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Abstract We study cosmological solutions in nonlocal
teleparallel gravity or f (T ) theory, where T is the torsion
scalar in teleparallel gravity. This is a natural extension of the
usual teleparallel gravity with nonlocal terms. In this work
the phase space portrait proposed to describe the dynamics
of an arbitrary flat, homogeneous cosmological background
with a number of matter contents, both in early- and late-time
epochs. The aim was to convert the system of the equations
of the motion to a first order autonomous dynamical sys-
tem and to find fixed points and attractors using numerical
codes. For this purpose, firstly we derive effective forms of
cosmological field equations describing the whole cosmic
evolution history in a homogeneous and isotropic cosmo-
logical background and construct the autonomous system of
the first order dynamical equations. In addition, we investi-
gate the local stability in the dynamical systems called “the
stable/unstable manifold” by introducing a specific form of
the interaction between matter, dark energy, radiation and a
scalar field. Furthermore, we explore the exact solutions of
the cosmological equations in the case of a de Sitter space-
time. In particular, we examine the role of an auxiliary func-
tion called “gauge” η in the formation of such cosmological
solutions and show whether the de Sitter solutions can exist
or not. Moreover, we study the stability issue of the de Sit-
ter solutions both in vacuum and non-vacuum spacetimes. It
is demonstrated that, for nonlocal f (T ) gravity, the stable
de Sitter solutions can be produced even in vacuum space-
time.

1 Introduction

There has been found evidence for that in addition to the
inflationary stage [1–5] in the early Universe, currently
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the expansion of the Universe is also accelerating by var-
ious cosmological observations including Type Ia Super-
novae [6,7], cosmic microwave background (CMB) radi-
ation [8–14], large scale structure [15,16], baryon acous-
tic oscillations (BAO) [17] as well as weak lensing [18].
We have two representative explanations for such a late-
time cosmic acceleration. One approach is to introduce
“dark energy” (DE) in the context of general relativity. The
other approach is to consider the modification of gravity
on the large scale (for reviews on not only DE problem
but also modified gravity theories, see, for example, [19–
22]).

There is a possible candidate for a theory of gravitation
alternative to general relativity, namely, teleparallel grav-
ity, which is described by using the Weitzenböck connec-
tion [23–26]. In teleparallel gravity, there exists torsion. This
is opposite to the case of general relativity, in which the Levi-
Civita connection is used. The torsion scalar T represents the
Lagrangian density of teleparallel gravity. It can be extended
to a function of T , that is, f (T ) gravity (for a recent review,
see, for instance, [27]). This idea is similar to that of f (R)

gravity [28–31], where R is the scalar curvature. Inflation in
the early Universe [32–34] and the late-time cosmic acceler-
ation [35–38] can be realized in f (T ) gravity. Various cos-
mological and astrophysical considerations in f (T ) gravity
have widely been performed [39–56]. It is well known that, in
f (T ) gravity, the local Lorentz invariance is broken [57,58],
and the relevant points in order have been discussed [59–
66].

On the other hand, in Ref. [67], there has been consid-
ered a way of modifying gravitation, the so-called nonlo-
cal gravity, which comes from quantum effects. Further-
more, in order to unify inflation in the early Universe and
the late-time accelerated expansion of the Universe, nonlo-
cal gravity has been modified by adding an f (R) term in
Ref. [68]. In addition, a possible solution for the cosmologi-
cal constant problem through the nonlocal property of grav-
itation [69] has been proposed. Moreover, a physical mech-
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anism by which a cosmological constant is screened in the
framework of nonlocal gravity has been investigated [70–
72]. It has also been indicated that, in nonlocal gravity, there
is the issue of ghosts [70]. Various aspects of nonlocal grav-
ity have widely been explored [73–85] (for a recent review
of nonlocal gravity, see, e.g., [102]). It is worth noting that
the nonlocal term �T was first used in the framework of
modified teleparallel gravity in Ref. [103] Furthermore, the
nonlocal deformations of teleparallel gravity have been ana-
lyzed in Refs. [104,105]. This theory is called nonlocal f (T )

gravity, which can be considered as an extension of nonlocal
general relativity to the Weitzenböck spacetime. It has been
discussed that there is a possibility to distinguish telepar-
allel gravity from general relativity by future experiments
detecting nonlocal effects. In this paper, we investigate exact
cosmological solutions in nonlocal f (T ) gravity. We analyze
the autonomous system of the first order dynamical equations
by deriving effective forms of cosmological field equations
in a homogeneous and isotropic cosmological background,
describing the whole evolution history of the Universe. More-
over, we propose a specific form of the interaction between
matter, dark energy, radiation and a scalar field and exam-
ine the local stability in the dynamical systems, which is
called “the stable/unstable manifold”. As a result, it is demon-
strated that the system has a stable attractor. Furthermore,
we study exact solutions of the cosmological equations in
the case of de Sitter spacetime. Particularly, we explore the
role of an auxiliary function, called “gauge”, η, in the for-
mation of such cosmological solutions and show whether
the de Sitter solutions can exist or not in this scenario. In
addition, we consider the stability problem of the de Sitter
solutions both in vacuum and non-vacuum spacetimes and
find that even in vacuum spacetime, the stable de Sitter solu-
tions can be produced in the framework of nonlocal f (T )

gravity.
The organization of the paper is the following. In Sect. 2,

we explain the framework of nonlocal f (T ) gravity. In
Sect. 3, we explore the cosmological background and effec-
tive field equations in nonlocal f (T ) gravity. In Sect. 4, the
interaction term and phase portrait are analyzed. In Sect. 5,
the de Sitter solution is derived and its stability is examined
in Sect. 6. Finally, conclusions are provided in Sect. 7.

2 Formal framework of nonlocal f (T ) gravity

Let us develop the formalism of nonlocal modified gravity
with torsion T in a same manner as the nonlocal f (R) gravity
is developed [68]. We suppose that the possible action for
gravity with matter contents is given in terms of classical
gauge invariant action as follows:

S = 1

2κ

∫
d4xeT

(
f (�−1T ) − 1

)
+

∫
d4xeLm, (1)

where κ = 8πG, G is Newtonian gravitational constant, Lm

is matter Lagrangian. To describe the geometry of spacetime
in teleparallel gravity, the tetrad formalism is commonly used
where the metric can be written in an orthogonal frame eμ

a , in
a such manner that gμν = eμ

a eν
bη

ab, where Greek characters
run from μ, ν = 0, ..., 3, and the flat Minkowski metric is
denoted by ηab. Note that eμ

a eaν = δ
μ
ν and �−1 is considered

as an integral over the entirely spacetime manifold. The local
operator � = ∇μ∇μ is called d’Alembert operator defined
as � = e−1∂α(e∂α), where e = det (eμ

a ) = √−det (gαβ)

and T is the torsion scalar; it is defined in the same form as
in f (T ) gravity.

It is always possible to reduce nonlocal theories to scalar–
tensor equivalent theories and it is easy to do that for our
model given in (1) using two auxiliary (nonghost) fields, φ =
1
�T and ξ = − 1

� ( f ′(φ)T ). The reason that those fields are
considered to be nonghost is that the norm of them, defined
as ||φ|| = ∫

�
|φ|2ed4x , is always positive definite and never

becomes complex as long as the metric and its torsion T
remain real numbers. As long as we work in Riemanninan
manifolds, this condition will hold and we can safely use
them as an appropriate set of auxiliary fields.

The new form for the reduced action is written as follows:

S = 1

2κ

∫
d4xe

[
T ( f (φ) − 1) − ∂μξ∂μφ − ξT

]

+
∫

d4xeLm . (2)

Note that in (3) the action function f (φ) is supposed to have
any desired form. Formally if we take the case ξ = 1 and
f (φ) = 2 in the action of the theory given by Eq. (2), then
the action is reduced to the one which is an equivalent of
teleparallel gravity for T �= 0. Classical tests for GR prove
to be in very good agreement with observations. As a result it
is very important to know whether this nonlocal teleparallel
gravity has the GR limit or not. At the level of the action we
already demonstrate it. By sufficiently well chosen function
f (φ) we can recover GR as a limiting case.

The form of the equations of motion is presented in [104]:

2(1 − f (φ) + ξ)

[
e−1∂μ(eSa

μβ) − Eλ
a T

ρ
μλSρ

βμ − 1

4
Eβ
a T

]

−1

2

[
(∂λξ)(∂λφ)Eβ

a − (∂βξ)(∂aφ) − (∂aξ)(∂βφ)
]

−2∂μ(ξ − f (φ))Eρ
a Sρ

μν = κ�β
a , (3)

�ξ + T f ′(φ) = 0, (4)

�φ − T = 0. (5)

Here the tensor Eβ
α is defined through the variation of

e as follows: δe = eEβ
α eaβ , �

β
a is the energy-momentum
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tensor of matter contents defined by �
β
a = e−1 δ(eLm)

δeaβ
and

� ≡ e−1∂μ(e∂μ).
In Ref. [104], the authors investigated cosmological data

analysis by a suitably chosen function f (φ) = A exp(nφ)

and later, in Ref. [105], using a Noether symmetry approach.
In our paper we will fix f (φ) in another simple/adequate
form in the next section.

3 Cosmological background and effective field
equations

The aim of this section is to write the equations of motion
for a cosmological background in the presence of matter
fields in an effective form. Let us suppose that the non-
singular, physical metric of spacetime is given in the form
of the Friedman–Lemaitre–Robertson–Walker (FLRW) met-
ric, given by ds2 = dt2 − a(t)2(dxbdxb), where b =
1, 2, 3 is spatial coordinate and a(t) is scale factor, mea-
suring the expansion of the whole cosmological Universe
as well as its acceleration/deceleration phase. The corre-
sponding suitable, diagonal tetrad basis is given by eaμ =
diag (1, a(t), a(t), a(t)). The set of FLRW equations and
the equations for the scalar fields are written as follows:

3H2(1 + ξ − f (φ)) = 1

2
φ̇ξ̇

+κ(ρm + ρ� + ρr ), (6)

(2Ḣ + 3H2)(1 + ξ − f (φ)) = −1

2
φ̇ξ̇

+2H(ξ̇ − ḟ (φ)) − κ(p� + pr ), (7)

ξ̈ + 3H ξ̇ − 6H2 f ′(φ) = 0, (8)

φ̈ + 3H φ̇ + 6H2 = 0. (9)

The matter energy-momentum tensor is given in terms of
a diagonal tensors for matter, dark energy, and radiation as
follows:

τ ν
μ = eaμe

ν
bτ

b
a = diag

(
ρm + ρ� + ρr ,−p�

−pr ,−p� − pr ,−p� − pr
)
, (10)

where eaμe
μ
a = δab is the unit matrix. The matter budget of our

model is the dark matter density ρm , the radiation field den-
sity ρr and the scalar field density ρφ . In order to preserve the
acceleration expansion and the existence of late-time de Sit-
ter cosmology we inserted a nonzero cosmological constant
� with energy density ρ�. In an attempt to keep simplicity
we assume that all matter contents are given in barotropic
forms, where we define the equation of state (EoS) param-
eter wa for each fluid component, namely matter, radiation
and cosmological constant, and as a result for any compo-
nent of matter field we have a linear EoS, i.e., pa = waρa .
Here the Roman index a refers to different matter contents.

Namely we denote it by a = {m,�, r} where m is for matter,
� is for DE and r is for the radiation field. Note that neither
φ nor ξ are considered as the DE. The reason is that both
fields play the role of auxiliary fields. We cannot guarantee
that the fields φ, ξ will be ghost or not. Actually the appear-
ance of ghost scalar fields in the nonlocal theories for gravity
is an important issue and should be addressed adequately.
For example in the nonlocal extensions of the GR, when the
action is corrected by nonlocal terms 1

� R or higher order
terms, one must count the number of degrees of freedom of
the localized form of the Lagrangian. Additionally, one needs
to check the equivalence between local and nonlocal repre-
sentations of the theory both at the action level and equation
of motion levels. It is possible to make a categorization based
on the first form of the auxiliary fields. Based on this classifi-
cation we can find the number of algebraic constraints, which
will limit our ability to write the local or nonlocal represen-
tations of theory. However, in nonlocal extensions of GR, as
long as we have a linear term, we can ascertain the equiva-
lence between frames. However, with higher order terms this
equivalence is broken. That means in a general nonlocal GR
when we have only curvature terms, our theory may suffer
from ghosts. In nonlocal extensions of teleparallel gravity
(TEGR), we can deduce the same as long as we develop the
theory using a nonlocal action made by linear scalar torsion
T , and, hence, no ghost will appear. That is because it was
proved that the Einstein–Hilbert action of GR is dynamically
equivalent to the TEGR at the level of the action as well as
the equations of motion [106]. In our study with the nonlocal
term which we will opt for in next paragraph the model will
be ghost free. Although probably the scalar field φ will not
be a ghost, still we do not have any strong reason to keep it as
the only sector for the acceleration expansion in our model.
For this reason we also keep the cosmological constant �

and its energy density ρ�.
The first challenge is to choose one suitable form for f (φ).

Note that �ξ = − f ′(φ)�φ. It is illustrative to expand this
equation and write it in the following equivalent form:

�(ξ + f (φ)) = f ′′(φ)�φ.

Here, we suppose that f ′′(φ) = 0. Thus one suitable class
of models is

f (φ) = Aφ + B. (11)

Note that for A = 0, B = 2 the results reduce to GR as a
limiting case. Note that now �(ξ + f (φ)) = 0, and we have
the freedom to take ξ + f (φ) = �, where � is a harmonic
function overR4. A possible option is to consider � = 2Aφ;
consequently the set of Eqs. (6) and (7) are simply written in
the following forms:

3H2 =
1
2 Aφ̇2 + κ(ρm + ρ� + ρr )

1 − 2B
, (12)
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2Ḣ + 3H2 = −
1
2 Aφ̇2 + κ(p� + pr )

1 − 2B
, (13)

ξ̈ + 3H ξ̇ − 6AH2 = 0, (14)

φ̈ + 3H φ̇ + 6H2 = 0. (15)

Here the parameter B measures the difference between
TEGR and nonlocal theory, respectively. Because we will
study time evolution of the energy densities, it is adequate to
rewrite the cosmological equation, presented in Eq. (12), in
the following forms:

3H2 = ρφ

1 − 2B
+ ρm

1 − 2B

+ ρ�

1 − 2B
+ ρr

1 − 2B
; (16)

in the above equation, we have defined

ρφ ≡ Aφ̇2. (17)

Note that the other density functions cannot be written explic-
itly in terms of the scale factor a or scalar fields, until we
present the continuity equations for all the matter compo-
nents. In our scenario we assumed that different matter con-
tents interact with each other through some interaction forms
which will be presented in next section.

3.1 Hartman–Grobman linearizion theorem

To investigate the phase space analysis one needs to reduce
the system of equations to an autonomous system of first

order differential equations in the form d �X
dN = f ( �X), where

N plays the role of time and �X is a vector field with density
functions as components. In much work, various aspects of
dynamical systems in the cosmology of modified gravity are
discussed [89].

The Hartman–Grobman linearizion theorem provides a
powerful technique to study the local stability and the por-
trait of the phase space, when we have a set of hyperbolic
fixed points. Let �X(t) ∈ Rn be a nontrivial solution to the
following system of first order differential equations, called
the flow:

d �X
dt

= g( �X). (18)

Here g( �X) is a locally Lipschitz, one-to one continuous map
g : Rn → Rn . Let �X∗ denote the location of the fixed
points of the dynamical system (18), and the corresponding
Jacobian matrix, which we denote J (g), be equal to

(J )i j =
[ ∂gi
∂X j

]
. (19)

In order to have stable fixed points for system (18) it is enough
to set all eigenvalues of the Jacobian matrix so that λi sat-

isfies Re(λi ) �= 0. The Hartman theorem predicts the exis-
tence of a homeomorphism F : U → Rn , where U is an
open neighborhood of �X∗, such that F( �X∗) is defined. The
homeomorphism generates a flow dh(u)

dt , which is

dh(u)

dt
= J h(u) . (20)

It is proved that (20) is a topologically conjugate flow to the
one system given in Eq. (18).

3.2 Building the cosmological autonomous system of
equations

Now we study a model of interacting matter contents, where
the continuity equation for each energy density ρa is given
by the following form:

ρ̇a + 3H(1 + wa)ρa = �a, (21)

where we use a = {m,�, r, φ} and �a is the interaction func-
tion given by the general form �a = �a(�m,��,�r ,�φ)

satisfying �4
a=1�a = 0. In f (T ) gravity, such interacting

models are widely studied in the literature, namely [50–109].
In Ref. [110] the authors showed that the total gravitational
energy is transferred from dark matter ρm to dark energy ρ�,
and the cosmological coincidence problem in the Lambda-
Cold Dark Matter (�CDM) model is slightly assuaged.

In comparison to the matter, DE and radiation energy den-
sities, let us define an auxiliary scalar energy density as

�φ = Aφ̇2

3H2 .

It is important to mention here that the auxiliary fieldφ is not a
physical field. Consequently the kinetic term could be treated
as a tachyonic field as well as pressureless dust matter. In this
paper we consider wφ as a free parameter to be adjusted using
observational data.

In this case we can write the following equation for the
ratio between pressure and density, called the effective EoS
equation:

2Ḣ

3H2 = 1

2B − 1

(
�φ + �m + (1 + w�)�� + (1 + wr )�r

)
,

(22)

where we prescribed the form of f (φ) as given in Eq. (11) and
we supposed that wm = wφ = 0, wr = 1

3 , w� ∈ (−1,− 1
3 ).

It is easy to rewrite (21) using the definition of

�a = κρa

3H2 (23)

in the following set of first order differential equations where
we used (22):
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d�a

dN
= κ�a

3H3 − �a

(
(1 + wa) + 3

2B − 1

(
�φ

+�m + (1 + w�)�� + (1 + wr )�r

))
. (24)

Recall a = {m,�, r, φ} and we use the slow-roll variable
N = log( a

a0
) = − ln(1 + z) (the derivatives will be taken

with respect to N ) and z is the redshift. This is an autonomous
system and should be analyzed in the vicinity of critical points
where d�a

dN |c = 0 using the techniques developed in Sect. 3.1.
In terms of the variables (23) the Friedmann equation (12)

becomes the restriction

�m + �� + �r + �φ = 1 − 2B. (25)

Note that due to the interaction term in the model, the
density parameters �m,��,�r ,�φ should be interpreted
very strictly as effective density parameters. We mention here
that the above constraint guaranteed the existence of possible
cosmological attractors, because actually the shape of the
density functions remains typically the same and the full 4-
dimensional configuration space constructed using density
functions defines a shape invariant manifold and it defines
the attractor solution in the dynamical system.

The effective EoS for system is defined by

weff = ptot
ρtot

= −1 − 1

2B − 1

(
�φ

+�m + (1 + w�)�� + (1 + wr )�r

)
. (26)

4 Interaction term and phase portrait

The general linear dependent model for the interaction could
be in the following form:

�a = 3H3

κ
�4

b=1αab�b. (27)

Some criticism as regards interacting models of DE are in
order; however, the thermal properties of this model in vari-
ous theories of gravity have been discussed in the literature
[111–115]. Furthermore, in Ref. [116], the authors proposed
a systematic scheme to construct the interaction form �a in a
self consistent manner both in the perturbed form and in the
background. They proved that in the perturbation formalism,
there are possible ways to break the degeneracy between the
interaction, DE EoS and DM abundance.

With this choice, the system of equation (24) is written in
the following form:

d�a

dN
= �4

b=1αab�b − �a

(
(1 + wa) + 3

2B − 1

(
�φ

+�m + (1 + w�)�� + (1 + wr )�r

))
. (28)

Let us study a class of these models where the DE interacts
with both matter �m and scalar field components.

Based on our former notation given in (27), our interaction
model is parametrized as follows:

αm� = −6b, α�� = αr� = αφ� = 2b. (29)

The autonomous system of first order differential equations
for density functions is written in the following forms:

d�m

dN
= −6b�� − �m

(
1 + 3

2B − 1

(
�φ

+�m + (1 + w�)�� + (1 + wr )�r

))
≡ f1,

(30)
d��

dN
= 2b�� − ��

(
(1 + w�) + 3

2B − 1

(
�φ

+�m + (1 + w�)�� + (1 + wr )�r

))
≡ f2,

(31)
d�r

dN
= 2b�� − �r

(4

3
+ 3

2B − 1

(
�φ

+�m + (1 + w�)�� + (1 + wr )�r

))
≡ f3,

(32)
d�φ

dN
= 2b�� − �φ

(
(1 + wφ) + 3

2B − 1

(
�φ

+�m + (1 + w�)�� + (1 + wr )�r

))
≡ f4.

(33)

These equations are related to the dynamics and the inter-
action form, characterizing the main properties of our model.

4.1 The critical (fixed) points

We stress here that the high dimensionality of the phase space,
where the system is described using dynamical systems pre-
sented in the previous section, restricts us to having an effec-
tive graphical description of the phase space, and thus we
will focus our investigations only on the analytical results.

To make the dynamical analysis we first need to find the
critical(fixed) points of the system by setting the left hand side
of Eqs. (30)–(33) to zero. Then we use the Hartman theorem
to find the type and stability of each point [117–120].

The location of the fixed points P = (�m,��,�r ,�φ)

and their corresponding eigenvalues of the dynamical system
are in the following table, where the stability of the fixed
points is determined by evaluating the eigenvalues of the
Jacobian matrix associated with the system:

where

x2 = (−9w4
� + (54b + 9wφ − 6)w3

�

+ (−108b2 + (−36wφ + 30)b + 6wφ + 3)w2
�

+ (72b3 + (36wφ − 48)b2 − 3wφ)w�

+ 24b3 + (−24wφ − 12)b2 − 12bwφ)
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P
�

c m
�

c �
�

c r
�

c φ
λ

1
λ

2
λ

3
λ

4

A
−2 3

w
φ
B

−
1 3

+
1 3
w

φ
0

0
0

w
φ

w
φ

+
1

w
φ

−
1 3

2b
−

w
�

+
w

φ

B
0

−2 3
B

+
1 3

0
0

−1 3
1

−w
φ

2b
−

w
�

C
0

0
0

0
−4 3

−1
−w

φ
−

1
2b

−
w

�
−

1
D

0
0

0
−2 3

B
+

1 3
1 3

4 3
−w

φ
+

1 3
1 3

+
2b

−
w

�

E
x 1

/
x 2

y 1
/
y 2

z 1
/
x 2

u
1
/
y 2

1 3
+

2b
−

w
�

−2
b

+
w

�
−2

b
+

w
�

+
1

−2
b

+
w

�
−

w
φ

y2 = (−3w4
� + (18b + 3wφ − 2)w3

�

+ (−36b2 + (−12wφ + 10)b + 2wφ + 1)w2
�

+ (24b3 + (12wφ − 16)b2 − wφ)w�

+ 8b3 + (−8wφ − 4)b2

− 4bwφ)x1 = x(2b)(6b − 3w� + 1)(2b − w�)

y1 = x(−2b)(6b − 3w� + 1)(2b − w� + wφ)

z1 = x(2b − w�)(2b − w� + wφ)(6b − 3w� + 1)

u1 = x(2b)(2b − w�))(2b − w� + wφ)

and

x = (2b − w� − 1)(2B − 1).

The corresponding Jacobian matrix, which we denote J (g),
is equal to⎡
⎢⎢⎢⎢⎢⎢⎣

∂ f1
∂�m

∂ f1
∂��

∂ f1
∂�r

∂ f1
∂�φ

∂ f2
∂�m

∂ f2
∂��

∂ f2
∂�r

∂ f2
∂�φ

∂ f3
∂�m

∂ f3
∂��

∂ f3
∂�r

∂ f3
∂�φ

∂ f4
∂�m

∂ f4
∂��

∂ f4
∂�r

∂ f4
∂�φ

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The eigenvalues and their stability for each point are writ-
ten as follows.

• Stability for point A: The necessary and sufficient condi-
tion to have A1 as a stable fixed point for system is that
all eigenvalues of the Jacobian matrix λi must satisfy
Re(λi ) �= 0, i.e.,

w� ≤ 2b − 1, b <
1

3
w� − 1

3
wφ, (34)

wφ < −1, 2b + 1

3
< w�, (35)

w� ≤ 2b + 1

3
, wφ < −1, 2b − 1 < w�. (36)

From these it is found that the stability occurs at 2b−1 <

w� ≤ 2b + 1
3 .

wφ < −1. The corresponding effective EoS behaves like
weff = wφ . Depending on the wφ , the EoS evolves from
larger than −1 to less than −1, that is, it crosses the
phantom divide line of weff = −1.

• Stability for point B
This is an unstable critical point and the corresponding
effective EoS, weff = w�, is always larger than −1 and
it crosses the phantom divide line when w� = −1.

• Stability for point C :
The stability condition is −1 < wφ, 2b−1 < wφ . Conse-
quentlyC can be stable conditionally. The corresponding
effective EoS is weff = −1; it is located at the crossings
of the phantom divide line.
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• Stability for point D:
We obviously conclude that it is unstable. The corre-
sponding effective EoS is given by weff = 0 and is always
larger than−1 and it cannot cross the phantom divide line.

• Stability for point E :
The point is stable conditionally only and only if w� <

2b − 1, 1
2w� − 1

2wφ < b.

5 Cosmography

The following types of observational data are commonly used
to study cosmography.
SNe Ia: Type Ia supernovae (SNe Ia) or the latest “joint

light curves” (JLA) sample [121], comprised of 740 type Ia
supernovae in the redshift range 0.01 ≤ z ≤ 1.30.
BAO: The baryon acoustic oscillations (BAOs) [122–125]
(see Table I of [126]).
CC+H0: The cosmic chronometer (CC) data set in the red-
shift range 0 < z < 2 [127]. In f (T ) gravity cosmography
is introduced and investigated in detail in Ref. [128].

In Fig. 1, we plot the time evolution of the density func-
tions for b = 0.5, 0.7, 0.9, w� = −1/3, wφ = 0, where
the horizontal axis shows log(1 + z) and the vertical axis
shows the value of the density functions. We can observe that
the density functions of matter, �m , and the cosmological
constant �� increase in time, whereas the density functions
of radiation, �r and �φ , decrease in time. For low redshift
values, 0 < z < 0.1, the densities �φ , �r are monotoni-
cally increasing functions, but the matter and cosmological
constant density functions decrease. At the present redshift
z ∼ 0, �φ ∼ �r are negligible in comparison to the mat-
ter and cosmological constant densities. This confirms the
remarkable observation that the scalar field φ cannot play the
role of DE. So, the density of the scalar field is almost neg-
ligible at the present time. At distinct values of the redshift,
shown as z∗, the densities of matter, radiation, and scalar
field become equal, i.e. �m ∼ �r ∼ �φ . This occurs at
z∗ ≈ 0.1. Furthermore, there is an era when z† ∼ 0.4, in
which �m ∼ �λ, showing another equilibrium among mat-
ter and cosmological constant. These behaviors of the density
functions are compatible with the observations.

5.1 Observation of a type of deceleration to acceleration
phase transition

The deceleration parameter q is defined as

q = −1 − Ḣ

H2 .

If the expansion of the Universe is decelerating, thenq > −1,
while if the cosmic expansion is accelerating, then q < −1.
In our model, using (22), we obtain

Fig. 1 Numerical solutions for density functions for the set of param-
eters b = 0.5, w� = −1/3; wφ = 0. Here, the horizontal axis shows
log(1+ z) and the vertical axis shows the value of the density functions

q = −1 − 3

2(2B − 1)

(
�φ + �m

+(1 + w�)�� + (1 + wr )�r

)
. (37)

We find numerical solutions by using h = 0.7127+0.013
−0.015

km/s/Mpc, �� = 0.7018+0.018
−0.02 , and �m0 = 0.2981+0.02

−0.018,
with χ2

min = 707.4, H0 = 73.24 ± 1.74 km/s/Mpc. In Fig. 2,
we depict the time evolution of the deceleration parameter q
for b = 0.5, 0.7, 0.9. Here, the horizontal axis shows log(1+
z) and the vertical axis shows the value of q. All of the curves
meet. From Fig. 2, it is found that in the past for lower values
of redshift, the value of q evolved from larger than −1 to
less than −1, namely, the expansion phase of the Universe
changed from deceleration to acceleration. This is consistent
with the observations.

5.2 Effective equation of state (EoS) of the Universe

Effective EoS of the Universe was defined in Eq. (26). We
note that in the DE dominated stage, the value of the EoS of
DE can be regarded as the effective EoS of the Universe weff.

In Fig. 3, we show the time evolution of the effective
EoS weff for b = 0.5, 0.7, 0.9, where the horizontal axis
shows log(1 + z) and the vertical axis shows the value of
weff. From Fig. 3, it is found that for low redshift values,
the value of weff became less than − 1

3 and therefore the cos-
mic expansion phase of the Universe changed from decel-
eration to acceleration. It is also seen that in our model, the
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Fig. 2 Deceleration parameterq forb = 0.5, 0.7, 0.9. All of the curves
meet. Here, the horizontal axis shows log(1 + z) and the vertical axis
shows the value of q

Fig. 3 Effective EoS weff for b = 0.5, b = 0.7, b = 0.9. The three
curves coincides. Here, the horizontal axis shows log(1 + z) and the
vertical axis shows the value of weff

value of weff evolves from larger than −1 to less than −1;
that is, it crosses the phantom divide line of weff = −1.
The value of the EoS parameter at the present redshift is
around weff ∼ −1.6 < −1, showing an acceleration expan-
sion beyond the phantom line.

6 de Sitter solution

Cosmological models usually have a de Sitter (dS) solution
where the Hubble parameter is constant (or almost constant
in inflationary scenarios) with H = H0 as trivial solution.
In GR such a solution (used in an inflationary mechanism as
well as in late-time cosmology) becomes accessible when the
dominant energy density ρ ≈ ρ0, which means that to have
the dS case we need matter fields with very slowly varying
energy density. It is not possible to find a dS solution as an
empty space solution in GR. But in modified gravity because
of the geometrical terms (curvature R or torsion T ) it will be
possible to find dS as an (almost) exact solution for the field
equations. In forthcoming sections, we look for a dS solution
both in empty and matter contents cases in model defined by
Eqs. (6) and (7).

Let us firstly perform a little investigation on the equations
of motion. As a result of the continuity equation, we have two
additional Klein–Gordon like dissipative equations (21) in
the noninteracting case, and we can find equations of motion
for φ, ξ . If we suppose that in (11), B = 0, A = −1, they
are written as follows:

φ̈ + 3H φ̇ + 6H2 = 0, (38)

ξ̈ + 3H ξ̇ + 6H2 = 0. (39)

Note that always with f (φ) = −φ, we have ∇μ∇μ(φ−ξ) =
0, and we have “gauge freedom” to write the fields φ, ξ as
follows:

φ − ξ = η(t). (40)

An exact solution for η, in FLRW background, is given by

η(t) =
∫

η0

a(t)3 dt . (41)

Note that η̇(t) ∼ ρm(t). In this case we can interpret η̇(t) as
a cold dark matter density. It is possible to take η0 = 0 or
η0 �= 0. We will study both cases in next subsections.

6.1 Empty spacetime

To find an exact (almost exact) dS solution for a system given
by (6), (7), (38) and (39) in vacuum, let us relax all matter
contents, to make spacetime empty (we will never consider
quantum fluctuations in this approach). Furthermore, we set
H = H0 for the dS case.

6.1.1 Case η(t) = 0:

When η = 0, φ = ξ . Thus the system (38), (39), and (22) is
reduced to the following system:

H0

φ̇
= 1

4
, (42)
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φ̈ + 3H0φ̇ + 6H2
0 = 0. (43)

From the first equation we find φ(t) = 4H0t+φ0. If we sub-
stitute it in the second equation we obtain H0 = 0. In f (T )

gravity, stability for the Einstein Universe is well studied in
[129].

This is just an Einstein static Universe and it proves that
no dS solution may exist.

Let us check whether this solution is stable or not. We
make a perturbation around the solution given by (H, φ) =
(0, φ0). The equation is given by the following:

δφ̈ + 3φ̇δH + 3Hδφ̇ + 12HδH = 0, (44)

and substituting the zeroth order solution we find

δφ̈ = 0. (45)

The exact solution for the perturbation function is

δφ = at + b. (46)

When t → ∞, we clearly observe that the perturbation
is growing linearly and consequently the system becomes
unstable under infinitesimal field and background perturba-
tions.

6.1.2 Case η(t) �= 0

When η = ∫ η0
a(t)3 dt , we have φ̇− ξ̇ = η0

a(t)3 . Thus the system
(38), (39), and (22) is reduced to the following system:

1

2H0
= 1

φ̇
+ 1

ξ̇
, (47)

φ̇ − ξ̇ = η0

a(t)3 . (48)

Note that in the dS phase, a(t) = a0eH0t . An exact solution
for the field pair φ, ξ is given as follows:

φ0(t) = C2 + 2H0t − η0

6a3
0H0

e−3H0t

+ 1

6H0a3
0

(
� − 4a3

0

√
H0 tanh−1(

�

4a3
0

√
H0

)
)
, (49)

ξ0(t) = C2 + C1 + 2H0t + η0

6a3
0H0

e−3H0t

+ 1

6H0a3
0

(
� − 4a3

0

√
H0 tanh−1(

�

4a3
0

√
H0

)
)
. (50)

Here C1,C2 are arbitrary integration constants and � =
16H0a6

0 +a3
0H

2
0 e

−6H0t . The solutions given in (50) and (51)
are exact solutions for the dS phase of our model under study.
Let us study its stability under perturbations in a time repre-
sentation of fields and backgrounds. In Sect. 7.1 another,
equivalent analysis using slow-roll coordinate N will be
introduced.

The perturbation of the field equations (38), (39) and Eq.
(7) around the solution given by (H, φ, ξ) = (H0, φ0, ξ0)

substituted in Eqs. (50) and (51) is given by the following
system of equations:

δφ̈ + 3φ̇0δH + 3H0δφ̇ + 12H0δH = 0, (51)

δξ̈ + 3ξ̇0δH + 3H0δξ̇ + 12H0δH = 0, (52)

2δ Ḣ + 4φ0δ Ḣ + (ξ̇0 − 2H0)δφ̇ +
(φ̇0 − 2H0)δξ̇ − 2(ξ̇0 + φ̇0)δH = 0. (53)

It is hard to find exact solutions for the perturbation func-
tions and we do not discuss all this. Note that, asymptotically,
φ ∼ ξ ≈ 2H0t ; consequently we can find the following solu-
tions, which are valid only when t → ∞:

δφ ∼ δξ ≈ (H0t)
2, δH ≈ H0t. (54)

We conclude that the dS case behaves as an unstable phase
in our model.

6.2 Case of matter contents

Now we study exact solutions in the dS phase when ρa �= 0.
As a general case we consider the model given in (6) and (7)
for the general densities ρm = ρ0

ma(t)−3.

6.2.1 Case η(t) = 0

When η = 0, φ = ξ , the system (22), (38), and (39) is
reduced to the following system:

φ̇2 − 4H0φ̇ + κρ0
ma(t)−3 = 0, (55)

φ̈ + 3H0φ̇ + 6H2
0 = 0. (56)

The exact solutions show that H0 = 0 is the only possible
solution. Thus, similar to the empty case, still we just have
an Einstein static Universe.

If we perturb the system around the solutions given above,
we have the following system of equations:

δφ̈ = 0, (57)

2(1 + 2φ0)δ Ḣ − δρm(t) = 0, (58)

where φ0 = C is a constant. The system is clearly asymptot-
ically unstable; consequently, no stable static Einstein Uni-
verse exists.

6.2.2 Case η(t) �= 0

When η = ∫ η0
a(t)3 dt , the system (22), (38), and (39) is

reduced to the following system:

φ̇ξ̇ − 2H0(φ̇ + ξ̇ ) + κρ0
ma(t)−3 = 0, (59)

φ̇ − ξ̇ = η0

a(t)3 . (60)

The exact solutions are given in terms of first integrals:

φ̇ = 2H0 + η0

2a(t)3
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−1

2

√
η0a(t)−6 − 4κρ0

ma(t)−3 + 16H2
0 , (61)

ξ̇ = 2H0 − η0

2a(t)3

−1

2

√
η0a(t)−6 − 4κρ0

ma(t)−3 + 16H2
0 . (62)

Therefore we have a dS solution. We also conclude that
the system behaves asymptotically, φ ∼ ξ ≈ 2H0t ; con-
sequently, we can find the perturbed solutions when t → ∞
diverge and consequently the system becomes unstable.

7 Stability of de Sitter via the Hartman–Grobman
linearizion theorem

The stability of the dS solution plays an essential role in an
inflationary scenario if we are to have a thermalization phase.
Because the nonlocal theory is supposed to be an alternative
for theories for inflation we will study the stability in this
context.

7.1 Stability in vacuum

In vacuum we observed that only when η �= 0 we have dS
solutions given by (50) and (51). Let us see whether this
solution is stable or not. Suppose that H = H0, and (50)
and (51) are exact solutions for (6), (7) and (38), (39) with
f (φ) = −φ. We can find the following auxiliary system:

ξ̈ + 3H ξ̇ + 6H2 = 0, (63)

φ̈ + 3H φ̇ + 6H2 = 0, (64)

Ḣ

3H2 = 2H(
1

φ̇
+ 1

ξ̇
) − 1. (65)

Note that Eq. φ̇ − ξ̇ = η0
a(t)3 is obtained using subtraction

of two KG eqs for φ, ξ . To study stability the first step is
to make system given in (63)–(65) dimensionless, using the
new time parameter N and the new derivative ′ = d

dN we
have

ϕ′ = −6(2 + φ

α
), (66)

α′ = −6(2 + α

ϕ
), (67)

H ′ = −3H

(
1 − 2

ϕ
− 2

α

)
, (68)

where ϕ ≡ φ′, α ≡ ξ ′. The critical point is located at A =
(H = H0, α = 0, ϕ = 0). We linearize the system under
the perturbation functions H = H0 + δH, ϕ = δϕ, α = δα.
The corresponding matrix has an eigenvalue λ1 = 0, and it
shows that the dS solution is an unstable point.

7.2 Stability in matter mixture

The FLRW equations are given as follows for the case with
matter density and when φ �= ξ :

2Ḣ

3H2 = −φ̇ξ̇ + 2H(φ̇ + ξ̇ ) − κρ0
ma(t)−3

1
2 φ̇ξ̇ + κρ0

ma(t)−3
, (69)

ξ̈ + 3H ξ̇ + 6H2 = 0, (70)

φ̈ + 3H φ̇ + 6H2 = 0. (71)

In this case because of a(t) the system becomes nonau-
tonomous but still we can study the local stability in the
vicinity of a critical point for t ≥ ts . Using the time coor-
dinate N and by redefining ϕ ≡ φ′, α ≡ ξ ′ we have the
following system of differential equations:

2

3

H ′

H
= H2(2(ϕ + α) − ϕα) − κρ0

ma
−3

1
2 H

2ϕα + κρ0
ma

−3
, (72)

ϕ′ = −3(4 H2a3α ϕ + 2 H2a3ϕ2 + κ ϕ ρ0
m + 4 κ ρ0

m)

H2a3α ϕ + 2 κ ρ0
m

, (73)

α′ = −3(2 H2a3α2 + 4 H2a3α ϕ + α κ ρ0
m + 4 κ ρ0

m)

H2a3α ϕ + 2 κ ρ0
m

;
(74)

here ϕ ≡ φ′, α ≡ ξ ′.
The corresponding linearized system near the unique

physically accepted critical point {H = 0, α = −4, φ =
−4}, called a proper node, or a star point (actually it defines
an Einstein static solution) has a triplet proper node degener-
ate eigenvalue λ = − 3

2 . The critical point is asymptotically
stable, and it shows that the system is asymptotically stable.

8 Conclusions

In this paper, we have considered the exact cosmological
solutions in nonlocal f (T ) gravity, which can be regarded
as an extension of nonlocal general relativity to the Weitzen-
böck spacetime. We have explored the autonomous system
of the first order dynamical equations by deriving effective
forms of the cosmological field equations in a homogeneous
and isotropic cosmological background to describe the whole
evolution history of the Universe. Furthermore, we have
introduced a specific form of the interaction between mat-
ter, DE, radiation and a scalar field and analyzed the local
stability in the dynamical systems, which is the so-called
“stable/unstable manifold”. It has been found that the sys-
tem has a stable (unstable) attractor solutions. In addition,
we have investigated the exact solutions of the cosmological
equations in the case of de Sitter spacetime. We have demon-
strated results as to whether the de Sitter solutions can exist
or not in this scenario by examining the role of an auxil-
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iary function called the “gauge” function, η, in the formation
of such cosmological solutions. Moreover, we have studied
the stability problem of the de Sitter solutions both in vac-
uum and non-vacuum spacetimes. It has been shown that,
for nonlocal f (T ) gravity, we can obtain the stable de Sitter
solutions even in vacuum spacetime.
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