the computational complexity is reduced to O(N/4k), where k is the number of levels

removed.

4.6 EXPERIMENTAL RESULTS AND DISCUSSION

Our algorithm is implemented using CUDA (”Compute Unified Device Architecture”) in combi-

nation with Cg for graphics rendering. The algorithm is implemented into the following passes:

The Cg Pass: This pass takes advantage of the interpolator and rasterizer of the graphic pipeline

to output a fragment buffer that contains the interpolation information, vertex id, and object id per

pixel.
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The Rotation Input Pass: This pass outputs a buffer which contains the BRDF tile id and the

rotation angles required per non-background pixel.

The Rotation Pass: This pass is actually divided into three passes that run concurrently to optimize

speed. The three passes evaluate the horizontal, vertical and diagonal coefficients of the rotated

BRDF tiles.

The Triple Integral Pass: This pass evaluates the illumination of each non-background pixel

using the triple sum.

To evaluate the error incurred from rotation, we preprocessed the BRDF data by rotating it spatially.

We also preprocessed the BRDF data by rotating it using our method. This allowed us to create

images that are comparable. Figures (4.5) and (4.6) show our error with respect to spatial rotation.

The figures show results from rotating the data from levels 5 and 6 and recursively evaluating the

rest of the coefficients. Rotating from level 5 is slightly better because it has less accumulation

error because of the smaller number of levels. However, that doesn’t necessarily mean that a

smaller number of levels is better. The smaller the number of coefficients at a certain level the less

smooth the data becomes, which causes inaccuracy due to discontinuity.

Our most important contribution is providing the first real solution to rotating Haar wavelets. Al-

though one method of rotation already exits, it does so by creating a rotation matrix per discretized

rotation angle. Each rotation matrix is created during a preprocess stage where each wavelet of a

resolution less than or equal the required image size is rotated spatially then transformed and stored

110



as one column of that specific rotation matrix. The rotation matrices are then used during render-

ing time to rotate any of the required data. This solution is computational rather than analytical,

therefore, it relies on preprocessing and discretization, which produce errors due to interpolation.

We are currently able to rotate coefficients at level 4 using the GPU and 5 using the CPU. We

recursively generate the coefficients at the coarser levels on the GPU. This is the equivalent of

using 256 and 1024 coefficients for rendering respectively. Although PRT methods are capable

of linearly compressing data and generating glossier materials at the current time, they still suffer

from excess storage, discretization and interpolation error. It is a well-known fact that the speed

of computing systems increase at a higher rate than memory, especially now that the market is

focusing on parallel computing both on the CPU and GPU. In a few years time our method will be

able to render using a larger number of coefficients and achieve interactive/real time.

4.7 CONCLUSION

In this thesis, we aspired to establish the grounds for our work by giving a brief but necessary

introduction to wavelets, their different properties and the state of wavelet related research on the

property of shift-invariance. Achieving shift-invariance was, up until now, the only method to

achieve phase-shifting. However, that compromised other desired properties, which we wish to

keep for the purposes of the environment lighting application at hand. These properties, namely,
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orthogonality, perfect reconstruction and localization are essential to solving the triple product

that results from projecting the lighting integral terms into frequency space and, therefore, are a

necessity to preserve. We present our current work for phase-shifting, which does not rely on

shift-invariance and therefore preserves these important properties. Our recent work on phase-

shifting for one-dimensional and two-dimensional signals was demonstrated in chapters two and

three. In this chapter, we discussed the environment lighting problem and its relationship to Haar

wavelets. Our goal is to achieve realistic rendering of synthetic scenes using Haar wavelets as

the integration medium while improving the efficiency in terms of storage over other methods by

means of rotating during rendering time. In order to do so we devised a novel method to tackle the

non-linear phase-shifting that makes use of the fact that the Haar transform implicitly contains the

horizontal, vertical and diagonal derivatives of the signal. Our run-time radiance transfer method

(RRT) provides an elegant solution to the non-trivial problem of rotating Haar wavelets, providing

thus a solution for run-time computation of light transport based on the rendering equation. The

resulting algorithm scales nicely so that no trade-off is required in terms of storage, computational

cost, and bandwidth. Furthermore, since the proposed solution does not require precomputation,

errors due to interpolation are avoided.
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Figure 4.4: The same scene rendered using our algorithm with and without texture for better

showing of shadow. The scene is rendered with aluminum bronze and blue metallic paint measured

BRDF’s using 64 coefficients.
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Figure 4.5: The above graphs show the rms error comparing rendered images of different models

using measured a aluminum bronze material under different environments. The sets of images are

generated using preprocessed data under spatial rotation versus our method of rotation. Using our

method, we rotated the coefficients at level 6 then evaluated the coefficients at the coarser levels

recursively.
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Figure 4.6: The above graphs show the rms error comparing rendered images of different models

using measured a blue metallic paint material under different environments. The sets of images are

generated using preprocessed data under spatial rotation versus our method of rotation. Using our

method, we rotated the coefficients at level 6 then evaluated the coefficients at the coarser levels

recursively.
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