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An asynchronous phase-shifting method based on principal component analysis (PCA) is presented. No restrictions
about the background, modulation, and phase shifts are necessary. The presentedmethod is very fast and needs very
low computational requirements, so it can be used with very large images and/or very large image sets. The method
is based on obtaining two quadrature signals by the PCA algorithm. We have applied the proposed method to
simulated and experimental interferograms, obtaining satisfactory results. © 2011 Optical Society of America
OCIS codes: 100.5070, 100.2650.

Phase-shifting interferometry (PSI) is a useful technique
in optical metrology for measuring the modulating phase
of interferograms [1]. In standard PSI, a sequence of N
interferograms is obtained having known phase shifts be-
tween them so the acquisition is synchronous. Usually a
minimum of three phase-shifted interferograms are need
to retrieve the phase. Other phase-shifting algorithms,
named self-calibrating, allow the determination of the
modulating phase without any prior knowledge about
the phase steps (asynchronous detection) [2–5]. All these
methods are iterative and require considerable computa-
tion to converge to a solution. Therefore, these methods
are not practical when we use large images or a big
number of interferograms. Additionally, these methods
require the background and the modulation terms to
be approximately spatially constant.
In this Letter, we present an asynchronous phase-

shifting method based on the principal component
analysis (PCA) algorithm that is very fast and easy to im-
plement. Additionally, it does not use any nonlinear mini-
mization or optimization process, so it is not expensive
from a computational point of view. In PSI, an interfer-
ogram sequence can be described using the following
expression:

Inðx; yÞ ¼ aðx; yÞ þ bðx; yÞ cos½Φðx; yÞ þ δn�; ð1Þ

where aðx; yÞ is the background illumination, bðx; yÞ
and Φðx; yÞ are the modulation and phase maps, respec-
tively, and δn are the phase steps. Expression (1) can be
rewritten as

In ¼ aþ b½cosðΦÞ cosðδnÞ − sinðΦÞ sinðδnÞ�: ð2Þ

From expression (2) and grouping terms, we obtain

~In ¼ αnIc þ βnIs; ð3Þ

where we have subtracted the background component,
αn ¼ cos½δn�, βn ¼ sin½δn�, Ic ¼ b cos½Φ�, Is ¼ b sin½Φ�,
and the spatial dependence has been omitted for the sake
of clarity. From expression (3), we show that any inter-

ferogram without background term ð~InÞ can be decom-
posed into two uncorrelated quadrature signals Ic and
Is that approximately verify the following expression:

XNx

x¼1

XNy

y¼1

Icðx; yÞIsðx; yÞ ≅ 0; ð4Þ

where Nx × Ny is the image size. PCA is a technique from
statistics for reducing an image or data set [6]. It involves
a mathematical procedure that transforms a number of
possibly correlated images into the smallest number of
uncorrelated images called the principal components.
The principal components are linear combinations of the
original variables and are the single best subspace of a
given dimension in the least-square sense. In practice,
the PCA algorithm is based on three steps. Suppose that
we have N images of size Nx × Ny. This image set can be
expressed in a matrix form as

x ¼ ½x1; x2;…; xN �T : ð5Þ

In Eq. (5) xn is a column vector with size Nx × Ny whose
elements are taken columnwise from the nth image. In
expression (5), ½·�T denotes the transposing operation,
and x has N rows and Nx × Ny columns. The first step
of the PCA algorithm consists in obtaining the covariance
matrix C from x as

C ¼ ðx −mxÞðx −mxÞT : ð6Þ

In expression (6) mx has the same size as x. All the ele-
ments in each column of mx correspond to the mean val-
ue of the respective column of x. Note that, in expression
(6), ðx −mxÞ corresponds to a background suppression
operation. Because C is real and symmetric, it is always
possible to find a set of real eigenvalues and its corre-
sponding orthonormal eigenvectors. From matrix theory
the covariance matrix can be diagonalized as

D ¼ ACAT; ð7Þ

1326 OPTICS LETTERS / Vol. 36, No. 8 / April 15, 2011

0146-9592/11/081326-03$15.00/0 © 2011 Optical Society of America



where D is a diagonal matrix, and A is the transformation
matrix. This diagonalization process is the second step of
the PCA method and is performed in a practical point of
view by the singular value decomposition algorithm. The
final step consists in obtaining the principal components
by the Hotelling transform [6] as

y ¼ Aðx −mxÞ: ð8Þ

In our case, we only want the first two principal compo-
nents with the biggest eigenvalues (first and second col-
umns of y), which will correspond to the Ic and Is signals.
Note that the method cannot determine the correct glo-
bal phase sign as we arbitrarily assign the cosine and sine
signals to the first and second principal component,
respectively. The phase is obtained as

Φ ¼ arctanðIs=IcÞ: ð9Þ

We have tested the proposed method with simulated
fringe patterns in different situations. We have performed
simulations with different levels of noise and with differ-
ent number of phase-shifted fringe patterns. In all cases,
we have compared the results obtained by the PCA with
the least-squares self-calibrating algorithm presented in
[2]. In the first experiment, we have ten phase-shifted
fringe patterns affected by different levels of additive
white noise. Figure 1 shows two sample fringe patterns
with 10% signal-to-noise ratio. The background and
modulation maps are aðx; yÞ ¼ x=50 and bðx; yÞ ¼
exp½−0:5ðx2 þ y2Þ=104�, respectively. The image size
is 640 × 640.
In Table 1 we show the rms errors of the recovered

phase and the processing times obtained when ten phase-
shifted fringe patterns with different levels of noise are
processed by the proposed (PCA) and the self-calibrating
(SC) method. Additionally, in Table 1 it is shown the first

four normalized eigenvalues (EVs). As can be seen from
Table 1, the proposed method is approximately 2 orders
of magnitude more accurate and fast than the SC ap-
proach. Figure 2 shows the first and second principal
components that are two quadrature signals.

Figure 3 shows the theoretical wrapped phase and the
results from the proposed method. In this case, the rms
error between the theoretical and the retrieved phase by
the PCA algorithm is 0:096 rad. On the other hand, the
rms error computed between the theoretical phase and
the phase obtained by the SC algorithm [2] is 0:72 rad.
The processing times are 0:39 s and 52 s for the proposed
and the SC methods, respectively. In all cases the fringe
patterns have been processed with a 2:67GHz laptop and
using MATLAB.

In the next experiment, we varied the number of fringe
patterns processed while fixing the signal-to-noise ratio
to 10%. In Table 2 we show the first four normalized EVs,
the rms errors, and the processing times when different
numbers of fringe patterns as shown in Fig. 1 are pro-
cessed. As can be seen from Tables 1 and 2, the rms
and processing times obtained by the PCA method are

Fig. 1. Two of the 10 interferograms used in the simulation
section.

Fig. 2. Computed basis obtained by the PCA algorithm when
10 phase-shifted patterns with 10% signal-to-noise ratio are
processed.

Fig. 3. Obtained wrapped phases (a) when the proposed
method is used and (b) actual phase map.

Table 1. Results Obtained for Different Levels of Noise

Noise Level 0% 20% 40% 60% 80%

rms PCA (rad) 1:1e − 3 0.19 0.44 0.81 4.9
Time PCA (s) 0.41 0.46 0.42 0.39 0.42
First EV 2:5e − 2 2:6e − 2 2:5e − 2 3:3e − 2 4:0e − 2
Second EV 4:3e − 3 1:5e − 2 1:8e − 2 2:5e − 2 2:5e − 2
Third EV 4:7e − 12 1:2e − 3 5e − 3 1:1e − 2 1:5e − 2
Fourth EV 4:2e − 12 1:2e − 3 5e − 3 1:1e − 2 1:5e − 2
rms SC (rad) 0.94 0.68 8.3 5.06 11.5
Time SC (s) 52 51 52 52 53

Table 2. Results Obtained for Different Patterns

Patterns 5 15 25 35 45

rms PCA (rad) 0.17 0.078 0.072 0.048 0.044
Time PCA (s) 0.22 0.67 1.8 2.3 3.1
First EV 2:6e − 2 2:3e − 2 2:0e − 2 1:9e − 2 2:0e − 2
Second EV 8:0e − 3 1:4e − 2 1:0e − 2 1:9e − 2 1:9e − 2
Third EV 6:2e − 4 2:1e − 4 1:3e − 4 9:2e − 5 7:2e − 5
Fourth EV 6:2e − 4 2:1e − 4 1:3e − 4 9:2e − 5 7:2e − 5
rms SC (rad) 0.85 0.77 0.63 0.55 0.55
Time SC (s) 49 56 64 72 77
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always significantly lower—approximately 2 orders of
magnitude—than when using the SC approach. Addition-
ally, the magnitude of the first and second EVs with re-
spect to the rest is a quantity that weighs the goodness of
the retrieved phase. The larger the first and second EVs
are, the more accurate the retrieved phase is.
In the simulations shown above, the phase shifts are

randomly distributed in the 2π range. If the phase shifts
are close to zero with a small number of interferograms,
both the PCA and the advanced iterative algorithm meth-
ods cannot obtain a reliable phase measurement.
We have applied the proposed algorithm to real inter-

ferograms. We have an interferogram sequence formed
by 19 fringe patterns. In Fig. 4 we show two phase-shifted
interferograms of the sequence. The size of each image
is 600 × 800.
We first process this interferogram sequence with the

SCmethod [2]. We denote the obtained modulating phase
as the reference phase. Next, we process the interfero-
gram sequence with the proposed PCA algorithm.
In Fig. 5 are shown the wrapped phases obtained by

the PCA method (a) and by the SC algorithm, the refer-
ence wrapped phase (b), respectively. As can be seen
from Fig. 5, the wrapped phases are similar. The rms er-
ror of the difference between both reconstructed phases
is 0:056 rad, and the processing times are 0:48 s and 31 s
when using the PCA and the SC algorithms, respectively.
In order to show the robustness of the proposed algo-

rithm, we have selected the first four interferograms of
the sequence, and we have repeated the experiment.
The wrapped phases obtained by the PCA and the SC al-
gorithms are shown in Fig. 6. As can be seen from Fig. 6,
the retrieved phase by the PCA algorithm is similar than
the ones shown in Fig. 5 using 19 interferograms. This is
not the case when using the SC approach. The rms error
of the difference between the reference and retrieved
phases when four interferograms are processed by the
PCA and the SC approaches are 0.056 and 6:1 rad,
respectively. Finally, the processing times are 0:6 s and
24 s when using the PCA and the SC algorithms,
respectively.

In summary, we have presented an asynchronous
phase-shifting method based on the PCA algorithm that
is very fast and easy to implement, so it is not expensive
in a computational point of view. The method does not
need any prior guess about the phase steps or any re-
quirements about the background and modulation terms.
We have compared the proposed method with a standard
SC approach [2], and we have found that the proposed
method is approximately 2 orders of magnitude more ac-
curate and faster. All the examples of this work can be
reproduced running the MATLAB package that can be
found in [7].
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Fig. 4. Two sample real interferograms used in the experimen-
tal results section.

Fig. 5. Wrapped phases obtained by the (a) proposed and
(b) SC methods.

Fig. 6. Obtained wrapped phases when using the (a) proposed
method and the (b) SC method to process four real
interferograms.
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