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The singularities of complex scalar waves are their zeros; these are dislocation lines in
space, or points in the plane. For waves in space, and waves in the plane (propagating
in two dimensions, or sections of waves propagating in three), we calculate some
statistics associated with dislocations for isotropically random Gaussian ensembles,
that is, superpositions of plane waves equidistributed in direction but with random
phases. The statistics are: mean length of dislocation line per unit volume, and
the associated mean density of dislocation points in the plane; eccentricity of the
ellipse describing the anisotropic squeezing of phase lines close to dislocation cores;
distribution of curvature of dislocation lines in space; distribution of transverse speeds
of moving dislocations; and position correlations of pairs of dislocations in the plane,
with and without their strength (topological charge) §1. The statistics depend on the
frequency spectrum of the waves. We derive results for general spectra, and specialize
to monochromatic waves in space and the plane, and black-body radiation.
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1. Introduction

Phase singularities, that is, dislocations of wavefronts (Nye & Berry 1974; Berry
1981, 1998; Nye 1999)|also called optical vortices|are lines in space, or points in
the plane, where the phase À of the complex scalar wave

Á(r; t) = » (r; t) expfi À (r; t)g; r = fx; y; zg; (1.1)

is unde ned. For the generic smooth Á we are interested in, dislocations are also
loci of vanishing » : in light, they are lines of darkness; in sound, threads of silence.
Interest in optical dislocations has recently revived, largely as a result of experiments
with laser  elds (Karman et al . 1997; Beijersbergen 1996; Soskin 1997). In low-
temperature physics, Á could represent the complex order parameter associated with
quantum ®ux lines in a superconductor or quantized vortices in a super®uid.

This revival prompts us to re-examine that part of the theory dealing with the sta-
tistical aspects of dislocations in random waves. Previous studies of these statistics
have been restricted to quasimonochromatic paraxial waves (Berry 1978; Baranova
et al . 1981) and experiments and theory for monochromatic waves in two dimensions
(Freund et al . 1993; Freund 1994, 1997; Freund & Shvartsman 1994; Freund & Frei-
likher 1997; Freund & Wilkinson 1998; Shvartsman & Freund 1994). Here we are able
to go further, and calculate analytically statistics describing a variety of geometrical
aspects (see x 2) of dislocations that need not be monochromatic and that are as
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2060 M. V. Berry and M. R. Dennis

far as possible from paraxial, namely statistically isotropic. Our results will include
statistics of dislocation lines for waves propagating in three dimensions, and dislo-
cation points for waves in the plane, including, in the latter case, waves propagating
in two dimensions and also plane sections of waves propagating in space.

The calculations (see x 4) are possible because we employ the model of wave  elds
as stationary Gaussian random functions (see x 3), that is, superpositions of many
plane waves with random phases. Important special cases are monochromatic waves
(see x 5) and black-body radiation (see x 6) caricatured by the scalar-wave approx-
imation (employed by Rayleigh 1889; Einstein & Hopf 1910a,b). Notwithstanding
these results, our treatment is incomplete in several important ways, described in x 7.
Readers uninterested in the technicalities of the calculations can ignore xx 3 and 4.

It will be convenient to separate Á into its real and imaginary parts,

Á(r; t) = ¹ (r; t) + i ² (r; t): (1.2)

Then dislocations are the intersection lines of the two surfaces

¹ (r; t) = 0; ² (r; t) = 0: (1.3)

All the dislocation statistics we will calculate are gauge invariant in the sense of
being unaltered by any smooth (r and t dependent) rede nition of phase À , or,
equivalently, any smooth rotation in ¹ , ² space.

For the average of any quantity F over the ensemble of random Á, we will use
the notation hF i. For waves propagating in two dimensions, and two-dimensional
sections of three-dimensional waves, we will use the notation

R ² fx; yg; (1.4)

and denote the corresponding gradients by rR and associated planar averages by
su¯ xes 2. We will also use su¯ xes to denote derivatives,

¹ x ² @¹

@x
; etc. (1.5)

2. Dislocation geometry

The current associated with Á is

J = Im(Á ¤ rÁ) = » 2r À : (2.1)

In the following, a central role will be played by the vorticity associated with J ,
namely

 = 1
2r £ J = 1

2
Im(rÁ ¤ £ rÁ) = r ¹ £ r ² : (2.2)

The vector  is important because it points along the dislocation line. This is because
it is perpendicular to the normals to the two surfaces (1.3). Around the dislocation
line, À increases by 2 º in a positive sense with respect to  . We will also need the
unit tangent vector t along the dislocation line,

t =  =!; ! ² j j: (2.3)

For dislocation points in the x; y-plane, the strength Q (also called topologi-
cal charge) can be de ned (Halperin 1981; Berry 1998) as +1 ( ¡ 1) if À increases
(decreases) by 2 º in a positive circuit with respect to ez ,

Q ² sgn  ez = sgn( ¹ x ² y ¡ ¹ y ² x): (2.4)

(Higher strengths can also occur (Nye & Berry 1974), but this is non-generic.)
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(a) Dislocation densities

The magnitude ! is also the Jacobian determinant transforming ¹ and ² to local
coordinates perpendicular to the dislocation, so the total length of dislocation line in
any volume V is

L(V ) =

Z

V

dr ¯ f¹ (r)g ¯ f² (r)g!(r); (2.5)

where here and hereafter dr = dx dy dz, and we have not written any time depen-
dence explicitly. It follows that the dislocation line density, de ned as the mean
length of dislocation line per unit volume, is

d = h̄ ( ¹ )̄ ( ² )!i = h ¯ ( ¹ ) ¯ ( ² )jr¹ £ r ² ji: (2.6)

In the plane, the mean number of dislocation lines piercing unit area of a plane is
the dislocation point density (cf. Berry 1978),

d2 = h̄ (¹ )̄ (² )j ez ji = h ¯ ( ¹ ) ¯ ( ² )j ¹ x ² y ¡ ¹ y ² xji: (2.7)

Both d and d2 have the dimensions (length)¡2. It will be convenient to de ne
dislocation averages of any quantity f in space or in the plane as

hfi d ²
1

d
h ¯ ( ¹ ) ¯ ( ² )!fi; hfi2;d ²

1

d
h ¯ ( ¹ ) ¯ ( ² )j ¹ x ² y ¡ ¹ y ² xjfi: (2.8)

These select dislocations with weights given by transverse delta-functions, so that
volume integrals give f integrated along the dislocations within the volume, correctly
weighted by arc length.

(b) Core structure

Around a dislocation line, À changes by 2º , but the change is usually non-uniform
(as has been noticed in numerical calculations (Mondragon & Berry 1989)). To under-
stand this core structure, note  rst that, for a dislocation passing through r = 0, the
current and amplitude near the dislocation have the forms

J(r) º  (0) £ r for small r;

» 2(r) ! jr rÁj2 º (r r ¹ (0))2 + (r r ² (0))2 for small r;

)
(2.9)

where r ² jrj. Therefore, the lines of J are circles enclosing the dislocation (hence the
alternative term vortices), and the quadratic form for » 2 implies that the local con-
tours of amplitude are ellipses. These observations are connected with the variation
of phase through (2.1), so

r À (r) º
 (0) £ r

(r r ¹ (0))2 + (r r ² (0))2
for small r: (2.10)

Therefore, the polar plot of
p

jr À j around a circle coaxial with the dislocation is an
ellipse with the same eccentricity as the » contours, namely

" =
p

1 ¡ ¶ ¡=¶ + ; (2.11)
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2062 M. V. Berry and M. R. Dennis

where ¶ § are the eigenvalues of the quadratic form in (2.9). A short calculation gives

¶ § = 1
2

£
(r ¹ )2 + (r ² )2 §

p
[(r ¹ )2 + (r ² )2 ]2 ¡ 4!2

¤
; (2.12)

where all quantities are evaluated on the dislocation. Therefore, the eccentricity is

" =
1p
2!

([(r ¹ )2 + (r ² )2 ]2 ¡ 4!2)1=4

q
(r ¹ )2 + (r ² )2 ¡

p
[(r ¹ )2 + (r ² )2 ]2 ¡ 4!2:

(2.13)

We will calculate the spatial and planar core eccentricity averages

h"i d and h"i2; d : (2.14)

Freund & Freilikher (1997) calculate two quantities describing the dislocation core
structure: the angle between Áx and Áy, and the ratio jÁxj=jÁy j. Neither is invariant
under rotation in the x; y-plane, but taken together they are equivalent to specifying "
and the orientation of the ellipse. In the same paper, a polar plot of jrÀ j is displayed,
corresponding to a curve more complicated than the ellipse generated by

p
jr À j.

(c) Curvature

Dislocation lines are usually curved. The curvature is (Eisenhart 1960; do Carmo
1976)

µ(r) = j(t rt)j: (2.15)

We will calculate the probability distribution of the curvature, which, from (2.3) can
be written, after a short calculation, as

P (µ) = h ¯ (µ ¡ µ(r))i d =
2µ

d

½
¯ ( ¹ ) ¯ ( ² )!¯

»
µ2 ¡ jt £ (t r) j2

!2

¼ ¾
: (2.16)

(d ) Velocity

In waves that are not monochromatic, dislocation lines move. Their transverse
velocity v(r; t) (perpendicular to the dislocation lines) is determined by di¬erentiat-
ing (1.3), to get

v r ¹ = ¡ ¹ t; v r ² = ¡ ² t (2.17)

and then verifying the solution

v(r; t) =
( ¹ tr ² ¡ ² tr ¹ ) £ 

!2
: (2.18)

In three dimensions and in the plane, we will calculate the probability distribution
of v = jvj, that is,

P (v) = h ¯ fv ¡ v(r; t)gi d = 2vh ¯ fv2 ¡ v(r; t)2gi d : (2.19)
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(e) Correlations

Dislocations are not independent random lines in space; their positions are cor-
related. The simplest characterization of the correlations is in the plane, where the
two simplest non-local statistics can be de ned as follows. Let

¹ A ² ¹ (RA); ¹ B ² ¹ (RB); RB ² RA + R: (2.20)

The pair correlation function g(R) is the mean density of dislocations at position
RA + R, given that there is a dislocation at RA, normalized to unity at jRj = 1,
where the dislocations are independent (at least in the statistical model we will use).
Thus (cf. equation (2.7))

g(R) ² h ¯ ( ¹ A) ¯ ( ² A) ¯ ( ¹ B) ¯ ( ² B)j!Ajj!Bji
d2

2

; (2.21)

where now we use the notation

!A = ¹ Ax ² Ay ¡ ¹ Ay ² Ax; !B = ¹ Bx ² By ¡ ¹ By ² Bx; (2.22)

in which the sign of ! is the strength (charge) of the dislocation (cf. equation (2.4)).
The pair correlation satis es g(R) ! 1 as jRj ! 1.

Similarly, the charge correlation function gQ(R) (Halperin 1981) gives the nor-
malized density of dislocations separated by R, but weighted with their strengths so
that opposite dislocations contribute negatively, that is, equation (2.21) without the
modulus signs,

gQ(R) ² h ¯ ( ¹ A) ¯ ( ² A) ¯ ( ¹ B) ¯ ( ² B)!A!Bi
d2

2

: (2.23)

Later we will show that the integral of the charge over all R must compensate the
charge associated with the dislocation at R = 0, that is,

2 º d2

1

0

dR RgQ(R) = ¡ 1 (2.24)

(of course, this implies gQ(R) ! 0 as jRj ! 1). This is a local neutrality condition,
known in the theory of ionic liquids as the  rst Stillinger{Lovett sum rule (Stillinger
& Lovett 1968a,b). For dislocations, it is the `critical-point screening’ discussed by
Freund & Wilkinson (1998). Comparison of !A and !B for small R shows that, at
the origin, gQ and g are related by

g(0) = ¡ gQ(0): (2.25)

Two other correlation statistics, de ned by analogy with useful quantities in the
theory of ionic liquids (Hansen & McDonald 1986), are the pair correlations between
dislocations of the same strength, g + + (R), and with opposite strengths, g + ¡(R). In
terms of g(R) and gQ(R),

g + + (R) = g(R) + gQ(R); g + ¡ (R) = g(R) ¡ gQ(R): (2.26)
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3. Gaussian random waves

We consider an ensemble of superpositions of in nitely many scalar complex non-
dispersive plane waves with speed c,

Á(r; t) =
X

k

ak expfi[k r ¡ ckt ¡ ¿ k ]g; (3.1)

with wavevectors

k = fkx; ky ; kzg; k ² jkj: (3.2)

For waves in the plane, r and k are replaced by R and K = fKx; Kyg, with
K = jK j. Except where otherwise stated, the following holds equally for k and K .

The real amplitudes ak are  xed, and specify the spectrum of the waves as will be
explained soon. The ¿ k are random phases parametrizing the ensemble. Ensemble
averages are averages over 0 6¿ k 62 º for all k, but the functions Á are ergodic, so
ensemble averages are equal to spatial or planar averages.

If the k are suitably dense, any linear combination of the real and imaginary
parts (1.2) of (3.1) and their r and t derivatives are stationary Gaussian random
functions (Goodman 1985; Rice 1944, 1945 (reprinted in Wax 1954)), whose central
properties will now be stated for future reference. Consider any set of N functions

u(r; t) = fu1(r; t) : : : uN (r; t)g; (3.3)

in which each un is ¹ or ² or any of their derivatives, and any set of auxiliary variables

b = fb1 : : : bN g: (3.4)

Then

hexpfib u(r; t)gi = expf¡ 1
2 h(b u)2ig = expf¡ 1

2
b M bg; (3.5)

where M is the matrix of correlations

(M)mn = humuni: (3.6)

Using (2.5), the probability density of u(r; t) can easily be found,

P (u) ² h ¯ fu ¡ u(r; t)gi

=
1

(2 º )N

Z
db expf¡ ib ughexpfib u(r; t)gi

=
expf¡ 1

2
u M¡1 ug

(2 º )N=2
p

det M
: (3.7)

Before using P (u) to calculate the geometrical averages of x 2, it is necessary to
determine the correlations M (equation (3.6)), involving averages of products of pairs
of un. Explicit averaging over ¿ k in (3.1) shows that all such quadratic averages are
of the form

hf(k)i =
1

2

X

k

a2
k f(k): (3.8)
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Now we make the central speci cation that the randomness of the waves we are
considering is isotropic, so that ak depends only on the length k, and de ne the
radial power spectrum ¦ by

1

2

X

k

a2
kf(k) ²

Z
dk

¦ (k)

4º k2
f(k) (three dimensions);

1

2

X

K

a2
K f(K) ²

Z
dK

¦ 2(K)

2 º K
f(K) (two dimensions):

9
>>>=

>>>;
(3.9)

For plane sections of waves in three dimensions, ¦ and ¦ 2 are related by projection
in wavevector space,

¦ 2(K) = 2 º K

Z 1

¡ 1
dkz

¦ (
p

k2
z + K2)

4 º (k2
z + K2)

= K

Z 1

K

dk
¦ (k)

k
p

k2 ¡ K2
: (3.10)

Multiplication of ¦ by a constant corresponds to rescaling the strength of the wave
Á and leaves all dislocation averages una¬ected. It is convenient to normalize ¦ to
unity, that is,

Z 1

0

dk ¦ (k) = 1;

Z 1

0

dK ¦ 2(K) = 1; (3.11)

so that the fundamental averages are

h ¹ 2i = h ² 2i = 1: (3.12)

For radial averages and radial moments, it will be convenient to use the notation
Z 1

0

dk f(k) ¦ (k) ² hhfii; hhkmii ² km; (3.13)

and similarly in the plane, indicated by the subscript 2 and with K replacing k.
The quadratic averages needed to calculate the dislocation statistics of x 2 are of

two sorts. First, with ¬ denoting x, y or z, there are products of u ¬ at the same
position and time; of these, the only non-zero products are

h ¹ 2
¬ i = h ² 2

¬ i = ¡ h ¹ ¹ ¬ ¬ i = ¡ h ² ² ¬ ¬ i = 1
3
k2;

h ¹ 2
¬ i2 = h ² 2

¬ i2 = 1
2
K2;

h ¹ 2
¬ ¬ i = h ² 2

¬ ¬ i = 1
5
k4;

h ¹ 2
¬  i = h ² 2

¬  i = h ¹ ¬ ¬ ¹   i = h ² ¬ ¬ ²   i = 1
15

k4 ( ¬ 6=  );

h ¹ 2
t i = h ² 2

t i = c2k2;

h ¹ ² ti = ¡ h ² ¹ ti = ck1:

9
>>>>>>>>>=

>>>>>>>>>;

(3.14)

Second, there are products involving di¬erent positions. These occur in the planar
correlation statistics (2.21) and (2.23). The fundamental averages of this non-local
type are (cf. equation (2.20))

C(R) ² h ¹ A ¹ Bi = h ² A ² Bi = hhJ0(KR)ii2 =

½ ½
sin(kR)

kR

¾ ¾
; (3.15)
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de ning the autocorrelation function C(R), and where the last equality applies to
plane sections of waves propagating in space. To write the remaining non-zero non-
local averages, we can choose the x-axis to lie along the direction of the vector
R = RB ¡ RA. Then

h¹ A ¹ Bxi = h ² A ² Bxi = ¡ h ¹ Ax ¹ Bi
= ¡ h ² Ax ² Bi = ¡ hhKJ1(KR)ii2 ² C 0(R);

h ¹ Ax ¹ Bxi = h ² Ax ² Bxi = ¡ hhK2J 00
0 (KR)ii2 = ¡ C 00(R);

h ¹ Ay ¹ Byi = h ² Ax ² Byi =
1

R
hhKJ1(KR)ii2 = ¡ C 0(R)

R
:

(3.16)

All other relevant averages, local and non-local, are zero. Note, in particular, that
all averages involving both ¹ and ² vanish, except h ¹ ² ti = ¡ h ² ¹ ti.

Our calculations will be for general radial power spectra ¦ . However, the following
are important special cases. For monochromatic waves propagating in space and in
the plane, the respective spectra are densities on a spherical shell in k space and on
a ring in K space:

¦ (k) = ¯ (k ¡ k0); ¦ 2(K) = ¯ (K ¡ K0): (3.17)

For plane sections of monochromatic waves in space, we have, from (3.10), the pro-
jection of the sphere spectrum

¦ 2(K) =
K£ (k0 ¡ K)

k0 k2
0 ¡ K2

; (3.18)

where £ denotes the unit step. For black-body radiation with temperature T , and
thermal wavenumber de ned by

kT ²
kBT

~c
; (3.19)

where kB is Boltzmann’s constant, the radial (Planck) spectrum is

¦ (k) =
15k3

º 4k4
T [exp(k=kT ) ¡ 1]

: (3.20)

4. Calculation of averages for general spectra

In calculating averages, we make use of the joint probability density of the magnitude
of vorticity ! and the gauge-invariant quantity

G ² jrÁj2 = (r ¹ )2 + (r ² )2: (4.1)

As shown in Appendix A, the three-dimensional distribution is

P (!; G) =
27!

2k3
2

exp ¡ 3G

2k2

£ (G ¡ 2!); (4.2)

and, in the plane,

P2(!; G) =
2

K2
2

exp ¡
G

K2
£ (G ¡ 2!): (4.3)
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(a) Dislocation densities

For the line density (2.6), we note that all quantities in the average are indepen-
dent, so

d =
1

2 º

Z 1

0

dG

Z 1

0

d! !P (!; G): (4.4)

With (4.2), the integral is elementary, and gives

d = k2=3 º : (4.5)

For the point density (2.7), a similar argument based on (4.3) gives

d2 = K2=4 º : (4.6)

If Á in the plane is a section of a wave in space, equation (3.10) applies, and gives

K2 = 2
3
k2; (4.7)

whence

d2 = 1
2
d: (4.8)

In this result, the 1
2

is the spherical average of the factor j cos ³ j relating contributions
to d and d2 from lines making angles ³ with the normals to the faces of a unit cube.

(b) Dislocation core structure

For the core eccentricity, we require the averages (2.14), involving !2 and G. In
three dimensions, using (2.13), (4.2) and (4.5), and rescaling G,

h"i d =
81

4
p

2

Z 1

0

dG

Z G=2

0

d! ! expf¡ 3
2
Gg(G2 ¡ 4!2)1=4

q
G ¡

p
G2 ¡ 4!2: (4.9)

With the substitution ! = 1
2
uG, the G integral is trivial, and the u integral can also

be evaluated, leading to

h"i d =
3 º

8
p

2
= 0:8330: (4.10)

In the plane, analogous calculations give

h"i2;d = 2
p

2

Z 1

0

dG

Z G=2

0

d! expf¡ Gg(G2 ¡ 4!2)1=4

q
G ¡

p
G2 ¡ 4!2; (4.11)

leading to

h"i2;d =
3p
2

sinh¡1 1 ¡ 1 = 0:8697: (4.12)

These eccentricities are rather large ( gure 1), showing that the typical phase struc-
ture is strongly anisotropic. Note that the eccentricities are independent of the spec-
tra ¦ and ¦ 2; they are universal numbers characterizing the dislocation cores of
isotropic random waves in space and the plane. It is not surprising that the pla-
nar eccentricity is greater than for three dimensions, where the amplitude contours
are elliptic cylinders surrounding the dislocations, because plane sections slice these
cylinders obliquely.
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(a)

(b)

Figure 1. Ellipses representing anisotropy of phase structure near dislocation cores.
(a) Transverse to dislocations in space. (b) In the plane.

(c) Dislocation curvature

For the curvature (2.16), calculations are greatly simpli ed by evaluating the
derivatives of  in local coordinates whose z-axis is along  . Then

µ(r)2 =
(@z « x)2 + (@z « y)2

!2

=
1

!2
( ¹ 2

zz(r ² )2 + ² 2
zz(r ¹ )2 ¡ 2¹ zz ² zzr ¹ r ² ): (4.13)

The only non-diagonal correlation matrix (cf. equations (3.3) and (3.6)) is

M =
±

1 ¡ 1
3
k2

¡ 1
3
k2

1
5
k4

²
for u = f¹ ; ¹ zzg; (4.14)

whence

P ( ¹ = 0; ¹ zz) =
1

2º µc

p
k2

exp

»
¡ ¹ 2

zz

2µ2
ck2

¼
; (4.15)

where µc is the characteristic curvature

µc ²

s
9k4 ¡ 5k2

2

45k2
: (4.16)
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From (2.16), we need to calculate the dislocation average

P (µ) =
µ

º

Z 1

¡ 1
dq expf¡ iqµ2ghexpfiqµ(r)2gi d ; (4.17)

where µ2 is given by (4.13). The averages over ¹ zz and ² zz now involve a two-
dimensional complex Gaussian integral. In evaluating this, and also the trivial aver-
ages over ¹ and ² , it is convenient to transform to the scaled curvature

µs c ² µ

µc

; P (µ) =
1

µc

P (µs c); (4.18)

and also to rescale ! and G. Then we  nd, after substituting for d from (4.5),

P (µs c) =
3µ s c

2 º

Z 1

¡ 1
dq expf¡ iqµ2

s cg
½

!p
D(!; G; q)

¾
; (4.19)

where D, the determinant from the Gaussian integration, is

D(!; G; q) = 1 ¡ 2i
qG

!2
¡ 4

q2

!2
: (4.20)

Some non-obvious manipulations are required to apply (4.2) to the evaluation of the
triple integral in (4.19) (over q, ! and G). These are explained in Appendix B.

The result is

P (µ s c) =
35=2µs c

(µ2
s c + 3)5=2

: (4.21)

All moments diverge except the  rst two, which are

hµi d =
p

3µc; hµ2i d = 6µ2
c : (4.22)

(d ) Dislocation speed

We use (2.18) and (2.19); the squared speed is

v(r; t)2 =
1

!2
[ ¹ 2

t (r ² )2 + ² 2
t (r ¹ )2 ¡ 2¹ t ² tr ¹ r ² ]: (4.23)

The only non-diagonal correlation matrices are

M§ =

³
1 §ck1

§ck1 c2k2

´
for u + = f¹ ; ² tg; u¡ = f² ; ¹ tg; (4.24)

whence

P ( ¹ = 0; ² t) =
1

2 º vc

p
k2

exp

»
¡ ² 2

2

2v2
c k2

¼
(4.25)

(and similarly for ² , ¹ t), where vc is the characteristic speed

vc ² c
q

(1 ¡ k2
1=k2): (4.26)
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This is for three dimensions; for waves propagating in the plane, k1 and k2 must be
replaced by K1 and K2, and we denote the characteristic speed by vc2.

The complete formal similarity between (4.23), (4.25) and (4.13){(4.15) in the
curvature calculation means that the speed distribution in three dimensions can be
written by analogy with (4.21), after rescaling to the dimensionless speed

v s c ² v

vc

; P (v) =
1

vc

P (v s c): (4.27)

The distribution is

P (v s c) =
35=2v s c

(v2
s c + 3)5=2

: (4.28)

All moments diverge except the  rst two, which are

hvi d =
p

3vc; hv2i d = 6v2
c : (4.29)

In the plane, the analogous result, obtained with the aid of (4.3) rather than (4.2),
is

P2(v s c) =
4v s c

(v2
s c + 2)2

: (4.30)

Only the  rst moment does not diverge,

hvi d ;2 =
ºp
2

vc2: (4.31)

As written, equations (4.30) and (4.31) apply to waves propagating in the plane.
For plane sections of waves propagating in space, vc2 must be replaced by the three-
dimensional vc of (4.26) (because, for such sections, ! = ck, not cK).

It is important to note that the speeds v in the spatial and planar distribu-
tions (4.28) and (4.30) can take any value from zero to in nity: v is not limited
by the common speed c of the dispersionless waves in the superposition (3.1). This
is not a violation of relativity, because dislocations are forms rather than things (like
searchlight beams and intersections of scissor blades): no energy moves with them
(because they are zeros) and they cannot be used to transmit information. In fact,
it is possible to construct simple exact solutions of the dispersionless wave equation
possessing single dislocations moving with arbitrary speed (Nye & Berry 1974).

(e) Dislocation correlations

For the pair correlation (2.21), we eliminate the modulus signs using the identity

j!j =
1

º

Z 1

¡ 1

dt

t2
(1 ¡ cos(!t)): (4.32)

Thus (2.21) becomes

g(R) =
1

d2
2 º 2

Z 1

¡ 1

dtA

t2
A

Z 1

¡ 1

dtB

t2
B

[T (0; 0) ¡ T (tA; 0) ¡ T (tB; 0)

+ 1
2
(T (tA; tB) + T (tA; ¡ tB))]; (4.33)
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where

T (tA; tB) = h ¯ ( ¹ A) ¯ ( ² A) ¯ ( ¹ B) ¯ ( ² B) expfi(!AtA ¡ !BtB)gi: (4.34)

The merit of this substitution is that since the ! depend quadratically on ¹ and ² ,
the average in (4.34) will involve only a Gaussian integral.

There are two non-diagonal correlation matrices, since, from (3.16), the two vectors

u1 = f¹ A; ¹ B; ¹ Ax; ¹ Bxg; u2 = f¹ Ay ; ¹ Byg (4.35)

are independent (and similarly for correlations involving ² ). With the notations

C ² C(R);

E ² C 0(R);

H ² ¡ C 0(R)=R;

F ² ¡ C 00(R);

F0 ² ¡ C 00(0) = 1
2
K2;

(4.36)

the matrices corresponding to u1 and u2 are

M1 =

1 C 0 E
C 1 ¡ E 0
0 ¡ E F0 F
E 0 F F0

; M2 =
F0 H
H F0

: (4.37)

We need

det M1 ² D1 = [E2 ¡ (1 + C)(F0 ¡ F )][E2 ¡ (1 ¡ C)(F0 + F )];

det M2 ² D2 = F 2
0 ¡ H2:

(4.38)

Then the relevant probability densities are

P ( ¹ A = 0; ¹ B = 0; ¹ Ax; ¹ Bx) =
expf¡ 1

2
u0

1 N1 u0
1g

(2 º )2D1
;

P ( ¹ Ay ; ¹ By) =
expf¡ 1

2
u2 N2 u2g

(2 º )2D2
;

(4.39)

where

u0
1 ² f¹ Ax; ¹ Bxg;

N1 =
1

D1

¡ [E2 ¡ F0(1 ¡ C2)] cE2 ¡ F (1 ¡ C2)
cE2 ¡ F (1 ¡ C2) ¡ [E2 ¡ F0(1 ¡ C2)]

;

N2 =
1

D2

F0 ¡ H
¡ H F0

;

(4.40)

and similarly for ² .
The average (4.35) is now an eight-dimensional complex Gaussian integral whose

evaluation gives

T (tA; tB) =
1

(2 º )2D(tA; tB)
; (4.41)
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where

D(tA; tB) = (1 ¡ C2)2 + (t2
A + t2

B)F0(E2 ¡ F0(1 ¡ C2))

¡ tAtBH(CE2 ¡ F (1 ¡ C2)) + t2
At2

BD1D2: (4.42)

Now, after scaling tA and tB, the pair correlation (4.33) becomes

g(R) =
F0(E2 ¡ F0(1 ¡ C2))

4 º 4d2
2(1 ¡ C2)2

Z 1

¡ 1

dtA

t2
A

Z 1

¡ 1

dtB

t2
B

I(tA; tB; Y; Z); (4.43)

where

Y ² H2(CE2 ¡ F (1 ¡ C2))2

F 2
0 (E2 ¡ F0(1 ¡ C2))2

; Z ² D1D2(1 ¡ C2)

F 2
0 (E2 ¡ F0(1 ¡ C2))2

(4.44)

and

I(tA; tB; Y; Z) = 1 ¡ 1

1 + t2
A

¡ 1

1 + t2
B

+
1 + t2

A + t2
B + Zt2

At2
B

(1 + t2
A

+ t2
B

+ Zt2
At2

B)2 ¡ 4Y t2
At2

B

: (4.45)

Because I is a rational function, the tA integral can be evaluated by residues,
leaving, after integrating by parts over tB and substituting for d2 from (4.6), the pair
correlation

g(R) =
2(E2 ¡ F0(1 ¡ C2))

º F0(1 ¡ C2)2

Z 1

0

dt
3 ¡ Z + 2Y + (3 + Z ¡ 2Y )t2 + 2Zt4

(1 + t2)3
p

1 + (1 + Z ¡ Y )t2 + Zt4
: (4.46)

It is possible to express this as an explicit, but very complicated, combination of
elliptic integrals, that we do not write. In any case, the integral converges very well
and is easy to evaluate numerically.

For the charge correlation (2.23), the absence of modulus signs makes the eval-
uation much easier, since the average can be expressed as derivatives of Gaussian
integrals involving the probability densities (4.39). The result, expressed using the
notation (4.36), is

gQ(R) =
2E(CE2 ¡ F (1 ¡ C2))

RF 2
0 (1 ¡ C2)2

=
1

F 2
0 R

@R

³
E2(R)

1 ¡ C2(R)

´
: (4.47)

The  rst equality is a special case of a formula previously obtained by Halperin
(1981). The second equality, together with E(0) = 0, leads immediately to the screen-
ing relation (2.24).

We can get further insight into critical-point screening by considering the charge
Q(N) associated with the dislocations within an area A = N=d2, where the mean
number of dislocations is N (N ¾ 1). Obviously, the average charge hQ(N )i is zero.
But what about the mean square ®uctuation hQ2(N )i? If the charges merely have
average neutrality, there are no long-range correlations, and we expect hQ2(N )i ¹ N .
An exact calculation (with the boundary of A Gauss-smoothed to eliminate trivial
edge e¬ects) gives (for all N)

hQ2(N)i = 1
2
N

±
1 + 2 º d2

Z 1

0

dR RgQ(R) exp

»
º R2

2A

¼ ²

= 1
2
N

±
1 + 2 º d2

Z 1

0

dR RgQ(R)

²
+ 1

2
d2

2 º 2

Z 1

0

dR R3gQ(R) + O(N ¡1):

(4.48)
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Without critical-point screening, the leading term is the  rst one, and the ®uctuations
are those of a random distribution with overall neutrality. But for dislocations, there
is screening, and the  rst term vanishes, leaving ®uctuations that are independent of
N for large N . Further manipulation gives

hQ2(A)i =
1

8

Z 1

0

dR R2@R

µ
C 0(R)2

1 ¡ C2(R)

¶
+ O(N ¡1): (4.49)

5. Monochromatic waves

For monochromatic waves in space with wavenumber k0 = 2 º =¶ , the spectrum
is (3.17), and so the dislocation line density (4.5) is

d =
k2

0

3 º
: (5.1)

For a plane section of the same wave, the density (4.6) of dislocation points is

d2 =
k2

0

6 º
=

2 º

3¶ 2
: (5.2)

A measure of the spacing of these points is

1p
d2

= 0:691 ¶ : (5.3)

The characteristic curvature (4.16) is µc = 2k0=
p

45, so the curvature averages
(4.22) are

hµ2i d = 2hµi2
d = 8

15
k2

0 : (5.4)

A measure of the radius of curvature is

1=
p

hµ2i = 0:218 ¶ ; (5.5)

indicating that dislocations are rather sharply curved on the wavelength scale.
For the pair and charge correlation statistics g(R) and gQ(R), we need the auto-

correlation function (3.15),

C(R) =
sin(k0R)

k0R
: (5.6)

Figure 2 shows g(R) and gQ(R), calculated from (4.46) and (4.47). At the origin,
g(0) = ¡ gQ(0) = 2

5
, showing modest repulsion between dislocations.

For monochromatic waves in the plane, with wavenumber K0 = 2 º =¤ with ring
spectrum (3.17), the density of dislocation points is

d2 =
K2

0

4 º
=

º

¤ 2
: (5.7)

A measure of the spacing of these points is

1=
p

d2 = 0:564 ¤ : (5.8)
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Figure 2. Correlation statistics for a plane section of monochromatic waves in space, in units
of k0 . Thick line: pair correlation g(R). Dashed line: asymptotic value g = 1. Thin line: charge
correlation gQ (R).

The autocorrelation function (3.15) is

C(R) = J0(K0R); (5.9)

from which the pair and charge correlations can be calculated ( gure 3). At the
origin, g(0) = ¡ gQ(0) = 1=4, indicating a stronger repulsion between dislocations.
Note that, except very close to the origin, there is no obvious relation between
g and gQ. Now, the strength Q (equation (2.4)) alternates between neighbouring
dislocations on the net formed by the intersections of zero lines of ¹ and ² ; this is the
`sign principle’ (Freund & Shvartsman 1994). Thus one might expect that alternate
maxima of g (`rings’ of dislocations) would correspond to maxima and minima of gQ

(representing oppositely charged rings of dislocations). But the topological relation
seems not to have a metrical counterpart. We have checked this by calculating g
and gQ for a `blurred’ square lattice, of alternating dislocations whose vertices are
randomly displaced according to a Gaussian distribution; if the blurring becomes
comparable with the lattice spacing, there is again no relation between g and gQ.
The only vestige of the sign principle in the charge correlations (Shvartsman &
Freund 1994) seems to be the fact that gQ(0) is negative (cf. equation (2.25)).

Of course, for monochromatic waves the dislocations do not move.

6. Black-body radiation

With the spectrum (3.20), involving the thermal wavenumber (3.19), the wavenumber
moments (3.13) are

kn =
15

º 4
kn

T (n + 3)! ± (n + 4);

k1 = 3:832kT ;

k2 = 40
21

º 2k2
T ;

k4 = 8 º 4k4
T ;

9
>>>>>=
>>>>>;

(6.1)
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Figure 3. Correlation statistics for monochromatic waves in the plane, in units of K0 . Thick line:
pair correlation g(R). Dashed line: asymptotic value g = 1. Thin line: charge correlation gQ (R).

so the dislocation line density (4.5) is

d = 40
63

º k2
T : (6.2)

For a plane section of the same wave, the density (4.6) of dislocation points is

d2 = 20
63

º k2
T =

80 º 3

63 ¶ 2
T

; (6.3)

where ¶ T = 2 º =kT is the thermal wavelength. A measure of the spacing of these
points is

1=
p

d2 = 0:159 ¶ T : (6.4)

This seems rather small, but it should be noted that ¶ T does not correspond to the
maximum of the Planck k-distribution (3.20); this lies at k = 2:831kT , corresponding
to a wavelength 0:354 ¶ T .

The curvature statistics (4.22) are

hµ2i d = 2hµi2
d = 5938

1575
k2

T : (6.5)

A measure of the radius of curvature is

1=
p

hµ2i = 0:026 ¶ T ; (6.6)

indicating that (even though ¶ T is not the maximum of the Planck distribution)
dislocations are even more sharply curved than in the monochromatic case (5.5),
showing the e¬ect of large wavenumbers in the Planck distribution.

For the characteristic speed (4.26), equations (6.1) give vc = 0:468c, whence the
moments (4.29) of the transverse speed are

p
hv2

d i =
p

2hvi d = 1:146c: (6.7)
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Figure 4. Correlation statistics for a plane section of black-body radiation, in units of the thermal
wavenumber kT . Thick line: pair correlation g(R). Dashed line: asymptotic value g = 1. Thin
line: charge correlation gQ (R).

For the pair and charge correlation statistics g(R) and gQ(R), we need the autocor-
relation function (3.15). This can be calculated as

C(R) =
30

º 4

1X

n= 1

3n2 ¡ (kT R)2

[n2 + (kT R)2 ]3

=
30

º 4

µ
1

(kT R)2
¡ º 2 kT R cosh(kT R)

sinh2(kT R)

¶
: (6.8)

Figure 4 shows g(R) and gQ(R), calculated from (4.46) and (4.47). At the origin,
g(0) = ¡ gQ(0) = 3=2, showing considerable clustering (anti-repulsion) between dis-
locations, notwithstanding the topological sign repulsion.

7. Concluding remarks

We have calculated some statistics that describe the geometry of dislocation lines
in complex scalar Gaussian random waves in two and three dimensions. In this,
the wave equation played only a minor role|restricting the time dependence of the
plane-wave constituents, and so a¬ecting the calculations of speed. Apart from this,
the results apply to any complex scalar random functions, not just the waves that
are our main interest.

The geometry thus revealed is extraordinarily complicated and occasionally coun-
terintuitive: dislocations sharply curved on the wavelength scale, moving faster than
light, and with positions correlated in ways apparently unrelated to the topological
alternation of sign. Nevertheless, much remains to be understood, both mathemati-
cally and physically.

For local statistics, a fully three-dimensional characterization requires understand-
ing of the torsion as well as the curvature. Preliminary investigation suggests that the
mean-square torsion diverges and the distribution of torsion has a long tail, indicat-
ing that dislocations are typically locally helical rather than ®at rings. For non-local
statistics, the correlations g and gQ are just the start of an in nite hierarchy of N -
dislocation correlations, and there are also position correlations between the speeds
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of dislocations. More interesting are global, that is, topological, statistics. We can
ask: are dislocation lines typically closed in space? Can they be knotted? If knotted,
what is the distribution of knot invariants (Adams 1994)? Since (as it is easy to show
by example) pairs of dislocations can be linked, what is the distribution of linking
numbers? If higher-order links are possible (e.g. Borromean triples (Cromwell et al .
1998)), what is the distribution of numbers characterizing such links?

Finally, we mention the application to black-body radiation. Given the importance
of black-body radiation in physics, it is a little surprising that its detailed geometric
structure has not been fully understood. Here we have made some progress, but as
a physical model, the scalar-wave approximation is inadequate. Better would be an
understanding of the singularities of the electromagnetic  eld of black-body radia-
tion, but it is not clear what the relevant singularities are|the vector singularities
studied so far (Nye 1983a,b, 1999; Nye & Hajnal 1987) are restricted either to paraxial
or monochromatic waves, and so are inapplicable here. We are studying this question
now.

We are grateful to Dr John Hannay for many helpful suggestions and to Professor Isaac Freund
for a useful correspondence. M.V.B.’s research is supported by The Royal Society; in addition, he
thanks the Lorentz Institute of the University of Leiden for generous hospitality while writing the
¯rst draft of this paper. M.R.D. is supported by a University of Bristol postgraduate scholarship.

Appendix A. Joint probability distribution of ! and G

De ning the 3-vectors a = r ¹ , b = r ² and a = jaj, b = jbj, we have, from (2.2),
(2.3) and (4.1),

P (!; G) = h ¯ (! ¡ ja £ bj) ¯ (G ¡ a2 ¡ b2)i: (A 1)

All components of a and b are independent, so the matrix of correlations is diagonal
and, using (3.14) and polar coordinates for a and b, with the z-axis for b along a,

P (!; G) =
27

º k3
2

Z 1

0

da a2

Z 1

0

db b2

Z º

0

d ³ sin ³

£ exp

»
¡

3(a2 + b2)

2k2

¼
¯ (! ¡ ab sin ³ ) ¯ (G ¡ a2 ¡ b2): (A 2)

With the successive changes of variable

a = » cos ¿ ; b = » sin ¿ ; ¿ = 1
2
® ; sin ³ sin ® = s; sin ® = t; (A 3)

evaluation is straightforward though tedious, and gives (4.2).
The planar calculation, in which a and b are 2-vectors, proceeds similarly, and

gives (4.3).

Appendix B. Curvature and speed integrals

We outline the calculation for curvature in three dimensions; for speed in three
dimensions, the calculation is identical, and for speed in the plane the arguments are
very similar. With (4.2), equation (4.19) becomes

P (µs c) =
81µs c

4 º

Z 1

¡ 1
dq expf¡ iqµ2

s cg
Z 1

0

dG expf¡ 3
2
Gg

Z G=2

0

d!
!2

p
D(!; G; q)

:

(B 1)
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Changing to variables

! = 1
2
G· ; q = G» (B 2)

eliminates G from D and enables the G integral to be evaluated, to give

P (µs c) =
243µ s c

4 º

Z 1

0

d · · 3

Z 1

¡ 1
d »

1p
· 2 ¡ 8i » ¡ 16 » 2( 3

2
+ i » µ2

s c)
5

: (B 3)

The » integrand contains a pole and two branch points, which can be connected
by a cut. The contour can be deformed around the cut without passing through the
pole, and then the further transformations

» = 1
4
i(v ¡ 1); · =

p
u (B 4)

lead to

P (µs c) =
15 552µ s c

º

Z 1

0

du u

Z 1

¡1

dv
1p

1 ¡ v2(6 + µ2
s c ¡ µ2

s cv
p

1 ¡ u)5
: (B 5)

Use of
Z 1

¡1

dvp
1 ¡ v2(a + v)5

=
º (3 + 24a2 + 8a4)

8(a2 ¡ 1)9=2
(B 6)

leads to a u integral that is elementary, leading eventually to (4.21).
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Corrigendum 1. Equation (4.48) and the material to the end of x 3 should be
replaced by

hQ2(N )i = 1
2
N 1 + 2 º d2

1

0

dR RgQ(R) exp ¡ º R2

2A

=
1

4

1

0

dR R
C 0(R)2

(1 ¡ C(R)2)
exp ¡ º R2

2A
; (4.48)

where in deriving the second equality we have used equation (4.47) and the critical-
point screening relation (2.24) that follows from it. The  rst equality shows that
without critical-point screening, the leading term for large N would be 1

2
N , and the

®uctuations would be those of a random distribution with overall neutrality. But for
dislocations there is screening, and

hQ2(N )i =
1

4

1

0

dR R
C 0(R)2

1 ¡ C2(R)
+ O(N ¡1); (4.49)

provided the integral converges, leaving ®uctuations that are independent of N for
large N . However, for the sharp spectra representing monochromatic waves in space
((3.17) and (5.6) later), and in the plane ((3.18) and (5.9) later), the integral does
not converge. Then we can show from (4.48) that hQ2(N)i ¹ log N for waves in
space, and hQ2(N )i ¹

p
N for waves in the plane.

Corrigendum 2. Equation (6.8) should be replaced by

C(R) =
30

º 4

1

n= 1

3n2 ¡ (kT R)2

[n2 + (kT R)2 ]3

=
15

( º kT R)4
1 ¡ ( º kT R)3 cosh( º kT R)

sinh3( º kT R)
: (6.8)
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