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Abstract. Various experiments have outlined generic properties of the subcritical transition to turbulence
in plane Couette flow. A low order model of a self-sustaining process has been derived by Waleffe [11]
from the Navier-Stokes equations for a sinusoidal shear flow. This paper investigates the weakly non-linear
properties and the phase space analysis of this model, including the dependence on the model parameters.
It is shown that the asymptotic dynamics essentially reduces to a bidimensional manifold, that many
trajectories exhibit long transients, and that a statistical description of the nonlinear response to finite
amplitude perturbations is needed in order to recover the bifurcation diagram from an experimental point
of view. Comparison with recent experimental results obtained in the plane Couette flow finally outlines
the relevance of this kind of approach.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 47.20.Ft Instability of shear flows
– 47.20.Ky Non linearity (including bifurcation theory)

1 Introduction

For the past few years a number of experimental and nu-
merical studies have lead to the formulation of several
characteristic features of the transition to turbulence in
plane Couette flow; the flow driven by two walls moving
in opposite direction at the same speed, a prototype flow
for the subcritical transition to turbulence.

(1) Subcriticality: Whereas the laminar velocity pro-
file is stable to infinitesimal perturbations for all Reynolds
number, finite amplitude perturbations may trigger an
abrupt transition for R > Rg, leading to the observation
of a sustained disordered flow [2].

(2) Spatio-temporal intermittency: This disordered
flow is made of turbulent domains, which move, grow,
decay, split and merge leading to spatio-temporal inter-
mittency, that is a coexistence dynamics in which ac-
tive/turbulent regions may invade absorbing/laminar ones
where turbulence cannot emerge spontaneously [3].

(3) Meta-stability: There exists a range of Reynolds
number Ru < R < Rg for which the spatio-temporal
intermittent regime is sustained for long times but not
asymptotically, whatever the perturbation [4].

(4) Transients: When the perturbation does not lead
to the sustained spatio-temporally intermittent regime,
it may either relax rapidly or exhibit long-lived tran-
sients [5]. These transients occur for Ru < R < Rg, but
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also for R > Rg, when the perturbation is not strong
enough.

(5) Strong dependence on the perturbation: The sys-
tem response to the finite amplitude triggering can be very
dispersed. For a given Reynolds number and almost iden-
tical disturbances, the flow may either relax to the laminar
flow rapidly or transiently, or become a sustained disor-
dered flow [5].

(6) Unstable states: Various unstable finite amplitude
solutions made of streamwise vortices and streaks coexist
for a transitional Reynolds number. The turbulent state
is reminiscent of these states [6–9].

Various dynamical models have attempted to render
these essential behaviors. A first set of models (see [10]
for a review) dealt with the existence of transient growths
and their role in the transitional process. These mod-
els have been shown to violate basic nonlinear proper-
ties of the Navier-Stokes operator [11], and consequently
to be useless for predicting global features. On the basis
of a full phase space analysis of a very much simplified
model that mimics Navier-Stokes equations, Dauchot and
Manneville [12] have stressed the importance of consider-
ing global dynamical properties when looking for actual
stability boundaries. On the other hand their model is
obviously not realistic enough to describe features such
as those listed above. More realistic is Schmiegel and
Eckhardt’s model [13], a 19 dimensional Galerkin approx-
imation to a parallel shear flow, stable for all Reynolds
number. This model successfully describes the existence
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Fig. 1. Schematic drawing of the main shear (M), the stream-
wise vortices (V), the streaks (U) and their streamwise oscilla-
tions (W) involved in the sustained turbulent process.

of additional unstable states as well as long lived tran-
sients together with their lifetime dispersion. On the other
hand it is already too complex to allow a full phase space
description and/or to give a precise physical meaning to
each mode. Waleffe [1] has derived from the Navier-stokes
equation a four dimensional model of the self-sustained
turbulence mechanism proposed by Hamilton Kim and
Waleffe [14]. This derivation implies such a severe trun-
cation that the adequacy of the model with real hydrody-
namics is not guaranteed.

In this paper, we take advantage of the low dimension-
ality of Waleffe’s model to perform its full phase space
analysis, in order to evaluate to what extent a statistical
analysis of the asymptotic dynamics describes the tempo-
ral nonlinear response of the plane Couette flow to finite
amplitude disturbances.

2 The model

Hamilton et al.’s approach was to extract the mechanisms
that maintain turbulence. Guided by a large amount of
previous work, (see [14] for a review) they identified a self-
sustaining process. First, weak streamwise rolls, (V), redis-
tribute the streamwise momentum of the main flow, (M),
and create large spanwise fluctuations in the streamwise
velocity, the so-called streaks, (U). Spanwise inflections
then drive an instability in which a three-dimensional dis-
turbance develops, (W). Through nonlinear coupling this
re-energizes the initial streamwise rolls. The four dimen-
sional model of this process, derived by Waleffe, reads:

dM
dt

+
κ2
m

R
M = σmW

2 − σuUV +
κ2
m

R
,

dU
dt

+
κ2
u

R
U = −σwW 2 + σuMV,

dV
dt

+
κ2
v

R
V = σvW

2,

dW
dt

+
κ2
w

R
W = σwUW − σmMW − σvVW.

In these equations, M , U , V and W must be understood
to be the amplitude of Galerkin modes with specific spa-
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Fig. 2. Bifurcation diagram for α = 1.303 and γ = 2.280. Grey
lines are unstable states and dark lines are stable states. The
limit cycle shown as a dotted line has not been computed and
is plotted for the purpose of the illustration only.

tial structures. More specifically, M is the amplitude of
the mean flow, U corresponds to the streaks, V to the
streamwise rolls and W gathers several contributions to
the instability modes of the streaks. The coefficients de-
pend on (α, β, γ) [1], where γ is the wave number of the
streamwise rolls in the spanwise direction, α is the wave
number of the streak instability mode in the streamwise
direction and β = π/2 is constant. (α, β, γ) verify condi-
tion (1): γ2 > α2 + β2.

Waleffe [1] derived the following properties of the
model. In addition to the so-called “laminar” trivial fixed
point (M = 1, U = 0, V = 0,W = 0), there are two
other fixed points which emerge “from nothing” at finite
distance from the basic state for R = Rsn (saddle node
bifurcation). The smallest Reynolds number at which the
saddle-node bifurcation takes place is Rsn = 104.849 for
α = 1.303 and γ = 2.280. The laminar fixed point remains
linearly stable for all values of Reynolds number. The lin-
ear stability analysis of the two non-trivial fixed points in-
dicates that one of them is always unstable (the so-called
lower branch), whereas the other (the upper branch) may
be unstable or stable depending on the set (α, γ,R). For
α = 1.303 and γ = 2.280, the upper branch fixed point
is an unstable node, which rapidly turns into an unstable
spiral at R = 104.94 and finally becomes stable through a
subcritical Hopf bifurcation at R = RHf = 138.06. Then
unstable spiral fixed point bifurcates into an unstable limit
cycle surrounding the newly stable spiral. Figure 2 dis-
plays the bifurcation diagram, namely the Euclidean dis-
tance D separating the non-trivial states from the basic
state, as a function of R, obtained for α = 1.303 and
γ = 2.280.

We have performed an (α, γ) dependence analysis of
these static properties: Rsn is found by solving a third or-
der equation derived from the conditions for the existence
of more than one fixed point; and RHf is obtained through
the linear stability analysis of the upper branch solution.
The saddle node bifurcation takes place for any pair (α, γ)
satisfying condition (1). Figure 3 displays the parameter
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Fig. 3. Main dynamical properties in the parameter space
(α, γ). Condition (1) is satisfied above the solid line. The dotted
line is the locus of the minimum Rsn for each α, on which the
cross indicates the locus of the smallest Rsn. Below the circled-
line the upper branch is always stable and no Hopf bifurcation
occurs.

space with: the bounding curve corresponding to condi-
tion (1), the locus of the smallest Rsn when either α or
γ is fixed; the pair (α = 1.303, γ = 2.280) for which Rsn

is minimal; and the line of double-zero co-dimension-two
bifurcations, where the saddle node and the Hopf bifurca-
tion occur at the same critical Reynolds number. Below
this line, the upper branch fixed point is stable at the
saddle node bifurcation and no Hopf bifurcation occurs.
Above this line, the Hopf bifurcation criticality is given by
the sign of the third order term coefficient in its radius ex-
pansion. This coefficient can be derived from the original
dynamical system through a rather long but straightfor-
ward calculation, and remains positive for the range of pa-
rameters (α, γ), that we consider. The bifurcation is thus
subcritical in this range of parameters. Altogether the pair
(α = 1.303, γ = 2.280) appears as a generic set, which is
of value, for studying the dynamics.

In conclusion, there are only two types of bifurcation
diagram. Either the upper branch solution is stable at the
saddle node bifurcation and the phase space dynamics re-
duces itself to that of a simple bistable system with a single
separatrix made of the stable manifold of the only unsta-
ble state. This is the kind of system described in [12]. Or
the upper branch solution is unstable at the saddle node
bifurcation and stabilizes at a higher Reynolds number
through a subcritical Hopf bifurcation leading to the co-
existence of an unstable limit cycle with the unstable lower
branch solution. One then expects a more complex dynam-
ics, which we investigate now on the basis of a phase space
simulation for the parameters (α = 1.303, γ = 2.280).

3 Phase space simulation

In order to make maximum benefit from the simulation,
one needs a representation of the trajectories of the dy-
namics, and not only the evolution of some arbitrarily

chosen quantity such as the perturbation energy. In the
present case, we take advantage of the phase space struc-
ture. When R is larger then Rsn, there are three fixed
points which define a plane in four-dimensional space.
An arbitrary normal direction is chosen to define a three-
dimensional visualization space. The dynamics is then or-
thogonally projected onto this space. An interesting ad-
vantage of this visualization space is that it follows the
fixed points and thus naturally adapts to their changing
positions when varying the Reynolds number. Also, we
have not noticed any significant influence of the arbitrar-
ily chosen normal direction used to construct the visual-
ization space. Figure 4a and 4b display the characteristics
of the dynamics, for Rsn < R < RHf and R > RHf , re-
spectively. The three fixed points are labeled (BS) for the
basic state, (LB) for the lower branch and (UB) for the
upper branch. The basic state is conventionally set at the
origin. One observes that, in agreement with the eigen-
value picture described above, the asymptotic dynamics
concentrates on a bidimensional manifold.

For Rsn < R < RHf , (Fig 4a), we have chosen four
kinds of initial conditions. Trajectories (1) and (2) start
close to the lower branch fixed point but “on the side ”of
the basic state. Trajectories (3) and (4) also start close to
the lower branch fixed point but “on the other side ”. Tra-
jectories (5), (6) and (7) start in the middle of nowhere.
Trajectory (8) starts close to and moves away from the
unstable upper branch fixed point. All trajectories obvi-
ously relax to the basic state, the only stable fixed point.
But there are two kinds of trajectories, those such as (1)
and (2) relaxing in a rather direct way and the others ex-
hibiting cyclic transients before relaxing. These transients
are not only observed when initial conditions are chosen
close to the upper branch fixed point such as for trajec-
tory (8), but actually as soon as the initial conditions are
on the “wrong side” of the lower branch fixed point (see
trajectories (3) and (4)).

For R > RHf , (Fig 4b), we have chosen three kinds of
initial conditions. Initial conditions (1) to (5) are essen-
tially chosen along the same direction, at an increasing
distance from the basic state. One can see that the un-
stable spiral has turned into a stable one and accordingly
that a third kind of trajectory has emerged, those asymp-
totically ending on the newly stable fixed point. More
precisely, trajectories (1) to (4) end at the basic state, im-
mediately (1, 2) or after a long transient (3, 4), and trajec-
tory (5) ends at the stable upper branch fixed point. One
already surmises that the future of a trajectory is strongly
related to its “landing point” on the bidimensional iner-
tial manifold. This is better illustrated following trajecto-
ries (6) and (7). Their initial conditions are very close to
one another, but trajectory (6) relaxes to the basic state
after a long cyclic transient, whereas trajectory (7) tends
towards the other stable fixed point. The two trajecto-
ries remain very close until they reach the bidimensional
manifold on which they diverge from each other. This be-
havior illustrates the complexity of the separatrix shape,
leading to a strong dependence on the initial conditions,
without the need for any chaotic behavior.
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Fig. 4. Trajectories in the visualization space for (a) R = 120
and (b) R = 160.

To search for the actual stability boundaries one needs
to characterize the attraction basins of the various stable
states. Since a complete exact description of the separa-
trix can not be achieved, we concentrate on a statistical
level of description. Anticipating further comparison with
experimental studies, we imagine a finite amplitude per-
turbation of the basic state, and statistically study the
response of the system. Introducing a specific perturba-
tion involves choosing a special initial condition in phase
space. In practice, we model the selection of the pertur-
bation “shape” by the choice of a directing vector, and
the perturbation amplitude A by the distance between
the initial condition and the basic state. Then a thou-
sand trajectories are computed, starting from initial con-
ditions randomly chosen around the desired perturbation.
These follow a Gaussian distribution, such as one would
expect in an experimental context. The probability p1 to
reach the upper branch fixed point is most easily obtained
by counting the trajectories asymptotically converging to-
wards this point. Among the trajectories relaxing towards
the basic state, a long transient refers to “turning around
the upper branch”, at least once. The probabilities p2 to
exhibit long transients before relaxing, and p3 to relax
directly to the basic state, are then easily extracted by
simple counting.
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Fig. 5. Probability p2 of trajectories exhibiting transients
depending on R and the perturbation amplitude.

Figure 5 displays p2 dependence on the perturbation
amplitude and the Reynolds number. Three regions ap-
pear. In the upper right corner, where p2 decreases to
zero, we also have p3 = 0, and so almost all initial con-
ditions reach the upper branch fixed point. In the lower
left corner, p2 also decreases to zero, but this time p1 = 0
and almost all initial conditions relax directly to the ba-
sic state. Then in the center, there is a large region, where
almost all trajectories exhibit long transients before relax-
ing. These three regions in the (R,A) space are separated
by rather wide bands where there is a competition between
two of the three possible dynamics, namely between the
direct relaxation and the long transients in the lower band
and between long transients and convergence to the upper
branch fixed point in the upper band. These areas of com-
petition between two different kinds of dynamics reflect
the separation between the initial conditions, operated by
the stable manifold of the unstable solutions, respectively
the unstable fixed point for the lower band and the unsta-
ble limit cycle for the upper band.

Studying supercritical bifurcations in extended sys-
tems, one often draws the bifurcation diagram by plotting
the amplitude of the most unstable mode as a function
of the control parameter. For a subcritical transition, no
well-defined mode can be identified and one needs to find
a convenient measure of the “distance” to the basic state.
Whereas this distance is easily found in a model as simple
as the one studied here, it is rarely the case in an ex-
perimental context. This is why an interesting feature of
Figure 5, obtained through the statistical procedure de-
scribed above, is its qualitatively good description of the
unstable branches of the underlying bifurcation diagram
(see Fig. 2).

4 Discussion

In the introduction, various essential features of the sub-
critical transition to turbulence have been briefly de-
scribed. In this section we attempt to make a connection
between the outputs of the present study and those fea-
tures.

As already stated, the Waleffe’s model has been de-
rived from the Navier-Stokes equations in the case of a
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velocity profile sharing the stability property of the plane
Couette profile. Hence the subcriticality is automatically
obtained. The spatio-temporal intermittency is not sup-
posed to be described by a purely temporal system ob-
tained by projecting the dynamics on a set of Galerkin
modes. Still, it is worth underlining the similarity between
those modes and the finite amplitude structures experi-
mentally [6,15] or numerically [7–9,16] observed, both be-
ing made of streamwise vortices and streaks, both being
unstable.

The other features of the transition deal with the tem-
poral evolution of a disturbance. Experimentally, a non-
linear response to finite amplitude perturbation can be
obtained by triggering the plane Couette flow with an in-
stantaneous localized transverse jet and monitoring the
disturbance evolution. In a recent work, Bottin, Daviaud,
Manneville and Dauchot [4] studied the case of very large
amplitude perturbations. For R < Ru, the disturbance
relaxes almost instantaneously, for R > Ru it initiates
a turbulent spot, transient when R < Rc and sustained
when R > Rc. For the purpose of clarity, let us emphasize
that the notations Rc and Rg actually describe the same
threshold. Here we chose to use Rg, following the con-
ceptual context of global subcriticality introduced in [12].
The Chaté and Bottin study [5] together with more re-
cent results, complete this picture for lower perturbation
amplitudes. For Ru < R < Rg, long-lived transients are
not always observed and rapid relaxation may occur as
well. Similarly for R > Rg, the sustained regime is not
the only asymptotic regime; transients and even rapid re-
laxations are also observed. Clearly, the localized pertur-
bation shape and amplitude strongly condition the dis-
turbance evolution. Unfortunately, the knowledge of the
“efficiency” and “relevance” of a perturbation is a priori
a hard problem linked to the poor knowledge of the phase
space, especially in the hydrodynamics context. Also, the
perturbation is certainly not perfectly monitored and, as
emphasized in [5], only a statistical study of the response
can be conducted. In their study Bottin and Chaté per-
formed a series of experiments by locally perturbing the
laminar flow, either at fixed Reynolds number and varying
the amplitude of perturbation, or the converse. They esti-
mated the percentage p to reach the sustained turbulent
regime and determined the location of the p = 1/2 curve in
the (R,A) parameter space. The turbulent spot is consid-
ered as sustained when its lifetime is longer than an upper
cutoff tmax = 300 s. Here, on the basis of a compilation
of Bottin and Chaté’s data together with some new set of
data, we define an inferior cutoff tmin = 10 s, such that dis-
turbances with a lifetime shorter than tmin are considered
as relaxing without being transient. Figure 6 displays two
amplitude curves. Below the bulleted curve, more than
95% of the perturbations relax immediately. Above the
diamond curve, more than 95% of the perturbations turn
into a sustained turbulent spot. One observes a picture
very similar to that of Figure 5, with three domains in
the (A,R) space, one dominated by sustained turbulent
spots, one by transients and one by immediate relaxations.
Those domain shapes clearly call for an identification of
Ru with Rsn and Rg with RHf . The present statistical de-
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Fig. 6. Critical amplitude curves separating the three different
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scription thus allows us to give a simple interpretation to
the thresholds observed experimentally, whereas a direct
comparison of Figure 6 with the bifurcation diagram of
Figure 2 would have been quite hazardous.

Altogether, Waleffe’s model shows at a global level,
the now widely accepted picture of the transition to tur-
bulence in plane Couette flow. On increasing the Reynolds
number, a saddle node bifurcation at R = Ru gives rise
to unstable stationary states. These states and their sta-
ble manifolds progressively draw the phase space struc-
ture and induce longer and longer transients which lead to
a regime of metastable spatio-temporal intermittency. At
R = Rg, this spatio-temporal intermittent repulsor turns
into an attractor leading to the sustained spatio-temporal
intermittent regime.

We thank F. Waleffe, H. Chaté, S. Bottin, and P. Manneville,
for interesting discussions.
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