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Phase-space dynamics of runaway electrons in tokamaks
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Princeton Plasma Physics Laboratory,
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Abstract

The phase-space dynamics of runaway electrons is studied, including the influence of loop voltage,

radiation damping, and collisions. A theoretical model and a numerical algorithm for the runaway

dynamics in phase space are developed. Instead of standard integrators, such as the Runge-Kutta

method, a variational symplectic integrator is applied to simulate the long-term dynamics of a

runaway electron. The variational symplectic integrator is able to globally bound the numerical

error for arbitrary number of time-steps, and thus accurately track the runaway trajectory in phase

space. Simulation results show that the circulating orbits of runaway electrons drift outward toward

the wall, which is consistent with experimental observations. The physics of the outward drift is

analyzed. It is found that the outward drift is caused by the imbalance between the increase of

mechanical angular momentum and the input of toroidal angular momentum due to the parallel

acceleration. An analytical expression of the outward drift velocity is derived. The knowledge of

trajectory of runaway electrons in configuration space sheds light on how the electrons hit the first

wall, and thus provides clues for possible remedies.

PACS numbers: 52.20.Dq,52.30.Gz,52.65.Cc
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I. INTRODUCTION

In tokamaks, relativistic runaway electrons are often observed during and after a plasma

disruption or during a fast plasma shutdown [1–4]. The growth-rate of avalanche runaway

electron induced by knock-on process, synchrotron radiation and magnetic fluctuations has

been studied extensively [5–7]. Runaway electrons can hit and damage the first wall [8]. In

a long-pulse discharge with non-zero loop voltage, runaway electrons can hit and damage

the wall even without disruption or fast shutdown. Also, during start-up with non-ohmic

current-drive, runaway electrons can be produced in the direction opposing the current,

presenting similar issues [9]. Previous research had focused on the energy limit of runaway

electrons under the influence of loop voltage, synchrotron radiation, bremsstrahlung drag

forces, and collisions [10–13]. The evolution path of a runaway electron in momentum space

due to these four physical effects has been studied in details [14, 15]. The effects of stochastic

magnetic field on the transport and energy limit of runaway electrons have also been studied

[16–20].

On the other hand, the orbits of runaway electrons in configuration space, even without

magnetic fields fluctuation, have not been thoroughly studied. However, a comprehensive

understanding of the configuration space trajectory of runaway electrons is important, be-

cause it tells us how the electrons hit the first wall, and thus provides clues for possible

remedies. In addition, the termination of runaway electron orbits in configuration space can

also modify the maximum energy, especially for those electrons originated from the edge re-

gion. Based on the experimental observations on the Tore Supra tokamak and relevant orbit

calculation [21], it was suggested that runaway electrons can shift far away from magnetic

surfaces within one transit period, and the orbit will open to intersect the conducting wall.

An early study in a small tokamak indicated that there are possible trajectories of runaway

electrons which shift tens of millimeters outward and expand radially in a single toroidal

pass [22]. More comprehensive theoretical and numerical studies are needed to understand

the physics of runaway electrons drifting away from magnetic surfaces.

In this paper, we study runaway electron orbits in the phase space under the influences of

loop voltage, synchrotron radiation, bremsstrahlung radiation and collisions in system time-

scale. The loop voltage is modeled as an inductive electric field. The radiation damping

of synchrotron and bremsstrahlung radiation is modeled as an effective force acting on
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electrons. Collisional effect is included using the Monte-Carlo methods. To numerically

calculate the phase space trajectory of runaway electrons, we adopt a variational symplectic

integrator [23–25] with good global conservative properties over long integration time. This is

because we need to guarantee that the numerical error accumulated over this very long-time

scale is less than the size of the physical effects. For standard numerical integrators, coherent

error accumulation over many time-steps can be significantly larger than the collisional

effects and the long-term runaway dynamics. Therefore, it is crucial that we use a variational

symplectic integrator for the guiding center dynamics to carry out the numerical simulation

of runaway electrons. Through simulation studies, we discover that the circulating orbits

of runaway electrons drift outward toward the wall, which is consistent with experimental

observations. The physics of this outward drift is analyzed. It is found that the outward

drift is caused by the imbalance between the increase of mechanical angular momentum

and the input of toroidal angular momentum due to the parallel acceleration. We derive an

analytical expression of the outward drift velocity, which is able to explain the main feature

of the simulation results.

The paper is organized as follows. The theoretical model of a runaway electron and

the symplectic variational integrator with good global conservative properties over long

integration time are developed In Sec. II. In Sec. III, numerical results are presented and the

physics of the outward drift of the circulating orbit of a runaway electron is analyzed, along

with an analytical derivation of the outward drift velocity. Conclusions and future work are

discussed in Sec. IV.

II. THEORETICAL MODEL AND NUMERICAL ALGORITHM

The relativistic guiding center Lagrangian, in the absence of the effects of radiation and

collisions, can be written as [26]

L =
(

eA0 + eA1 + p‖b
)

· ẋ−γmc2, (1)

where e is the charge, A0 is the vector potential of the equilibrium magnetic field, p‖

is the momentum along magnetic fields, b is unit vector along magnetic fields, γ =
√

1 + p2
‖/m

2c2 + 2µB/mc2 is the relativistic factor, B is the magnetic fields, µ = p2
⊥/2mB
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is the magnetic momentum, p⊥ is the momentum perpendicular to the magnetic fields, m is

the rest mass of the electron, and c is the speed of light. Here, the electric field due to the

loop voltage is included as an inductive field,

E1 = −

∂A1

∂t
. (2)

We now include the effects of radiation and collisions. For the radiation, previous studies

have shown [10, 14, 15] that the radiation can be treated as a drag force in the opposite

direction of the velocity of the particle, which is equivalent to an effective inductive electric

field,

Eeff = −

∂Aeff

∂t
. (3)

The magnitude of Eeff is determined by

eEeff = FS + FB , (4)

where FS represents synchrotron radiation drag force, and FB represents bremsstrahlung

friction force. They can be expressed as [10, 14, 15]

FS =
2

3
remc2

(

√

γ2
−1

γ

)3

γ4

(

1

R2
0

+
sin4 θ

r2
g

)

, (5)

FB =
4

137
ne (Zeff + 1)mc2γr2

e

(

ln 2γ−
1

3

)

, (6)

where R0 is the major radius, sin θ = p⊥/p is the pitch angle, rg = p⊥/eB0 is the electron

gyro-radius, re = e2/4πε0mc2 is the classical electron radius, ne is the plasma density, and

Zeff is the effective ionic charge. Therefore, our relativistic Lagrangian for the guiding

center dynamics of a runaway electron with loop voltage and radiation effects is

L =
(

eA0 + eA1 + eAeff,‖ + p‖b
)

· ẋ−γmc2 , (7)

where the magnetic momentum and relativistic factor are

µ =
p2
⊥

2mB
+

eAeff,⊥p⊥
2mB

, (8)

4



γ =

√

√

√

√

1 +
p2
‖

m2c2
+

2
(

µ −
eAeff,⊥p⊥

2mB

)

B

mc2
. (9)

The collisional effects for runaway electrons are modeled by the Monte-Carlo method, where

each collision induces changes in momentum space according to [2, 4, 11]

∆p‖ = −

nee
4 ln Λm

4πε2
0

γ (Zeff + 1 + γ)
p‖
p3

∆t = f
(

p‖, p
2
⊥

)

∆t , (10)

∆p2
⊥ =

2nee
4 ln Λm

4πε2
0

γ

p3
[p2

‖(Zeff + 1) − γp2
⊥]∆t = g

(

p‖, p
2
⊥

)

∆t . (11)

Here, ln Λ is the Coulomb logarithm. Note that the momentum is dominant in parallel

direction, and the collisional effect is mainly the averaged slowing-down and momentum

flow from the parallel direction to the perpendicular direction due to pitch-angle scattering.

To numerically solve for the phase-space dynamics of a runaway electron, the numerical

integrator we use must have good global conservative properties over long integration time

for the following two reasons. First, the time-scale of evolution of the runaway electrons

due to loop voltage and radiation drag is much longer than the circulating period, typically

many thousands times of the circulating period. Standard numerical integrators, such as the

fourth-order Runge-Kutta method, can’t track the trajectory accurately for such a long time

[23–25]. This is because these standard integrators only guarantee that the error is small in

each time-step. However, the errors at different time-steps often accumulate coherently and

result in a large error over a large number of time-steps. Secondly, the collisional effects are

usually small in each circulating period. To accurately simulate the long-term dynamics of

a runaway electron and the collisional effects, we need to guarantee that the numerical error

accumulated over this very long-time scale is less than the size of the physical effects. For

standard numerical integrators, coherent error accumulation [23–25] over many time-steps

can be significantly larger than the collisional effects and the long-term runaway dynamics.

Therefore, it is crucial that we use a variational symplectic integrator for the guiding center

dynamics [23–25] to carry out the numerical simulation of runaway electrons.

For simplicity, we consider a 2D tokamak model with circular concentric flux surfaces.

In this geometry, there are two useful coordinate systems, the cylindrical coordinate system

(R, ξ, z) and the toroidal coordinate system (r, θ, ξ = −ξ), which are illustrated in Fig. 1.
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The magnetic field is chosen to be

r

z

R

0R θ

ξ

ξ

FIG. 1: 2D tokamak geometry with circular concentric flux surfaces.

B =
B0r

qR
eθ +

B0R0

R
eξ , (12)

where B0, R0 and q are constant with their usual meanings. The vector potential A0, A1,

Aeff,‖, Aeff,⊥, which correspond to the magnetic field, loop voltage, radiation drag force,

are chosen to be

A0 =
B0r

2

2Rq
eξ − ln

(

R

R0

)

R0B0

2
ez +

B0R0z

2R
eR , (13)

A1 = E1t
R0

R
eξ , (14)

Aeff,‖ = Eeff,‖tb , (15)

Aeff,⊥ = Eeff,⊥t. (16)

In this geometry, the relativistic guiding center Lagrangian is

L =
(

eA0 + eA1 + eAeff,‖ + p‖b
)

· ẋ−γmc2 = prṙ + pθθ̇ + pξ ξ̇ − H , (17)

pr = −e ln

(

R

R0

)

R0B0

2
sin θ + e

R0B0z

2R
cos θ , (18)
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pθ = −e ln

(

R

R0

)

R0B0r

2
cos θ − e

R0B0z

2R
sin θ +

(

p‖ + eEeff,‖t
)

r2

√

r2 + R2
0q

2
, (19)

pξ =

(

e
B0r

2

2Rq
+

(

p‖ + eEeff,‖t
)

R0q
√

r2 + R2
0q

2
+ eE1t

R0

R

)

R, (20)

H = mc2

√

1 +
p2
‖

m2c2
+

2B

mc2

(

µ −

eEeff,⊥tp⊥
2mB

)

. (21)

Because ∂L/∂ξ = 0, we have

pξ =
∂L

∂ξ̇
= const. (22)

From Eq. (20), we can solve for p‖ in terms of the invariant pξ

p‖ =

(

pξ − e
B0r

2

2q
−

eEeff,‖tR0Rq
√

r2 + R2
0q

2
− eE1tR0

)

√

r2 + R2
0q

2

RR0q
, (23)

and substitute Eq. (23) into Eqs. (17)-(21). The 2D dynamics in the (r, θ) space is then

determined by the Lagrangian

L = prṙ + pθθ̇ − H, (24)

which is obtained from Eq. (17) by removing the pξξ̇ term. This is the Ruth reduction. The

invariant pξ enters Eq. (24) parametrically.

To numerically solve for the runaway dynamics we apply the variational symplectic al-

gorithm [23–25] to this 2D relativistic guiding center Lagrangian. In the simulation, we use

coordinates (x, y) instead of (r, θ). The first-order discretized Lagrangian corresponding to

L in the time interval t = [kh, (k + 1)h] is [23–25]:

Ld (k, k + 1) ≡ px(k, k + 1)
xk+1 − xk

h
+ py(k, k + 1)

yk+1 − yk

h
− H(k, k + 1). (25)

The iteration relations for each step are

∂

∂xk

[Ld(k − 1, k) + Ld(k, k + 1)] = 0, (26)

∂

∂yk

[Ld(k − 1, k) + Ld(k, k + 1)] = 0. (27)
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Collisional effects are included according to Eqs. (10) and (11),

∆p‖ = f
(

p‖, p⊥
)

∆t, (28)

∆p⊥ = g
(

p‖, p⊥
)

∆t. (29)

Equations (28) and (29) give us the iteration relations

(

pk+1
‖ − pk

‖

)

∆t
= f

[

pk+1
‖ + pk

‖

2
,
pk+1
⊥ + pk

⊥

2

]

, (30)

(

pk+1
⊥ − pk

⊥

)

∆t
= g

[

pk+1
‖ + pk

‖

2
,
pk+1
⊥ + pk

⊥

2

]

, (31)

where ∆t is the time-step.

III. PHASE-SPACE DYNAMICS OF RUNAWAY ELECTRONS

Using the theoretical model and variational symplectic integrator developed in Sec. II, we

now study the phase-space dynamic of a runaway electron in a typical tokamak. The major

radius of the tokamak is taken to be R0 = 1m, the on-axis magnetic field is B0 = 5T , and the

safety factor is q = 2. The loop voltage is chosen to be 5V/m. The simulation time-step ∆t

in Eqs. (30) and (31) is chosen to be 5×10−8/ν, where ν = nee
4 lnΛ/ (4πε2

0m
2
ec

3) is collision

frequency for relativistic electrons. The simulation results of the phase space trajectory are

displayed in Fig. 2. Plotted in Fig. 2(a) and Fig. 2(b) are runaway electron orbits in the

configuration space projected onto a poloidal plane. Fig. 2(a) is result for an electron with

collisions starting from the initial energy E0 = 3.35MeV , initial momentum p‖ = 5mc and

p⊥ = 1mc, and initial position x0 = 0.1m and y0 = 0m. The circulating orbits at different

time are plotted. Fig. 2(b) is the same case as Fig. 2(a), but without collisions. Plotted in

Fig. 2(c) and Fig. 2(d) are parallel momentum and square of perpendicular momentum of

the same electron versus time. The black line is the collisional case, and the red line is the

collisionless case. These results show clearly that the circulating orbit of runaway electron

drifts outward toward the wall. By comparing the results with and without collisions, we

observe that collisions have no significant effects on configuration space trajectory. But in
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the momentum space, collisional effects are important. Perpendicular momentum increases

significantly as a result of the pitch-angle scattering.

FIG. 2: (a) Runaway electron drift orbits with collisions starting from the initial energy E0 =

3.35MeV , initial momentum p‖ = 5mc, p⊥ = 1mc and initial position x0 = 0.1m, y0 = 0m. (b)

The same case as (a), but without collisions. (c) Parallel momentum versus time for the same

runaway electron with (black line) and without (red line) collisions. (d) Perpendicular momentum

squared versus time for the same electron.

As mentioned in Sec. I, previous studies have been focused on the runaway dynamics

in the momentum space [14, 15]. Here, we compare our simulation results with previous

studies on momentum dynamics of runaway electrons [14, 15]. Fig. 3(a) is the momentum

trajectories of runaway electrons generated in our simulation. Different lines start from

different initial conditions as marked in the figure. Fig. 3(b) is the momentum trajectories

of the same runaway electrons obtained using the numerical method reported in [14, 15].
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Our results agree with previous results very well. There are some differences in the fine scale,

which can be attributed to the fact that in our theoretical model, the momentum space and

the configuration space are coupled, and in previous studies the momentum dynamics is

decoupled from the configuration coordinates. The agreement displayed in Fig. 3 indicates

that the previous assumption of momentum space being decoupled from the configuration

space is indeed valid for the specific cases under investigation.

FIG. 3: (a) Momentum space trajectories for runaway electrons starting from initial momenta
(

p‖/mc, p⊥/mc
)

= (15, 3), (20, 4), (25, 5), (30, 6), (35, 7), (40, 8). (b) Momentum space trajectories

for the same runaway electrons using the method reported in [14, 15].

The outward drift of the circulating orbit of a runaway electron is mainly due to the

parallel acceleration induced by loop voltage and radiation damping. We now analyze the

physics of this outward drift, and develop an analytical model for it. Let’s consider the

guiding center orbit in a tokamak with the circular concentric flux. Assume that we select a

fixed vertical position y = r sin θ. At the moment the guiding center of a runaway electron

is crossing the height of y, we measure its horizontal position, toroidal angle, and parallel

momentum to be
(

x, ξ, p‖
)

. The guiding center comes back to the same height from the

same side after one poloidal period ∆t, and the phase space coordinates are shifted to
(

x + ∆x, ξ + ∆ξ, p‖ + ∆p‖
)

. Our objective is to calculate ∆x, and ∆x/∆t measures the

outward drift velocity of the circulating orbit of the runaway electron. To calculate ∆x, we

use the conservation of toroidal angular momentum Eq. (22), and the energy equation

∆
(

γmc2
)

=
z

e (E1 + Eeff) · ds . (32)
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Equation (32) states that the increase of guiding center energy equals the work done by the

loop voltage and radiation drag force. From Eq. (22) we have

∆pξ = 0 . (33)

The parallel momentum is always much larger than the perpendicular momentum, so for

simplicity we only consider the radiation drag in the toroidal direction. Because the effects of

the loop voltage and radiation drag in each poloidal period is small, we further assume that

they can be treated as constants within each poloidal period. With these approximations,

Eq. (32) and Eq. (33) can be expressed as

∆
(

γmc2
)

=
z

e (E1 + Eeff) · ds ≈ −e
(

E1 + Eeff,‖

)

z
Rξ̇dt, (34)

e
B0x∆x

q
+ ∆p‖

RR0q
√

x2 + y2 + R2
0q

2
+ p‖∆

(

RR0q
√

x2 + y2 + R2
0q

2

)

+ e
(

E1 + Eeff,‖

)

R0∆t = 0 .

(35)

The integration in Eq. (34) is the toroidal precession of the circulating guiding center [27].

It can be carried out along the unperturbed circulating orbit without outward drift. The

quantities ξ̇ and ṗ‖ needed in the integration are obtained from the unperturbed relativistic

guiding center Lagrangian L0 without loop voltage and radiation drag force

L =
(

eA0 + p‖b
)

· ẋ−γmc2 = prṙ + pθθ̇ + pξ ξ̇ − H, (36)

pr = −e ln

(

R

R0

)

R0B0

2
sin θ + e

R0B0z

2R
cos θ, (37)

pθ = −e ln

(

R

R0

)

R0B0r

2
cos θ − e

R0B0z

2R
sin θ +

p‖r
2

√

r2 + R2
0q

2
, (38)

pξ =

(

e
B0r

2

2Rq
+

p‖R0q
√

r2 + R2
0q

2

)

R, (39)

H = mc2

√

1 +
p2
‖

m2c2
+

2µB

mc2
. (40)
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The Euler-Lagrangian equations are

d

dt

∂L0

∂ẋi

=
∂L0

∂xi

,
(

xi = r, θ, ξ, p‖
)

. (41)

From Eqs. (36)-(41) we have

ξ̇ = ξ̇(0) + ξ̇(1) cos θε + O
(

ε2
)

, (42)

ṗ‖ = ṗ
(1)
‖ sin θε + O

(

ε2
)

, (43)

where ξ̇(0) = p‖/R0m
√

1 + p2
‖/m

2c2 + 2µB0/mc2 and ε = r/R0. From Eqs. (42) and (43),

it’s clear that to calculate the integration in Eq. (34) to O (ε), we can use Rξ̇ = R0ξ̇
(0), and

p‖ = const. Therefore the toroidal precession is

z
Rξ̇dt ≈ R0ξ̇

(0)∆t =
p‖∆t

R0m

√

1 +
p2

‖

m2c2
+ 2µB0

mc2

. (44)

Substituting Eq. (44) into Eq. (34) and keeping only the leading terms in terms of ε, we can

solve for ∆p‖,

∆p‖ = −e
(

E1 + Eeff,‖

)

∆t +
mµB0∆x

p‖R0

. (45)

Plugging Eq. (45) into Eq. (35) to eliminate ∆p‖ and keeping the leading terms in terms of

ε, we have
eB0x

q
∆x − e

(

E1 + Eeff,‖

)

x∆t = 0. (46)

In above derivation, we assume ρ/r to be small, where ρ is the gyro-radius. This is

true even for a highly relativistic electron. For example, for an electron with momentum

p‖ ∼ p⊥ ∼ 100mc and total energy E ∼ 70MeV , its gyro-radius in a 5T magnetic field

is only about 3cm, which is smaller than the minor radius. Equation (46) states that the

outward drift velocity of the circulating orbit of a runaway electron is

vdr =
∆x

∆t
=

q
(

E1 + Eeff,‖

)

B0
, (47)

which is in the x-direciton. This agrees exactly with the numerical results shown in Fig. 2.

From above analysis, we note that this outward drift is caused by the imbalance between the
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increase of mechanical angular momentum and the input of angular momentum due to the

toroidal acceleration. The conservation of canonical angular moment in the toroidal direction

requires the radial position of the electron to change to compensate for the imbalance.

The trajectories of runaway electron on poloidal plane have been discussed with details

in previous work [28]. The orbits are treated as closed orbits, which are described by the

equation [28]

(R − R0 − dnet−drift)
2 + z2 = const, (48)

where, R is the horizontal position of runaway electrons, R0 is the magnetic axis position,

dnet−drift is the net-drift, i.e., the distance between the drift orbit and the flux surface, and

z is the vertical position of runaway electrons. The net drift is a constant. The typical

value of the net drift is the safety factor q times the gyroradius. However, the discussion

doesn’t include the effects of toroidal electric fields, radiation and collisions. We have found

that, under the influence of toroidal electric fields, radiation and collisions, the orbits of

runaway electrons are not closed. They can’t be described by the above equation. The

orbits of runaway electron drift away from flux surfaces toward to the first wall. The net

drift is not a constant. It increases as time before the force balance of toroidal electric fields,

radiation and collisions is reached. Eventually, the net drift can be comparable to the minus

radius. Generally speaking, the overall trajectories of runaway electrons on poloidal plane

are determined by the physics of radiation, collisions balancing with toroidal electric fields.

However, collisions are less important than radiation since runaway electrons are relativistic.

Equation (47) looks similar to the Ware pinch velocity [29],

vware =
E1

Bθ

. (49)

However they are not the same. The Ware-pinch is the pinch due to the effect of the toroidal

electrical field on trapped particles. Equation (47), on the other hand, describes the drift of

circulating orbits induced by the effective toroidal electrical field. Previously, the effect of

toroidal electrical field on circulating particles was thought to be the usual E×B drift [29],

i.e.,

vdr0 =
E× B

B2
. (50)
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In tokamaks, it can be written as

vdr0 =
EBθ

B2
0

, (51)

which is smaller than the Ware pinch velocity by O (ε2). However, our analysis leading up

to Eq. (47) shows that the drift velocity of circulating orbits due to toroidal electric field is

actually one order larger than the E × B drift. It is smaller than the Ware pinch velocity

by O (ε) instead of O (ε2). It’s not small enough to be neglected in the study of relativistic

runaway electrons dynamics in tokamaks. The outward drift of circulating orbits is smaller

than the Ware pinch because it is impossible to accelerate a trapped electron in the toroidal

direction. All of the input of toroidal angular momentum needs to be balanced by the

change of radial position. For circulating electrons, most of the angular momentum input

is balanced by the increasing of mechanical angular momentum, and the imbalance is O (ε)

smaller, which results in an outward drift smaller than the Ware pinch velocity by O (ε) in

amplitude.

The analytical result in Eq. (47) is compared with simulation results in Fig. 4(a) and

Fig. 4(c). Plotted in Fig. 4(a) is the theoretical and simulated outward drift distance versus

time for the case of Fig. 2(a). Plotted in Fig. 4(c) is the theoretical and simulated drift

distance versus time for the case of Fig. 2(b). These comparisons show that the analytical

model leading to Eq. (47) captures the basic feature of the outward drift of the runaway

electron. The effective electric fields of the loop voltage and radiation drag for the same

electron are plotted in Fig. 4(b) and Fig. 4(d) for the cases corresponding to Fig. 4(a) and

Fig. 4(c), respectively. We observe that when the effective electric field of radiation damping

is approaching to that of the loop voltage, the drift motion slows down. This is consistent

with the analytical result of Eq. (47). Again, by comparing the results with and without

collisions, we observe that collisions have no significant effects on the outward drift. This is

consistent with the results in Fig. 2.

Finally, we emphasize that it’s easy to verify that the outward drift of runaway electrons is

indeed important for future tokamaks operated in steady state. For non-relativistic particles,

the gyrocenter orbit is typically close to a flux surface. The fact that circulating orbits

of runaway electrons drift away from flux surfaces may raise the question whether this

kind of orbit is consistent with the gyrocenter approximation. In order for the gyrocenter

approximation to be correct, we only need the gyro-radius to be smaller than the scale-length
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FIG. 4: (a) The theoretical and simulated drift motion for a runaway electron which starts from

the initial energy E0 = 3.35MeV , initial momentum p‖ = 5mc, p⊥ = 1mc and initial position

x0 = 0.1m, y0 = 0m with collisions. (b) The effective electric field of the loop voltage and

radiation for the same electron as in (a). (c) The theoretical and simulated drift motion for the

same runaway electron without collisions. (d) The effective electric field of the loop voltage and

radiation drag for the same runaway electron as in (c).

of the magnetic field. As calculated before, even for a 75MeV runaway electron with a large

perpendicular momentum p‖ ∼ 140mc and p⊥ ∼ 40mc in a 2T magnetic field, the gyroradius

is 3cm. Therefore, for typical relativistic runaway electrons, the gyrocenter approximation is

valid. To estimate the net departure of the orbit, we address the definition of the departure

first. If the displacement is defined as the maximum displacement of a runaway electron

relative to the closed flux surface that it starts from in one poloidal period, then it can be

estimated as

d1 ∼
2qπp‖
eB0

. (52)
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The following is a simple derivation of this estimate. In one poloidal period of the circulating

orbit, the total distance that the electron travels along the field line is 2πR0q. The time

for this one poloidal period is therefore 2πR0q/v‖. Because the drift velocity relative to the

closed flux surface is vd ∼ p2
‖/γmeeBR, with assumption that the drift velocity is a constant,

the maximum displacement relative to the closed flux surface in one poloidal period can be

estimated as d1 ∼ (2πR0q/v‖)(p
2
‖/γmeeBR) ∼

2qπp‖

eB0

. If the displacement is defined as the

distance between the center of the runaway orbit and the magnetic axis, then it is estimated

to be [28]

d2 ∼
qp‖
eB0

. (53)

This estimate is a result of toroidal angular momentum conservation. The difference between

the above two estimations is caused by how the displacement is defined. There is no real

difference in terms of physics. However, we believe that Eq. (53) should be used when

assessing whether or not the runaway electron reaches the wall, because Eq. (53) measures

the net displacement of runaway electron away from magnetic axis. Now we will use Eq. (53)

to estimate how large this displacement can be. Considering a tokamak machine which can

maintain a steady state for 10sec with magnetic field B ∼ 2T , safety factor q ∼ 2, Zeff ∼ 2

and loop voltage V ∼ 0.1V , a runaway electron in this tokamak can easily gain an energy

above 75MeV in 2 ∼ 3sec which corresponding to p‖ ∼ 150mec. The total displacement is

d2 ∼ 26cm. The minor radii of Alcator C-Mod, EAST and DIII-D are about 21cm, 45cm

and 50cm, respectively. The toroidal magnetic fields of these three tokamaks are about 5T ,

2T and 2T [30–32]. The estimation of d2 ∼ 26cm is comparable to any minor radii listed

above. Therefore, the drift motion of runaway electron under influence of toroidal electric

field is indeed important.

In addition, even for a large tokamak like ITER, the displacement of d2 ∼ 26cm can

result in important effects. For a tokamak operated in steady state, high power RF waves

will be injected into the tokamak to maintain a preferred current profile. RF waves can

pump electrons from lower energy region to higher energy region in which runaway electrons

can be generated easily. Therefore a large amount of runaway electrons can be born at the

location where RF wave power is absorbed, for example some location off-center. For these

runaway electrons born at off-center location, the displacement d2 ∼ 26cm is large enough

for them to hit the first wall.

16



IV. DISCUSSION AND CONCLUSIONS

The phase-space dynamics of runaway electrons in tokamaks has been studied in this

paper. We developed a physical model for runaway electrons under the influence of the loop

voltage, radiation drag and collisions. In this model, we treat the loop voltage and radiation

drag as inductive electric fields. The collisions are modeled by the Monte-Carlo method.

To numerically simulate the long-term dynamics of a runaway electron, we applied a varia-

tional symplectic algorithm for the guiding center of electrons. The variational symplectic

algorithm adopted has good global conservative properties over long integration times and

thus is more suitable for simulating the runaway dynamics, compared with standard integra-

tors which often have coherent error accumulation over a large number of time-steps. The

physics of this outward drift is analyzed. It is found that the outward drift is caused by the

imbalance between the increase of mechanical angular momentum and the input of toroidal

angular momentum due to the parallel acceleration. An analytical expression of the outward

drift velocity is derived. The knowledge of trajectory of runaway electrons in configuration

space sheds light on how the electrons hit the first wall, and thus provides clues for possible

remedies.

Note that, in this paper, we considered only the phase-space dynamics of an electron after

it becomes a runaway eletron, or, in other words, we considered only those electrons whose

initial coordinates in phase space are such that the probability of it running away (that is

to reach unbounded energy) is essentially unity. More generally, we could have considered

with the same formalism those electrons whose probability of running away is not necessarily

unity, that is, that there is a finite chance that the electron might reach zero velocity due to

collisional effects before it reaches unbounded energy [33]. Such electrons are particularly

important to consider in the case of rf heating or current drive, where the presence of the rf

waves can produce runaway electrons by accelerating particles to regions in phase space of

higher runaway probability.

In addition, we further restricted our present attention to electrons whose runaway dy-

namics is immediate or prompt, rather than after spending some time as thermal electrons.

Thus we excluded the so-called backward runaways, which are produced during non-inductive

start-up but change direction before running away. We also excluded those electrons that are

initially trapped, and then only after several bounce perieds become runaways. Note that
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FIG. 5: Path in the configuration space of an initially trapped thermal electron being accelerated

to become a runaway electron under a loop voltage of 5V olts.

the physical process associated with such electrons can be both complex and interesting. For

example, the simulation result plotted in Fig. 5 shows how a trapped thermal electron with

an initial energy 17KeV first undergoes the Ware pinch under a loop voltage of 5V olts, and

then it is untrapped at a smaller radius. It subsequently becomes a runaway electron under

the effect of the same loop voltage, and the circulating orbit moves outward toward the wall.

The energy of the electron reaches 52MeV at t = 0.24 S. Such electrons, and for that matter

the backward runaway electrons well, may strike the tokamak limiter at a different time and

at a different location than would the runaway electrons that we considered, thus leaving a

unique signature. The exploration of the paths in the configuration space of the electrons

that are not prompt runaways is, however, left to a future study, where it is anticipated that

the symplectic algorithms developed here will be usefully applicable.
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