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PHASE SPACE AS ARENA FOR ATOMIC MOTION

IN A QUANTIZED LIGHT FIELD
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We describe the motion of an atom in a quantized light field using the
concept of the Wigner distribution in phase space. This approach provides
a pictorial explanation of the deflection and focusing of the atomic beam.
PACS numbers: 42.50.Vk, 42.50.Wm

1. Introduction

In classical mechanics a phase space distribution contains the complete in-
formation about a dynamical system. This concept carries over to the quantum
world: a prominent distribntion is the Wigner function [1]. This representation
of quantum mechanics gives immediate insight into the dynamics of a quantum
system. In the present paper we analyse the mechanical action of a quantized light
fleld [2] on a non-resonant atom using this concept [3].

The paper is organized as follows. In Sec. 2 we present the model [Λ] describ-

ing the motion of a non-resonant atom in a single mode of a quantized light fleld.

Starting from the Schrödinger equation for the state vector for the atomic motion
and the fleld we derive the equation of motion for the Wigner function of the atom.
The latter tuus out to be the sum of the Wigner functions corresponding to the
motion of the atom in the individual number states, weighted with the photon
statistics. In Sec. 3 we give an analytical solntion for the equation of motion of the
Wigner function for the case when the wavelength of the light is much larger than
the de Broglie wavelength of the atom [5]. Making use of this small parameter we
expand the actual light potential in a Taylor series up to second order and obtain
a first order differential equation solvable exactly. We devote Sec. 4 to a discussion
of the distribution of atoms after the interaction with the light fleld. Following the
evolution of the Wigner function we note that each individual hock state deflects
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mode and the coupling constant

Broglie wavelength is much smaller than the typical dimension

time via the relation
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the atoms in different directions [6-8] and focuses [9] them at different points. In

Sec. 5 we derive simple expressions for the position and the size of the foci of the

individual Fock states as it follows from the phase space dynamics. We conclude

by summarizing our main results in Sec. 6.

2. Formulation of the problem

We describe the interaction of a non-resonant atom and a quantized electro-

magnetic fleld mode shown in Fig. 1 by the effective Hamiltonian [4, 10-12]

The operation á and á† are the annihilation and creation operation of the fleld

is the atomic linear susceptibility α

multiplied by the "square of the electric held per photon". For simplicity we assume

a rectangular field distribution in z-direction of length L as expressed by the

Heaviside step functions θ(z). Because of the non-resonant interaction we neglect

the internal degrees of freedom of the atom. The z-direction we call longitudinal

and the x-direction transverse. Here we treat the transverse motion of the atom

quantum mechanically and hence keep the operator nature of the kinetic energy

In z-direction we consider the velocities such that the corresponding de

of the electromagnetic field estimated by the wavelength λ. Hence we describe the

motion along the z-axis classically. We therefore associate the z-coordinate with

and consider the spatial evolution of the system

in this direction as a time evolution given by the Schr ödinger equation
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When the atom enters the field at t = 0, the state vector |Ψ(t = 0)) is the
direct product of the transverse wave function f(x) of the atom and the field state
|Ψ), that is

where wn denote the ploton probability amplitude of the fleld. The Schrodinger
equation (2) with the Hamiltonian (1) couples the degrees of freedom of the field
and the motion. As a result of the interaction the states of the fleld and the atom
get strongly entangled. This allows us to gain information about one subsystem
via the other. When we substitute the ansatz

for the state vector |Ψ) into the Schrödinger equation (2) with the Hamiltonian (1)
we find

Each equation of this system s the Schrödinger equation for a particle which moves
in the potential

of the individual Fock states. It gives the probability amplitude Ψn(x, t) of finding
the atom at the time t at the position x, and the field in the n-th Fock state.

For the time interval 0 < t < tL, that is when the atom is in the standing
light field it feels the potential

wlereas for t L < t, when it is out of the cav i ty

Hence the time evolution of the state Ψ) of the combined system of the quantum

field and the transverse motion is given by the time evolution of the probability
amplitudes Ψn (x, t) subject to the initial condition Ψn (x, t = 0) = f(x).

The state vector | Ψ) contains the complete information about the field and

the atom and our further treatment depends on the specific question we want to
address. We can for example consider the properties of the quantum fleld ignor-
ing the transverse motion of the atom or vice versa concentrate on the motion
while ignoring the field variables. Moreover we can, of course, investigate the en-
tanglement between the atomic and field variables via joint measurements [8, 12].
In the present paper, however, we confine ourselves to the measurements of the
atomic motion only. We are interested in the distribution of atoms in phase space
spanned by transverse position x and momentum p. Therefore as the main tool

we introduce the concept of the Wigner function.
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We start from the density matrix

of the entire system and trace over the fleld variables to flnd for the reduced atomic
density matrix

We obtain the aligner function [1]

for the transverse atomic motion by substituting the atomic density operator
Eα. (10) into Εα. (11) and we arrive at

This is the incoherent superposition of the atomic Wigner functions

each of which corresponds to the motion of the atom in the potential Vn given
by the n-th Fock state. Tle weight of the n-th Wigner function is the photon
statistics |wn|2 of the initial fleld state.

The equation of motion for Pn(W) following from the equation of motion of
the density operator reads [1]:

We conclude this section by noting that we can find the time dependence of
the transverse atomic motion by solving either the Schrodinger equation (5) for
the probability amplitude Ψn or the equation of motion for the Wigner function
Eq. (14). Since the latter involves the position as well as the momentum it is in
general harder to solve than the Schrodinger equation, although for some special
cases it is much more illustrative.

3. Wigner function of atomic motion

In the present section we consider the deflection and focusing of the atoms for
a simple case which nevertheless displays very interesting physical phenomena. We
take the initial transverse wave packet to be narrow compared to the wavelength



By combining the linear and the quadraticwhere

of the displaced harmonic oscillator with minimum

Note that the constant term
can be omitted from the Schrödinger equation

equation of motion (14) for Pn (W) contributes to the sum, since
all n > 2, and we are left with the classical Lionville equation
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of the light field and the interaction time tL short, so that the wave packet does
not change its position in x-direction considerably. In tlis case the equation of
motion for the Wigner function can be solved exactly and immediately provides
us via Eq. (12) the position and momentum distribution of the atoms.

Indeed, we take as the initial condition for Ψn a Gaussian wave packet

where d denotes the width of the transverse distribution of atoms. In the case
d K λ we can expand the mode function, g(x), Eq. (1), around the centre x = 0 of
the wave packet, i.e.

contributions of the potential in a binomial we reduce the problem to the motion
in the parabolic potential

for the probability amplitude Ψ , since it only results in an irrelevant phase factor.
We can use the well-known Green function for the harmonic oscillator to

solve the equation for the time evolution However, in the present paper we
pursue the more illustrative phase space approach using the Wigner function as
discussed in Sec. 2. In the harmonic approximation only the term Ι = 0 in the

for

for the Wigner function.
The approximation by a harmonic oscillator has a big advantage. Since the

frequency ωn of the harmonic oscillator is independent of the oscillator amplitude,
all parts of the distribution move in phase space with the same angular velocity,

and the Wigner function Pn(W)(x, p, t) at time t follows by a rotation of the initial

Wigner function Pn(w)(x, p, t = 0) around the phase space point (xf, 0). Indeed,
with the help of the method of characteristics [13 ] one obtains
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which satisfies Eq. (19). This aligner function describes the distribution of atoms
in phase space as long as they interact with the standing light wave, that is for

0 ≤t ≤tL . After the interaction, i.e. t > tL , we have Vn = Ο. The free motion of
the atoms corresponds to the time evolution of the Wigner function given by the

equation

with the initial condition Pn(W)(x, p, t = t L) using the method of characteristics.
From Eq. (23) we note that the particles move along trajectories of constant mo-

mentum, that is parallel to the x-axis.

As the initial condition Pn(W)) (x, n, t = 0) we take the Witmer function

corresponding to the initial transverse distribution f (x), Eq. (15). Hence the phase
space distribution of particles inside the cavity reads

where we have substituted the trajectories x and p, Eq. (21), into the initial dis-
tribution Eq. (24).

Since we only observe the atoms after they have left the light fleld we now
consider t > tL. The distribution Eq. (25) for t = tL serves as the initial condition
for the Wigner function of free motion evolving according to Eq. (22). With the
help of Eq. (23) we arrive at
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Fig. 2. Evolution of the atomic Wigner function in and after the light field for a Fock

state n = 2. In the light field the initial Gaussian cigar, narrow in momentum but broad

in position, rotates following the evolution in the parabolic potential. Outside the light

field the momentum is conserved which results in the shearing of tle distribution. The

width of the distribution in position reaches a minimum when the cigar stands vertically

which corresponds to the focus.

atom in the harmonic oscillator potential Vn the Gaussian cigar rotates in phase
space around the point (x = xf, p = 0) by the angle n = ωn tL, as given by
Eq. (25). The following free evolution given by Eq. (27) is depicted in Fig. 2 for
three -typical times, that is for three typical positions outside of the light field,

namely z = 0, z = z' and z = 2z f . We note that the width of the Wigner function
in x-variable first decreases and then increases. It reaches a minimum when the
cigar crosses the phase space line x = xf. This is the physical origin of the focusing
of the atoms.

So far we have only considered the motion of the atom in the potential

Vn given by the n-th Fock state. In the case of a field state | ψ) consisting of a

superposition of Fock states the Wigner function P(W) (x, p, z) of the atomic motion

is the incoherent sum Eq. (12) of the Wigner functions Pn(W )(x, p, t)weighted with
the photon statistics |wn|2. In Fig. 3 we show the Wigner function Ρ(W) (x,p,t)

at the exit of the cavity, whereas in Fig. 4 we depict its contour lines for various

times t, that is for various positions  Ζ. The left column displays the evolution

of the initial Gaussian cigar in the standing light field. We note that due to the
n-dependence of the frequency ωn of the oscillator potential, that is the angular
velocity in phase space, the Gaussian cigar splits into many cigars — each of which
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is weighted with the photon statistics. Figure 4c depicts the distribution of atoms

at the exit of the cavity and serves as the initial distribution for the free evolution
shown on the right column for various positions z outside of the light field. Each

cigar experiences the shearing effect discussed in Fig. 2. Moreover, different cigars
move through the focal line x = xf at different times t, which corresponds to
different positions .Fn.

4. Distributions of atoms in space and in momentum

So far we have analyzed the distribution of transverse position and momen-

tum in its dependence on the coordinate z. In the present section we consider the

spatial distribution W(x, z) of atoms in the x-z plane. We find it by integrating

P(W)(x, p, z) given by Eq. (12) and Eq. (27) over p and arrive at

where W(x, z) Ξ f dpΡn(W)(x, p, z) is the spatial distribution of atoms due to the

interaction with the n-th Fock state. After evaluation of the Gaussian integrals we

find

In Fig. 5 we show the contour lines of the distribution W(x, z) of atoms and

a cut along the focal line x = x f for a coherent state of average number of photons

n = 1. We note that the initial atomic beam splits up into a number of partial

beams due to the deflection of atoms by the individual Fock states. Moreover, we

find  that each partial beam corresponding to the n-th Fock state focuses at the

individual point (x ƒ,Fn).The cut through the distributionW(x, z)along the focal

line x = x f depicted in the right part of Fig. 5 shows the weight of each partial

beam reflecting the photon statistics of the initial fleld state.

We obtain the focal length 2n from Eq. (30) as the position z where Dn (z)

reaches the minimum. For z > 0, that is outside of the light field this corresponds

to cos φn - (ωn /υ z )z sin φn = 0, which yields

When the atom leaves the light field at z = 0, the centre of the wave packet is

located at



It passes through the focus x = x; and z = fn and hence experiences a deflection

by an angle

is the deflection due to the flrst Pock state. Moreover, in this limit the focal length

reads

is the focal length of the Pock state |n = 1).

We note that we can obtain the photon statistics making use of the strong

correlation between the field state and the momentum distribution W(p) of the

atoms after they have left the field. We find this distribution by integration of

P(w)(x,p, t) over x which yields
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is the momentum distribution of the atoms due to the interaction with the n-th

Fock state. An atom which has entered the light field in the n-th Fock state with

the average momentum (p) = Ο leaves the cavity with the average momentum

as indicated by the maximum of the momentum distribution W(p), Eq. (39). The
motion in the free field region conserves the momentum and hence the distribution

is independent of the position z. It is this momentum transfer which gives rise to

the deflection angle θ, Eq. (33), via the relation θ = arctan(pn /Mυz ).

When the difference Δp n = pn+1 - p, in the transferred momentum due to

two neighboring Fock states is larger than the momentum uncertainty given by

the width Dn of the two corresponding Gaussians, we can resolve the contribution

of each individual Fock state. Since each Gaussian is weighted with the photon

statistics, the momentum distribution in this case is a complete readout of the

photon statistics as shown in Fig. 6.

We note that in deriving the above results we have expanded the coupling

constant g(x) around the centre of the wave packet. Fence this solution is only

valid provided the wave packet has not moved considerably due to the interaction

with the light field, that is it has not moved into a regime in which the displaced

harmonic oscillator potential is not a good approximation to the potential V.
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Hence the approximation is valid if the cubic term of the expansion is negligible,

that is

This condition puts the constraint

on the x-values in which the atom is allowed to move in order to uphold the

quadratic approximation Eq. (16). Hence the displacement, Eq. (32), and the width

Dn(z = 0), Eq. (30), of the exiting atomic wave packet have to be within this

region.

We conclude this section by comparing the spatial distribution W(x, z) of

atoms, Eqs. (28)-(30), in the x-z plane to the distribution

obtained [9] in the Raman-Nath approximation. We note that Eq. (29) reduces to

Eq. (44) in the limit of small rotation angles φn = ωntL« 1, such that cos φn ti 1

and sin φn φn. however, the width Dn, Eq. (30), reduces to

and hence contains an additional term h L/dMυz which reflects the spreading of the

wave packet during the motion of the atom in the harmonic oscillator potential.

The Raman-Nath approximation neglects the kinetic part of the Hamiltonian

compared to the electromagnetic interaction energy and hence cannot account for

this term.

5. Focal size and focal length

In the preceding sections we have discussed the complete phase space dy-

namics of the atomic motion in the quantized light field. In the present section we

illustrate this approach in simple geometrical terms. In particular we rederive the

expression Eq. (31) for the focal distance Fn of the n-th Pock state quantum lens

starting from the pictorial sketch, and calculate the size of the focal spot.

Figure 7 explains the essential points of the process of focusing. On the

right hand side we summarize the set-up whereas on the left hand side we show

the evolution of the atomic wave packet in phase space. The atomic wave of

transverse width Δx, depicted here by a fat line, enters the light field (shaded
area) at z = -L and leaves it slightly displaced and compressed at z = 0. Due
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to the interaction with the light in the n-th Fock state different parts of the

wave packet gain different transverse momenta. As a resnlt of the free evolntion

outside of the cavity the beam focuses at the point z = fn. This process is most

easily understood from the dynamics in phase space. For the sake of simplicity

we take the initial phase space distribution to be a line distribution of length

Δx centered at x = 0 with vanishing momentum. Since the potential formed by

the n-th Fock state is harmonic, the fat line representing the initial distribution

rotates in phase space by an angle φn around (x = xf, p = 0). This rotation in

phase space is the origin of the slight shift and the compression of the wave packet.

Moreover, different parts of the wave packet acquire different momenta which are

proportional to their coordinates. Outside of the cavity the momentum of each

part is conserved. As a result all points of the rotated line distribution pass the

point x = xf at the same time t f as shown by the fat line along the momentum

axis. Since time corresponds to the z-coordinate via the relation z = υz t - L, the

focal length Fn' of the n-th Fock state reads .Fn = vzt f - L.

Now we get the focal distance .Fn , Eq. (31), using this picture. For this

purpose we consider the time evolution of phase space points with vanishing initial

momentum, that is p(t = 0) = 0 as shown on the left hand side of Fig. 7 by the

fat line centered at x = 0. At a later time t ≤ tL these points have moved to the

new positions

and now lie on the line

in phase space which goes through the point x = xf at the angle φ, = (dnt with

respect to the x-axis. After the atom has left the light field it moves freely and

conserves its momentum
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Therefore all points on the line Eq. (47) reach the focal spot x = x f at the same

time

The corresponding distance in z-direction yields the desired focal length

This expression is identical to the one, Eq. (31), obtained from the spatial distri-

bution W(x, z) of the atoms in Sec. 4.

So far we have considered the extreme of geometrical optics, that is a line

distribution in phase space which is infinitely narrow in momentum. But what

happens to the focus in the framework of wave optics, that is when we admit a

finite uncertainty Δp in momentum? It results in a spreading of the focal point,

that is a width of the focus. Indeed, we estimate Δp for a wave packet with the

width d in position space via the Heisenberg-relation

and consider the time evolution of the phase space point (x = 0, p = Δp). The

time t f at which this point crosses the line x = xf provides via the relation

z'n= vzt'ƒ —Lthe widthδFn= z'n — At timetLthe point(x =0,p = Δp) has

moved to

We now find the time t 'ƒ , at which this point passes the focal line x = x f. Since

the momentum p'L is conserved during the free evolution we fmd

and hence

This time translates into

and the width δFn of the n-th focus reads

where Δ = √h /Μωn denotes the spread of the atom in the ground state of the

harmonic potential Eq. (17).
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We conclude this section by noting that in the limit of small angles φn « 1
Eq. (58) reduces to

a result derived in Ref. [9].

6. Summary

In the present paper we have considered the atomic motion in a quantized
field. Here we have concentrated on the atom by tracing over the field variables.
We have shown that the Wigner functions of the atom corresponding to the motion
in the potentials due to the individual Fock states separate in phase space. This
separation manifests itself either in the momentum distribution as a deflection in
different angles or in the spatial distribution as focusing in different points.
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