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Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic
5Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA

(Received 26 July 2013; published 10 March 2014)

Conventional Glauber coherent states (CS) can be defined in several equivalent ways, e.g., by displacing the

vacuum or, explicitly, by their infinite Poissonian expansion in Fock states. It is well known that these definitions

become inequivalent if applied to finite d-level systems (qudits). We present a comparative Wigner-function

description of the qudit CS defined (i) by the action of the truncated displacement operator on the vacuum and

(ii) by the Poissonian expansion in Fock states of the Glauber CS truncated at (d − 1)-photon Fock state. These

states can be generated from a classical light by its optical truncation using nonlinear and linear quantum scissors

devices, respectively. We show a surprising effect that a macroscopically distinguishable superposition of two

qudit CS (according to both definitions) can be generated with high fidelity by displacing the vacuum in the qudit

Hilbert space. If the qudit dimension d is even (odd), then the superposition state contains Fock states with only

odd (even) photon numbers, which can be referred to as the odd (even) qudit CS or Schrödinger’s cat state. This

phenomenon can be interpreted as an interference of a single CS with its reflection from the highest-energy Fock

state of the Hilbert space, as clearly seen via phase-space interference of the Wigner function. We also analyze

nonclassical properties of the qudit CS including their photon-number statistics and nonclassical volume of the

Wigner function, which is a quantitative parameter of nonclassicality (quantumness) of states. Finally, we study

optical tomograms, which can be directly measured in the homodyne detection of the analyzed qudit cat states

and enable the complete reconstructions of their Wigner functions.

DOI: 10.1103/PhysRevA.89.033812 PACS number(s): 42.50.Dv, 42.50.Gy

I. INTRODUCTION

Coherent states (CS), since their original introduction by

Schrödinger [1], Glauber [2], and Sudarshan [3], have been

playing a central role in quantum physics [4,5], including quan-

tum and atom optics, mathematical physics, solid-state physics

(e.g., theories of superconductivity), quantum field theory, and

string theory. The conventional infinite-dimensional bosonic

CS are the most classical pure quantum states of the quantum

harmonic oscillator. The importance of CS can be clearly

seen through the Wigner or, equivalently, Glauber-Sudarshan

formalisms of quantum mechanics based on quasiprobabilities

in phase space [6]. Much effort, including the works of

Perelomov [7] and Gilmore (as reviewed in Ref. [4]), has

been focused on generalizations of CS for finite-dimensional

bosonic or fermionic CS.

Here we study qudit coherent states (QCS), i.e., finite-

dimensional analogs of the conventional infinite-dimensional

Glauber CS [8–16] (for a review see [17]). QCS were

studied since the 1990s in the context of quantum phase

problems (especially for the Pegg-Barnett formalism; for re-

views see [18,19]), and quantum information and engineering

(reviewed in, e.g., Refs. [20–22]) in qudit systems.

In general, qudit states defined in Hilbert space H(d) of a fi-

nite dimension d can be expanded in the Fock-state |n〉 basis as

|ψ〉d =
d−1
∑

n=0

cn|n〉, (1)

where cn are the properly normalized superposition coeffi-

cients. In the special cases for d = 2,3,4, the states |ψ〉d are

often referred to as the qubit, qutrit, and quartit (or ququart)

states, respectively.

Quantum information processing with qudits has some

practical advantages over that with qubits as it could speed up

certain computing tasks, by simplifying logic gates [23–25],

improving quantum cryptography [26], and using physical

resources more efficiently [27]. Experimental demonstra-

tions of quantum information processing with qudits in-

clude quadrupolar nuclear spins (i.e., quartits) controlled

with nuclear magnetic resonance in bulk liquids [28], bulk

solids [29], and semiconductor quantum wells [27], as well

as superconducting phase qudits with a number of levels d

up to five [30], and photonic qutrits in linear optical architec-

tures [25]. Optical qudit states can be physically generated

from infinite-dimensional states by optical state truncation

using the so-called quantum scissors devices [20,22]. Simple

examples of such scissors are shown in Fig. 1.

Various nonclassical properties of qudit states were investi-

gated on several occasions. Interestingly, the states are referred

to by different names depending on the functional form of cn.

We are in general interested in the nonclassical properties of

the quantum state described by Eq. (1). However, the present

study would be focused on the QCS.

The conventional infinite-dimensional Glauber CS |α〉
of light can be defined in several equivalent ways. For

example, (i) by the action of the displacement operator
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FIG. 1. (Color online) Examples of (a) nonlinear and [(b),(c)]

linear quantum scissors devices for the generation of the QCS if

losses are negligible. Yellow (red) arrows denote input (output)

fields, white arrows are auxiliary fields, solid bars correspond to

beam splitters, blue bars to mirrors, empty bars to phase shifters,

and Dn are photodetectors. (a) A cavity with a Kerr medium

(d-photon anharmonic oscillator), described by a nonlinear coupling

proportional to the (2d − 1)th-order nonlinear susceptibility, driven

by a classical laser light enables, in principle, a deterministic

generation of the QCS |α〉d [12] (for d = 2 see Ref. [48] for details).

(b) The Pegg-Phillips-Barnett scissors [61] for the probabilistic

generation (i.e., projection synthesis) of the QCS |β〉d with d = 2,3

via optical truncation and quantum teleportation of the incident

CS |β〉 conditioned on the proper photon-number detection at the

detectors Dn using beam splitters with proper transmission and

reflection parameters, and the auxiliary Fock states |1〉 and |n〉 (n = 0

for d = 2 and n = 1 for d = 3). (c) A generalized version of the

Pegg-Phillips-Barnett scissors based on a generalized Mach-Zehnder

interferometer for a probabilistic optical truncation and teleportation

of |β〉 to the QCS |β〉d with d = 2, . . . ,6 [62]. Note that the

configuration (c) is scalable for arbitrary d . It should be stressed

that the generation of QCS described here can be realized also in

various other bosonic finite-dimensional systems (see text).

D̂(α,α∗) ≡ exp(αâ† − α∗â) on the vacuum state |0〉, where

â (â†) is the conventional infinite-dimensional annihilation

(creation) operator. Equivalently, these CS can be defined by

(ii) |α〉 = N exp(αâ†)|0〉 as implied by the definition (i) but

with the displacement operator factorized according to the

Campbell-Baker-Hausdorff theorem. Hereafter, the function

N normalizes a given state |ψ〉, i.e., N |ψ〉 = |ψ〉/
√

〈ψ |ψ〉.
These equivalent definitions of the infinite-dimensional CS

become inequivalent if applied to the finite-dimensional

Hilbert spaces, as will be shown in detail in this paper.

Optical Schrödinger cat states have attracted both theoret-

ical [6,31] and experimental [32] interest in quantum optics,

quantum engineering, and quantum information processing

with continuous variables.

Here we describe how to generate superpositions of macro-

scopically distinct QCS (i.e., Schrödinger-cat-like states) by

the displacement of the vacuum in a Hilbert space for qudits.

We explain this counterintuitive result physically, in terms

of interference in phase space, and analytically by recalling

the properties of the roots of the Hermite polynomials. These

cat states are finite-dimensional analogs of the even and odd

infinite-dimensional CS. Some preliminary results, concerning

the generation of even QCS, were obtained in Ref. [33] (see

also the review [17]) but without a complete analytical proof

and a deeper physical explanation. Moreover, the generation

of odd QCS has not been predicted so far.

Wigner’s [34] formulation of quantum mechanics based

on quasiprobabilities in phase space is completely equivalent

to other quantum formalisms including those of Schrödinger

and Heisenberg albeit without the use of wave functions and

operators [35]. The Wigner function is useful in quantum

optics [6] in describing, e.g., interference in phase space, and

can be directly measured [36,37] or indirectly reconstructed

using homodyne tomography both for infinite- [6] and finite-

dimensional [38] systems.

In this paper, we apply the Wigner function formalism to

study both the interference in phase space and the homodyne

detection of QCS. Note that a nonstandard finite-dimensional

Wigner function [39,40] defined on a torus was already applied

to study some properties of QCS in Refs. [17,33]. By contrast,

here we apply the standard Wigner function which, arguably, is

simpler for physical interpretations and for its measurement if

the Hilbert-space dimension is not very small or is unspecified.

Thus, we describe here nonclassical properties of the qudit

cat states revealed in their Wigner functions. In particular, we

analyze the nonclassical volume of the Wigner function, which

is a quantitative parameter of nonclassicality [41].

We also discuss optical tomograms, which can be directly

measured in the homodyne detection of the analyzed cat states.

This paper is organized as follows: In Secs. II and III, we

present two different constructions of QCS. We also describe

their Wigner representations and methods for their generation.

In Sec. IV we show the main result of this paper: that the QCS

defined by the displacement of the vacuum can almost periodi-

cally become the Schrödinger cat states having a clear interpre-

tation in terms of the Wigner function. We conclude in Sec. V.

II. QUDIT COHERENT STATES BY DISPLACEMENT

OF VACUUM

A. Definition and Fock-state expansion

In analogy to the first Glauber definition of the infinite-

dimensional CS, mentioned in the Introduction, one can

construct a QCS by applying a qudit displacement operator

to the vacuum [8]:

|α〉d = D̂d (α,α∗)|0〉 = exp(αâ
†
d − α∗âd )|0〉, (2)

where the qudit annihilation operator is defined by

âd =
d−1
∑

n=1

√
n|n − 1〉〈n| (3)
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and â
†
d is the qudit creation operator, which are the truncated

versions of the usual infinite-dimensional annihilation and

creation operators, respectively. We note that the commutator

[âd ,â
†
d ] = 1 − d|d − 1〉〈d − 1| (4)

is a quantum number, which fundamentally differs from the

canonical commutation relation for the standard annihilation â

and creation â† operators. This mathematical property implies

that quantum interference in phase space of the QCS is

completely different from that of the standard coherent states,

as will be described in detail in the next sections.

The Fock-state expansion of the QCS |α〉d is much more

complicated than that for conventional CS and given by [10]

|α〉d =
d−1
∑

n=0

c(d)
n (α)|n〉 (5)

with the superposition coefficients

c(d)
n (α) = f (d)

n

d−1
∑

k=0

Hen(xk)

[Hed−1(xk)]2
exp(ixk|α|), (6)

where

f (d)
n =

(d − 1)!

d
(n!)−1/2 exp

[

in

(

φ0 −
π

2

)]

(7)

and Hen(x) is the modified Hermite polynomial simply related

to the standard Hermite polynomial Hn(x) as

Hen(x) = 2−n/2Hn(x/
√

2). (8)

Moreover, xk ≡ x
(d)
k is the kth root of Hed (x), and φ0 =

arg (α). For d = 2, the general formula, given by Eqs. (5)

and (6), reduces to

|α〉2 = cos(|α|)|0〉 + eiφ0 sin(|α|)|1〉, (9)

which shows that any single-qubit pure state can be considered

this QCS for a proper choice of α. Of course, this is not the

case for dimensions d > 2. Two nontrivial examples for the

qutrit CS |α〉3 and quartit CS |α〉4 are given in the Appendix.

Any finite superposition of Fock states, thus in particular the

QCS |α〉d , can be realized by various experimental methods

and systems (see, e.g., Ref. [42]). Here we just mention the

experiments of Zeilinger’s group [43] using generalized Mach-

Zehnder interferometers in a triangular configuration shown in

Fig. 1(c), and those of the Martinis group [44] using microwave

resonators coupled to superconducting quantum circuits [45].

It is also worth noting a probabilistic method proposed in

Ref. [46], which uses a cross-Kerr medium coupled to a ring

cavity to synthesize arbitrary superpositions of Fock states.

Unfortunately, this method is based on probabilistic projective

measurements contrary to the method described below.

Let us now briefly describe the completely different

approach of Ref. [12], shown schematically in Fig. 1(a).

This method enables, in principle, a direct and deterministic
dynamical generation of the QCS |α〉d for any amplitude α

and small dimensions d. This is achieved by optical-state

truncation of the incident classical field by the so-called

nonlinear quantum scissors device composed of a higher-order

Kerr medium (modeled as a d-photon anharmonic oscillator)

in a cavity pumped by a classical driving field [12]. For this

reason, the QCS |α〉d is sometimes referred to as the nonlinear
QCS.

This optical truncation in the special case for d = 2 results

in the celebrated single-photon blockade [47,48], which is an

effect when a single photon in a cavity with a Kerr nonlinearity

blocks the excitation of more photons in the cavity field. The

Kerr nonlinearity (which is proportional to the third-order

nonlinear susceptibility) can be induced relatively easily by a

strong interaction between the cavity field and natural or artifi-

cial qubit [49–51], which might be a single trapped atom [52], a

quantum dot [53], or a superconducting artificial atom [54,55].

The single-photon blockade has been mainly studied in the

systems of cavity quantum electrodynamics (QED) including

theoretical predictions (see, e.g., Ref. [56]) and experimental

demonstrations [52,53]. Recently, impressive experimental

progress was also reported in circuit-QED systems [54,55].

Note that the two- and three-photon blockades can be, in

principle, observed in these systems where the single-photon

blockade was measured, but with the choice of different

resonance conditions [57]. Other generalized blockade effects

comprise two-mode optical state truncation [58] and single-

phonon blockade [59,60].

B. Wigner representation of displaced vacuum for qudits

The Wigner function associated with an arbitrary single-

mode state ρ is defined by [34]

W (z) ≡ Wρ(q,p) =
1

π

∫

〈q − x|ρ|q + x〉 exp(2ipx)dx,

(10)

where q and p are the canonical position and momentum

operators, respectively, and z = q + ip.

The concept of quantum interference in phase space for

finite superpositions of Fock states (so, in particular, for

our QCS) can be clearly explained in terms of the Wigner

function [31,63], which will be discussed below. Alternatively,

one could explain this interference in a semiclassical picture

of the areas of overlap (i.e., interfering areas) [6,64]. Here we

follow the completely quantum approach of Ref. [31].

The Wigner function for a qudit state, defined by Eq. (1),

can be given as a sum of two terms,

W (z) = Wmix(z) + Wint(z), (11)

representing, respectively, the noninterference (or mixture)

part for the Wigner function

Wmix(z) =
d−1
∑

n=0

|cn|2Wn(z), (12)

which is given as a sum of the Wigner functions of the Fock

states |n〉,

Wn(z) =
2

π
(−1)n exp(−2|z|2)Ln(4|z|2), (13)

and the interference part

Wint(z) = 2

d−1
∑

k<l

Re[c∗
kclWkl(z)], (14)
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where

Wkl(z) =
2

π
(−1)k

√

k!

l!
(2z∗)l−ke−2|z|2L

(l−k)
k (4|z|2), (15)

and L
(l−k)
k (x) are the associated Laguerre polynomials with

Lk(x) ≡ L
(0)
k (x). Equation (14) can be rewritten more com-

pactly as

Wint(z) =
4

π
e−2|z|2

∑

k<l

(−1)k|ck||cl|
√

k!

l!
(2|z|)l−k

×L
(l−k)
k (4|z|2) cos(�kl), (16)

where �kl = arg (c∗
k ) + arg (cl) + (k − l)arg (z).

It is seen that Wmix(z) and Wint(z) correspond, respectively,

to the diagonal and off-diagonal terms of the density matrix

ρ = |ψ〉〈ψ | in Fock basis. The Wigner function is phase
insensitive for Fock states |n〉 (for any n) and their mixtures,

so Wmix(z) is symmetric for any rotations around z = 0.

By contrast, a superposition of Fock states can be phase
sensitive as described by the interference part Wint(z) of the

Wigner function, which explicitly depends on the phases

�kl (for k �= l), although the corresponding component Fock

states |k〉 and |l〉 are phase insensitive. Thus, interference of

probability amplitudes associated with off-diagonal terms of

a density matrix can be clearly described via interference in

phase space, although the Wigner-function approach is based

on probabilities (or rather quasiprobabilities as they can be

negative) instead of probability amplitudes.

A few examples of the Wigner function for the qubit CS

|α〉2 are shown in Fig. 2, which can be compared with the

corresponding Wigner functions, shown in Fig. 3, for another

type of the qubit CS defined below. The Wigner functions

for the qutrit CS |α〉3 are shown in Fig. 4. For clarity, we

rescaled colors in the plots of the Wigner functions such that

dark blue (dark red) corresponds to the minimum (maximum)

values in each figure. Blue regions correspond to the negative

values of the Wigner functions, which are the indicators of

nonclassicality of the states. Moreover, the black outer circles

in these figures show the areas in phase space, which are

dominantly occupied by the Wigner function for a given qudit

state. Tails of the Wigner function outside such circles can

be practically ignored. Strictly speaking, the Wigner function

occupies the whole phase space for any state, including the

vacuum. But, the area where the Wigner function is greater

than an arbitrary threshold value is finite. This area of phase

space can be chosen arbitrarily. For example, to describe an

arbitrary d-dimensional state, we chose an area large enough

to cover the peak of the Wigner of an infinite-dimensional

CS |α〉 with |α|2 = d − 1, which is the photon number of

the highest-energy Fock state in H(d), and the radius r0

corresponding to its half width at half maximum. This r0

for a Gaussian curve with the standard deviation σ is equal

to r0 = σ
√

2 ln 2. The Wigner function for the CS |α〉 is

Wα(q,p) = (2/π ) exp(−2|q + ip − α|2). Thus, the radius of

the outer circles in Figs. 2–6 was chosen as

r =
√

d − 1 +
√

ln 2/2. (17)

FIG. 2. (Color online) Wigner functions for the qubit CS |α〉2 and

various values of the real amplitude α = nT/6, where T = T2 = π .

Note the snapshots of the oscillations and the interference fringes

in the Wigner function. The increase of α can be interpreted as the

evolution of the driven Kerr system, shown in Fig. 1(a), assuming

negligible dissipation. The negative (positive) regions of the Wigner

function are marked in blue (red), with the deeper color the more

extreme values. Zero corresponds to white color. The inner and outer

circles have radii given by r =
√

d − 1 and Eq. (17), respectively.

It is seen that the Wigner functions are practically vanishing beyond

the outer circles. Panels (c) and (f) show the Wigner functions for the

single-photon and vacuum states, respectively. The Wigner functions

shown in panels (a), (b), (d), and (e) are phase sensitive, which is a

result of quantum interference in phase space.

By comparison, the inner circles in the plots of the Wigner

functions have the radius given by r =
√

d − 1.

It is seen that the QCS |α〉d with increasing α (correspond-

ing to evolution time) is reflected from the boundary states |0〉
and |d − 1〉 of the Hilbert space H(d). This phenomenon of

multiple reflections (multiple bounce) can be interpreted as a

ping-pong effect, which leads, in particular, to the generation

of the Schrödinger cat states as will be shown in Sec. IV.

FIG. 3. (Color online) As in Figs. 2(b), 2(c), and 2(f) but for

the qubit CS |β〉2. Note that the Wigner function for |β = T/6〉2

resembles that for |α = T/6〉2, as shown in Fig. 2(a), while for |β =
2T/3〉2 and |β = 5T/6〉2 interpolates between those in panels (b) and

(c), where T = T2. For brevity, these three figures, corresponding to

the cases shown in Figs. 2(a), 2(d), and 2(e), are omitted. In the

limit of β → ∞, the state |β〉2 goes into the single-photon Fock state

described by the standard rotationally invariant Wigner function.
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FIG. 4. (Color online) Wigner functions for the qutrit (d = 3)

CS |α〉3 with α = nT3/6 with n =1,2... . The color codes and circles

correspond to those in Fig. 2. Panels (c) and (f) show the Wigner

functions for a cat state (even QCS) and the vacuum, respectively.

III. QUDIT COHERENT STATES BY TRUNCATION

OF FOCK-STATE EXPANSION OF GLAUBER

COHERENT STATES

Another type of the QCS can be simply obtained by

truncating the Fock-state superposition of the conventional

infinite-dimensional CS as was studied by, e.g., Kuang

et al. [9]. To be precise, this QCS can defined by

|β〉d = N exp(βâ
†
d )|0〉 = N

d−1
∑

n=0

βn

√
n!

|n〉 (18)

for a complex amplitude β. This definition is postulated in

analogy to the second Glauber definition of the conventional

CS based on the Campbell-Baker-Hausdorff theorem as

follows:

eÂ+B̂ |0〉 = eÂeB̂eĈ |0〉 = eĈeÂ|0〉 = N exp(βâ†)|0〉, (19)

where Â = B̂† = βâ†, Ĉ = − 1
2
[Â,B̂], and N = eĈ =

exp (− 1
2
|β|2). This theorem can be applied to the

infinite-dimensional operators since it holds [Â,[Â,B̂]] =
[B̂,[Â,B̂]] = 0. By contrast, the Campbell-Baker-Hausdorff

theorem cannot be applied to the finite-dimensional annihi-

lation and creation operators since the double commutators

[âd ,[âd ,â
†
d ]] and [â

†
d ,[âd ,â

†
d ]] do not vanish, as can be seen by

applying Eq. (4). Thus, the two kinds of QCS, as defined by

Eqs. (2) and (18), are fundamentally different (except some

special cases) exhibiting different quantum interference in

phase space, as seen in Figs. 2–6.

One can refer to |β〉d as the linear CS for a qudit

since it can be simply (but nondeterministically) obtained

by linear optical systems called linear quantum scissors, as

shown schematically in Figs. 1(b) and 1(c) and described

in detail for d = 2 in Refs. [61,65], d = 3 [66], and higher

d [62]. For d = 2, Eq. (18) reduces to the qubit CS |β〉2 =
N (|0〉 + β|1〉). Although the systems shown in Figs. 1(b)

and 1(c) seemingly contain only linear optical elements,

FIG. 5. (Color online) Same as in Figs. 4(b), 4(c), and 4(f) but

for the qutrit CS |β〉3. Analogously to Fig. 3, the Wigner function for

|β = T/6〉3 with T = T3 resembles that for |α = T/6〉3, as shown

in Fig. 4(a), while for |β = 2T/3〉3 and |β = 5T/6〉3 interpolates

between those in panels (b) and (c). For brevity, these three figures,

corresponding to Figs. 4(a), 4(d), and 4(e), are not presented here.

Note that the limiting state limβ→∞ |β〉3 = |2〉 is described by the

standard rotationally invariant Wigner function of the two-photon

Fock state.

the nonlinearity is induced by the measurement (i.e., the

conditional photodetection). So, the generation of the QCS

|β〉d also requires nonlinearity. Nevertheless, the term linear
QCS stresses only the fact that no nonlinear media are used in

the setups of Figs. 1(b) and 1(c).

The Wigner functions for |β〉2 are shown in Fig. 3, which

could be compared with those for |α〉2 in Fig. 2 for some

particular choices of α = β. Analogously, Figs. 4 and 5 of the

Wigner functions for the qutrit CS |α〉3 and |β〉3, respectively,

show similar properties of the states for |α| = |β| ≪ T3/2 [in

Figs. 4(b) and 5(a)] and their distinctive properties for other

values of |α| = |β| [in Figs. 4(c) and 4(f) and 5(b) and 5(c)].

It is seen that the QCS |β〉d is not reflected from the

boundaries of the Hilbert space as β increases. This can be

described as “no bouncing.’ By contrast, as already mentioned,

the QCS |α〉d exhibits multiple bounce (or a ping-pong effect)

as α increases.

One can define a state |γ 〉d complementary to the QCS |β〉d ,

such that their equally weighted superposition is the QCS:

|α〉d = N (|β〉d + |γ 〉d ), (20)

which leads to the explicit form of the complementary state

|γ 〉d = 2 d〈α|β〉d |α〉d − |β〉d (21)

up to a global phase factor. In the simplest case for d = 2, one

can find

|γ 〉2 =
1

√
1 + α2

([cos(2α) + α sin(2α)]|0〉

+ [sin(2α) − α cos(2α)]|1〉), (22)

where for simplicity we assumed α to be positive. By contrast,

the qubit CS |β〉2 is given by N (|0〉 + β|1〉), as depicted for

some choices of β in Fig. 3. Thus, for the choice of α =
β = γ = T2/2, we have |γ 〉2 = N (−|0〉 + π

2
|1〉) = −| − β〉2,

which results in |α〉2 = |1〉. We note that such a simple relation

between |γ 〉d and | − β〉d exists for d = 2 only. An explicit

comparison of |γ 〉d and | − β〉d for d = 3,4 is given in the

Appendix.
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IV. CAT-STATE GENERATION

Here we will show one of the main results of this paper: that

macroscopically distinguishable superpositions of the QCS

(Schrödinger cat states) can be simply generated by displacing

the vacuum in the Hilbert space of an optical qudit.

A. Even and odd coherent states for qudits

The prototype examples of optical Schrödinger cat states

are the even and odd infinite-dimensional CS, defined [31] as

|α±〉 = N (|α〉 ± | − α〉).
By analogy with the infinite-dimensional cat states |α±〉,

one can define their qudit counterparts as, e.g., the even QCS,

|α+〉d , and odd QCS, |α−〉d , as follows:

|α+〉d = N (|α〉d + | − α〉d ) = N

d−1
∑

n=0

c
(d)
2n (α)|2n〉
√

(2n)!
, (23)

|α−〉d = N (|α〉d − | − α〉d )

= N

d−1
∑

n=0

c
(d)
2n+1(α)|2n + 1〉
√

(2n + 1)!
, (24)

where the superposition coefficients c(d)
n (α) are given by

Eq. (6). Moreover, one can define other qudit cat states based

on the QCS | ± β〉d as follows:

|β+〉d = N (|β〉d + | − β〉d ) = N

d−1
∑

n=0

β2n|2n〉
√

(2n)!
, (25)

|β−〉d = N (|β〉d − | − β〉d )

= N

d−1
∑

n=0

β2n+1|2n + 1〉
√

(2n + 1)!
. (26)

In the following, we will explain why the QCS |α〉d for

α = Td/2 are very good approximations of either the even

QCS |α+〉d and |β+〉d for odd d or the odd QCS |α−〉d and

|β−〉d for even d.

B. Periodicity, quasiperiodicity, and symmetries

of Wigner functions

As found in Refs. [33,67], the QCS |α〉d with increasing

α exhibit either perfect periodicity for d = 2,3 or almost

periodicity (“quasiperiodicity”) for d > 3. The periods for

d = 2,3 are T2 = π and T3 = 2π/
√

3, respectively, while the

quasiperiod Td for d > 3 is given by

Td =
√

4d + 2. (27)

Note that Eq. (27) gives a rough approximation even for T2 (as

π =
√

10 − 0.02...) and T3 (as 2π/
√

3 =
√

14 − 0.1...).

The period T2 is equal to π up to a global phase since

|α〉2 = −|α + π〉2 [compare the Wigner function for |α = π〉
in Fig. 2(f), which is the same as for |α = 0〉]. Obviously, by

doubling the period, this extra global phase does not appear.

It was discussed in Ref. [33] that the quasiperiod Td of even d

is twice larger than that for odd d. Nevertheless if one ignores

the global π shift (which is usually physically justified) then

FIG. 6. (Color online) Wigner functions for the qudit CS |α〉d

[(a)–(c)] and |β〉d [(d)–(f)] with α = β = Td/2 for d = 4,5,10,

respectively. The corresponding plots for d = 2,3 are shown in

Figs. 2–5 for α = β = Td/2. The color codes are the same as in

Fig. 2. Panels (a), (c), and (b) show the Wigner functions for cat

states: the odd (|α−〉d ) and even (|α+〉d ) QCS, respectively. We note

that |α±〉d are also very close to |β±〉d as revealed by their fidelities

close to 1, which are shown in Table I. All these Wigner functions

are phase sensitive due to quantum interference in phase space.

Eq. (27) determines the quasiperiods of the QCS |α〉d both for

the even and odd dimensions d.

By analyzing Figs. 2 and 4, one can find that W (q,p; |Td −
α〉d ) is just W (q,p; |α〉d ) but rotated by π in phase space. This

can be easily understood by recalling the exact symmetries for

d = 2,3:

W (q,p; |Td − α〉d ) = W (q,p; | − α〉d )

= W (−q, − p; |α〉d ). (28)

Analogous approximate symmetries hold for the quasiperiods

Td with d > 3. These properties imply that W (q,p; |Td/2〉d )

are perfectly symmetric [as shown in Figs. 2(c) and 4(c)] or

approximately symmetric [see Figs. 6(a)–6(c)] along the line

q = 0 in phase space.

The state |α〉2 for α = T2/2 [as shown in Fig. 2(c)] is just a

single-photon Fock state, so it can hardly be considered a real

cat state. The simplest nontrivial cat state |α = Td/2〉d , as a

superposition of the two out-of-phase QCS, exists for d = 3

as given by
∣

∣α = 1
2
T3

〉

3
= 1

3
(|0〉 + 2

√
2ei2φ0 |2〉), (29)

which follows from Eq. (A1).

C. Analytical explanation of cat-state generation

by displacing vacuum

Here we show that |α〉d quasiperiodically evolves into

the odd (even) QCS for an even (odd) dimension d > 3. In

addition, the exact periodic generation of the even QCS |α+〉3

for d = 3 is shown explicitly in the Appendix.

First, by recalling the reflection formula Hen(−x) =
(−1)nHen(x), we find that Eq. (6) for even n (and any d)
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can be rewritten as

c(d)
n (α) = 2f (d)

n

σ
∑

l=1

Hen(xl)

[Hed−1(xl)]2
cos(xl|α|)

+ δd,oddf
(d)
n

Hen(0)

[Hed−1(0)]2
, (30)

while for odd n as

c(d)
n (α) = 2if (d)

n

σ
∑

l=1

Hen(xl)

[Hed−1(xl)]2
sin(xl|α|), (31)

where σ = int(d/2) is the integer part of d/2, f (d)
n is defined

by Eq. (7), and xl for l = 1,...,σ denote only positive roots

of Hed (x), contrary to xk in Eq. (6) corresponding to all d

roots. The Hermite polynomials in the last term in Eq. (30)

can be explicitly given in terms of the Euler Ŵ function as

Hen(0) =
√

π2n/Ŵ[(1 − n)/2].

Then, we apply oscillatory functions approximating well

the Hermite polynomials for small |x| ≪
√

2n, which can be

given for even n as follows [68]:

Hen(x) ≈ in(n − 1)!! exp

(

1

4
x2

)

cos

(

x

√

n +
1

2

)

(32)

and for odd n as

Hen(x) ≈ −in+1 n!!
√

n
exp

(

1

4
x2

)

sin

(

x

√

n +
1

2

)

. (33)

Thus, it is readily seen from Eqs. (32) and (33) that the roots

of Hed (x) for l = −(d − 1), − (d − 3),...,(d − 3),(d − 1) are

x
(d)
l ≈

lπ
√

4d + 2
, (34)

which results in Eq. (27) for the quasiperiod Td of |α〉d if

the global phase of |α〉d is ignored. Note that in Eqs. (30)

and (31), the roots x
(d)
l are considered for positive l only.

Equation (34) also implies that x
(d)
l Td/2 ≈ lπ/2. Thus, by

applying this result to Eqs. (30) and (31), we have (for n =
0,1,...)

c
(2σ )
2n

(

1
2
T2σ

)

≈ 0, c
(2σ )
2n+1

(

1
2
T2σ

)

�= 0, (35)

corresponding to the generation of the odd QCS for an even

dimension d = 2σ , and

c
(2σ+1)
2n

(

1
2
T2σ+1

)

�= 0, c
(2σ+1)
2n+1

(

1
2
T2σ+1

)

≈ 0, (36)

which explains the generation of the even QCS for an odd

dimension d = 2σ + 1. Finally, we can write

∣

∣α = 1
2
T2σ

〉

2σ
≈ |α−〉2σ ≈ |β−〉2σ , (37)

∣

∣α = 1
2
T2σ+1

〉

2σ+1
≈ |α+〉2σ+1 ≈ |β+〉2σ+1, (38)

where the relations for |β±〉d are given on the basis of their

definitions and our numerical calculations discussed in the

next section and summarized in Table I.

D. Photon-number distributions and fidelities

of the cat-state generation

Figure 7 shows the photon-number distributions for the

QCS |α〉d and |β〉d assuming α = β to be in the middle

TABLE I. Comparison of the fidelities for the QCS |α〉d and |β〉d ,

and the corresponding cat states |α±〉d and |β±〉d assuming α = β =
Td/2 and the sign + (−) is chosen for the odd (even) d-dimensional

Hilbert space. Additionally, F (d)
mix is given by Eq. (40).

d |d〈α|β〉d |2 |d〈α|α±〉d |2 |d〈α|β±〉d |2 |d〈α±|β±〉d |2 F (d)
mix

2 0.7116 1.0000 1.0000 1.0000 0.7116

3 0.6580 1.0000 0.9956 0.9956 0.6580

4 0.5788 0.9948 0.9947 0.9998 0.6369

5 0.5616 0.9957 0.9950 0.9993 0.6183

10 0.5341 0.9977 0.9969 0.9993 0.5769

11 0.5317 0.9978 0.9972 0.9993 0.5726

20 0.5206 0.9988 0.9984 0.9996 0.5513

21 0.5199 0.9988 0.9984 0.9996 0.5499

100 0.5076 0.9997 0.9997 0.9999 0.5212

101 0.5075 0.9997 0.9997 0.9999 0.5211

of the quasiperiod Td for d = 3,4,20,21. It is seen that

every second term in all these cases of |α〉d is practically

vanishing on the scale of the figures. This is in contrast to

the photon-number distribution for |β〉d , which is a truncated

Poissonian distribution of the conventional Glauber CS. Thus,

Fig. 7 confirms our predictions that |α〉d corresponds either

to even or odd QCS depending on the parity of the dimension

d. It is worth noting that the photon-number oscillations in

the QCS |α〉d are a clear signature of quantum interference

in phase space. This can be described even semiclassically in

analogy to the explanation of the photon-number oscillations

for squeezed states [6,64].

To show how well the QCS can approximate the cat states,

we calculate the fidelities between various states, as shown

in Table I. As already mentioned, for d = 2 and α = β =
π/2, the qubit cat states are singular, because they correspond
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FIG. 7. (Color online) Photon-number distributions Pn(α) =
|〈n|α〉d |2 (red thin) and Pn(β) = |〈n|β〉d |2 (broad cyan bars) for the

QCS |α〉d and |β〉d with α = β = Td/2 and various d . It is seen that

the Schrödinger cat states are generated: the even QCS |α〉d = |α+〉d

for (a) d = 3 and (d) d = 21, while the odd QCS |α〉d = |α−〉d for

(b) d = 4 and (c) d = 20.
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FIG. 8. (Color online) Optical tomograms for the QCS |α〉d [(a)–

(c)] and |β〉d [(d)–(f)] for α = β = Td/2 with d = 2,3,4. Dark blue

(dark orange) regions show zero (maximum) values. The upper row

tomograms correspond to (a) the single-photon Fock state, (b) the

even QCS (the Schrödinger even cat state) |α〉3 ≈ |α+〉3 ≈ |β+〉3, and

(c) odd QCS (odd cat state) |α〉4 ≈ |α−〉4 ≈ |β−〉4. The tomograms

are 2π periodic in θ , thus the divided peaks near θ = 0,2π should be

understood as combined together.

to a single-photon Fock state, i.e., |α〉2 = |α−〉2 = |β−〉2 =
|1〉 [as shown in Figs. 2(c) and 8(a)], which results in the

perfect fidelities between these states. The lowest-dimensional

nontrivial QCS corresponding to a cat state can be observed for

d = 3 and α = β = T3/2, as we have |α〉3 = |α+〉3, given by

Eq. (29) [see Figs. 4(c), 7(a), and 8(b)], which is similar but not

exactly equal to |β+〉3. These properties result in |3〈α|α+〉3|2 =
1 and |3〈α|β+〉3|2 < 1. As already mentioned, there is a perfect

periodicity of |α〉d as a function of α for d = 2,3, and only

quasiperiodicity for d � 4.

The lowest fidelities |d〈α|α±〉d |2 and |d〈α|β±〉d |2 among

any dimension d if α = β = Td/2 are achieved for d = 4 [see

Figs. 6(a), 7(b), and 8(c)] as the accuracy of the quasiperiod

T4 of |α〉4 is the worst for this dimension among any finite d.

Nevertheless, this worst case still corresponds to the relatively

high fidelities, i.e., |4〈α|α−〉4|2 ≈ |4〈α|β−〉4|2 ≈ 0.995. By

contrast, the generated cat states |α〉d for α = Td/2 are clearly

different from the mixed states

ρ(d)
mix = 1

2
(|β〉d d〈β| + | − β〉d d〈−β|) (39)

with α = β. This is shown in Table I for the fidelities

F (d)
mix = d〈α|ρ(d)

mix|α〉d , (40)

which, together with |d〈α|β〉d |2, are evidently much smaller

than the other fidelities listed there.

By analyzing the Wigner functions in Figs. 2 and 4 for

increasing α, one can interpret the state |α〉d at the midpoint

of the quasiperiod Td as a result of the interference of a single

QCS |α〉d with its reflection | − α〉d from the Fock state |d〉 at

the boundary of the Hilbert space.

E. Optical tomograms for cat states

The optical tomogram wψ (q,θ ) is the marginal distribution

of the Wigner function Wψ (q,p) for a given state |ψ〉 of the

quadrature component q rotated by angle θ in the quadrature

phase space [6]:

wψ (q,θ ) =
∫ ∞

−∞
Wψ (q cos θ − p sin θ,q sin θ + p cos θ )

× dp. (41)

Tomograms are directly measurable in homodyne detection,

which enable an indirect reconstruction of the Wigner function.

So, one can match experiment with theory. This particular

feature of tomograms makes them useful. Recently, Filippov

and Man’ko [69] obtained a closed form analytic expression

for the optical tomogram of any qudit superposition state, given

by Eq. (1), as

wψ (q,θ ) =
e−q2

√
π

d−1
∑

n=0

[

|cn|2

2nn!
H 2

n (q) +
|cn|√
2nn!

Hn(q)

×
d−1
∑

k=n+1

|ck| cos[(n − k)θ − φn + φk]
√

2k−2k!
Hk(q)

]

,

(42)

where cj = |cj |eiφj and Hj (q) is the Hermite polynomial

of degree j (j = n,k). We have used Eq. (42) to obtain

tomograms of the QCS |α〉d and |β〉d .

Figures 8(b), 8(c), and 9 show a few examples of the

tomograms for the low-dimensional Schrödinger cat states

|α = Td/2〉d in comparison to |β = Td/2〉d . In addition,

Fig. 8(a) shows a single-photon state |α = T2/2〉2 = |1〉, which

can be considered a singular “cat” state. It is seen for |β〉d that

the tomograms have two main peaks (if the divided peaks

at the boundaries for θ = 0 and 2π are combined together)

and 2(d − 2) smaller peaks, so altogether 2(d − 1) peaks.

The total number of peaks of the tomograms for |α〉d in

comparison to |β〉d , is more difficult to be estimated for

arbitrary d because, e.g., some peaks are not well separated

[e.g., compare the smallest peaks in Figs. 9(a) and 9(b)]. For

|α〉d there are altogether four outermost peaks on the left- and

right-hand sides independent of the dimension d, and a few

squeezed peaks between them depending on d, as clearly seen

in Fig. 9. Note that |α〉d cannot be precisely obtained by simply

superimposing the tomograms for |β〉d and | − β〉d (which

is a π -rotated tomogram for |β〉d ). This would correspond

FIG. 9. (Color online) Optical tomograms for the even (for d =
5,7) and odd (d = 6) QCS |α = Td/2〉d .
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to a tomogram for ρ(d)
mix, given by Eq. (39), for which the

corresponding fidelity F (d)
mix, given by Eq. (40), is quite low, as

shown in Table I.

The tomograms for |ψ〉 = |α = Td/2〉d are approximately
symmetric with respect to reflection along the axes q =
0 and θ = π (in addition to the symmetry along θ = 0),

i.e., wψ (q,θ ) ≈ wψ (−q,θ ) and wψ (q,π + θ ) ≈ wψ (q,π −
θ ). Only the latter symmetry is observed for |ψ〉 = |β =
Td/2〉d as seen in Figs. 8(d)–8(f). Note that the imperfections of

the symmetries come from the imperfect cat-state generation

(i.e., |α〉d is not exactly equal to |α±〉d for α = Td/2 with d >

3) and, more importantly, from the interference in phase space,

which means that the tomograms (and the corresponding

Wigner functions) of any superpositions of states |α〉d and

| − α〉d are more asymmetric than their mixtures.

F. Nonclassicality of the cat states

A quantum state can be considered nonclassical if its

Glauber-Sudarshan P function cannot be interpreted as a

classical probability density, i.e., it is nonpositive [70]. In

particular, if the P function is more singular than the Dirac

delta function then it is also nonpositive [71]. Thus, any qudit

state (including our QCS), which is not the vacuum state,

is nonclassical as any finite superposition of Fock states is

nonclassical.

There are various measures and criteria (witnesses) of

nonclassicality of optical states [70,71]. Formally the best

measures are those based directly or indirectly on the P

function. However, due to the singularity of the P function,

they are not operationally useful except for some very special

states. Thus, we use an operational parameter (or a quantitative

witness) of nonclassicality based on the Wigner function.

Here, in the analysis of the qudit Schrödinger cat states,

we apply the nonclassical volume, which is a quantitative

parameter of the amount of nonclassicality of a given quantum

state based on the Wigner function [41]. In this particular

measure, the volume of the negative part of the Wigner function

is considered as an indicator (or parameter) of nonclassicality.

To be precise, the nonclassical volume is defined as a doubled

volume of the integrated negative part of the Wigner function

of a quantum state |ψ〉 [41]:

δ(|ψ〉) =
∫ ∞

−∞

∫ ∞

−∞
|Wψ (q,p)|dq dp − 1, (43)

where Wψ (q,p) is the Wigner function of a quantum state |ψ〉.
A nonzero value of δ(|ψ〉) implies that the given state |ψ〉 is

nonclassical. For example, the vacuum is a classical state so

δ(|0〉) = 0, while the single-photon Fock state has the nonclas-

sical volume equal to δ(|1〉) = 4e−1/2 − 2 ≈ 0.426 [41].

By analyzing Fig. 10, which shows the nonclassical volume

δ, one can conclude that, at least for small d, the following

properties hold: (a) δ(|α = 1
2
Td+1〉d+1) > δ(|α = 1

2
Td〉d ), (b)

δ(|β〉d+1) > δ(|β〉d ) if |β| ≫ 0, while (c) δ(|β〉d+1) < δ(|β〉d )

if |β| ≈ 0, and (d) analogously δ(|α〉d+1) < δ(|α〉d ) if |α| ≈ 0.

Moreover, (e) δ(|α〉d ) > δ(|β〉d ) if |α| = |β| �
1
2
Td .

It is seen in Fig. 10(a) that δ(|α〉2) reaches its maximum

value of 4e−1/2 − 2 for α = T2(n + 1/2) with n = 0,1, . . . ,

which corresponds to the generation of the Fock state |1〉 [see

also Fig. 1(c)]. For higher d, the local maxima of δ(|α〉d ) are
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FIG. 10. (Color online) Variation of the nonclassical volume

δ(|ψ〉) with the real amplitudes α and β as a fraction of the

quasiperiods Td for the QCS |α〉d and |β〉d with d = 2,3,4.

also reached for α = Td (n + 1/2), which corresponds to the

generation of the even and odd cat states. So, in terms of the

nonclassical volume, the most nonclassical QCS |α〉d for a

given d, are the cat states. This fact also justifies our choice

of α = Td/2 for the construction of the tomograms shown in

Figs. 8 and 9.

It is seen in Fig. 10(c) that the range of α = β for which

δ(|α〉d ) ≈ δ(|β〉d ) ≈ 0 increases with d, also as a fraction of

Td , for both types of QCS. This indirectly shows that these

QCS tend to the conventional Glauber coherent states for |α| =
|β| ≪ d.

These and other quantifiers and witnesses were also

analyzed in the context of the generation of standard infinite-

dimensional Schrödinger cat states and their quantum-to-

classical transition by, e.g., Paavola et al. [72]. Their analysis

of nonclassicality includes (1) a nonclassical depth based on

the s-parametrized generalization of the Glauber-Sudarshan

and Wigner functions, (2) the highest point of the interference

fringes of the Wigner function, (3) the Vogel nonclassicality

criterion based on the matrices of moments of annihilation and

creation operators, and (4) the Klyshko criterion based on the

photon-number distribution in addition to (5) the nonclassical

volume studied here. Numerous other nonclassicality param-

eters, which can also be applied in this context, are listed in,

e.g., Ref. [71].

V. CONCLUSIONS

We compared properties of two kinds of qudit (or d-level)

CS: (i) |α〉d defined by the action of the qudit displacement

operator on the vacuum and (ii) |β〉d defined by the Poissonian

expansion in Fock states truncated at the state |d − 1〉. In the

infinite-dimensional limit of the Hilbert space or, practically, if

|α| = |β| ≪ d, these two QCS go into the same conventional

Glauber CS. Also the states are equivalent for the qubit case

(i.e., for d = 2). However, for other cases, the QCS |α〉d
and |β〉d exhibit distinctly different properties. The crucial
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difference between these two types of QCS is that the state

|α〉d with increasing α = β exhibits periodic (for d = 2,3) or

quasiperiodic (for d > 3) reflections from the boundary states

|0〉 and |d − 1〉 of the Hilbert space H(d), which we described

as multiple bounce or a ping-pong effect. By contrast, the QCS

|β〉d is not reflected from the boundaries of the Hilbert space

as β increases, which produces no reflections and no bouncing

of the Wigner function. Although the quasiperiodicity of

the QCS |α〉d was already discussed in Refs. [33,67], our

phase-space description in terms of the standard Wigner

function shows these effects especially clearly in terms of

quantum interference in phase space.

We have shown analytically that the QCS |α〉d for α = Td/2

form macroscopically distinguishable superpositions of two

qudit CS. Thus, these Schrödinger cat states can be simply

generated by a direct displacement of the vacuum state in a

qudit system. The cat states can contain Fock states with only

odd or even photon numbers, depending on whether the qudit

dimension d is even or odd, and thus referred to as the odd or

even QCS, respectively. We have interpreted this phenomenon

as an interference of a single CS |α〉d with its reflection | − α〉d
from the highest-energy Fock state |d − 1〉 of the qudit Hilbert

space.

Various experimental methods (see, e.g., Refs. [32], and

references therein) have been developed for the generation

of quantum superpositions of two and more well-separated

quasiclassical states of light. In particular, it is well known

theoretically, and recently confirmed experimentally [73], that

an initial CS in a Kerr medium with the third-order nonlinear

susceptibility can evolve into a superposition of two [74–

76] or more [77] macroscopically distinct superpositions

of infinite-dimensional CS. Also the evolution of an initial

coherent state through a Kerr medium, described by a higher-

order nonlinear susceptibility, results in the production of

Schrödinger cat [75,76,78] states. We note that Schrödinger

cat states can also be produced in a microwave cavity field

via its coupling to a superconducting qubit in circuit-QED

systems [79], which under special conditions can be modeled

as a Kerr-type effect.

The generation of finite-dimensional even and odd cat states

discussed in this paper corresponds to a completely different

effect as based on simple displacements of the vacuum. The

Kerr effect, as shown in Fig. 1(a), was used only as an example

of the optical method for the Hilbert-space truncation.

It is worth noting that the QCS, for any nonzero α and

β, are not classical, in contrast to their infinite-dimensional

counterpart. It is known that any qudit state different from

the vacuum is nonclassical because any finite superposition of

Fock states is nonclassical, i.e., described by a nonpositive

semidefinite Glauber-Sudarshan P function. However, so

far no effort has been made to compare the nonclassical

properties of these two types of QCS. Keeping this in mind,

here we investigated the differences between the nonclassical

properties of the two types of QCS.

We have illustrated the nonclassical properties of the two

types of QCS by studying their photon-number statistics and

the nonclassical volume of the Wigner function, which is the

Kenfack-Życzkowski quantitative parameter of nonclassical-

ity [41].

By showing similarities and clear differences of finite-

dimensional (nonclassical) and infinite-dimensional (classical)

systems depending on the complex parameters (such as α and

β) in comparison to the system dimension, one can address

fundamental questions of the quantum-to-classical transition.

For the completeness of our phase-space description, we

have also presented optical tomograms of the QCS. These

tomograms, which are directly measurable in homodyne

detection, enable the complete reconstruction of the Wigner

function.

We stress that the discussed QCS are not only of fun-

damental theoretical interest, as they can be generated in

optical systems referred to as the linear and nonlinear quantum

scissors (see Secs. II and III).

We would like to emphasize that we studied the generation

of Schrödinger cat states in a general finite-dimensional

bosonic system in which the displacement operation can be

applied to the ground state of the system. Figure 1 shows

just a few examples of optical realizations of such systems

often studied in the literature. Although these systems are

theoretically appealing because of their formal simplicity, we

do not claim that they are the easiest to be realized experimen-

tally, especially when one uses Kerr nonlinearities modeled

by a d-photon anharmonic oscillator, which is required in the

system shown in Fig. 1(a) for d > 2. We are not aware of any

direct experimental realization of a pure d-photon anharmonic

oscillator for d > 2, although this model was used in a number

of theoretical works including the classic articles by Yurke and

Stoler [74], and Tombesi and Mecozzi [76] on the Schrödinger

cat generation. By contrast, the system shown in Fig. 1(a) in the

special case of Kerr nonlinearity described by the two-photon

anharmonic oscillator enables single-photon blockade [47,48],

corresponding to the generation of lossy two-dimensional CS

|α〉2. This effect has already attracted much attention and

was demonstrated in a number of experiments in cavity-

and circuit-QED setups [52–55]. Also the systems shown in

Figs. 1(b) and 1(c) were realized experimentally as reported

in, e.g., Refs. [80] (according to the experimental proposal of

Ref. [65]) and [43], respectively.

We hope that this work can stimulate further interest

in finding applications of the QCS in quantum information

processing (including quantum teleportation) with qudits and

quantum engineering with multiphoton blockades.

ACKNOWLEDGMENTS

A.M. was supported by the Polish Ministry of Sci-

ence and Higher Education under Grant No. DEC-

2011/03/B/ST2/01903. A.P. thanks the Department of Science

and Technology (DST), India, for support provided through the

DST Project No. SR/S2/LOP-0012/2010 and he also thanks

the Operational Program Education for Competitiveness–

European Social Fund project CZ.1.07/2.3.00/20.0017 of

the Ministry of Education, Youth and Sports of the Czech

Republic. F.N. is partially supported by the RIKEN iTHES

Project, MURI Center for Dynamic Magneto-Optics, JSPS-

RFBR Contract No. 12-02-92100, Grant-in-Aid for Scientific

Research (S), MEXT Kakenhi on Quantum Cybernetics, and

the JSPS via its FIRST program.

033812-10



PHASE-SPACE INTERFERENCE OF STATES OPTICALLY . . . PHYSICAL REVIEW A 89, 033812 (2014)

APPENDIX: SIMPLE EXAMPLES OF QCS

Here, for clarity, we give two simple examples of the QCS

|α〉d , showing their relation to the cat state generation.

Equation (5) for d = 3 simplifies to the qutrit CS [10]:

|α〉3 =
1

3
[2 + cos(

√
3|α|)]|0〉 +

1
√

3
eiφ0 sin(

√
3|α|)|1〉

+
√

2

3
e2iφ0 [1 − cos(

√
3|α|)]|2〉. (A1)

It is seen that the single-photon term exactly vanishes for α =
T3/2 = π/

√
3, thus this superposition state reduces exactly to

the qutrit even CS, given by Eq. (29). The Wigner functions for

|α〉3 with various α, including α = T3/2, are shown in Fig. 4.

For α = β = γ = T3/2, one can calculate explicitly that

|α〉3 ≈ [0.33,0,0.94], | ± β〉3 ≈ [0.32, ± 0.58,0.75], |γ 〉3 ≈
[0.22, − 0.58,0.78], and |β+〉3 ≈ [0.37,0,0.93]. Thus, it is

seen that |α〉3 ≈ |α+〉3 ≈ |β+〉3, which results in the corre-

sponding fidelities ≈1 (see Table I). This conclusion can

be drawn intuitively (but inaccurately) by comparing the

Wigner function W (q,p; |α〉3), shown in Fig. 4(c), with

W (q,p; |β〉3), shown in Fig. 5(b), roughly superimposed with

W (q,p; −|β〉3), which is W (q,p; |β〉3) but rotated by π in

phase space according to Eq. (28). As already mentioned, such

superimposing of plots corresponds to the Wigner function of

a mixed state ρ(3)
mix, given by Eq. (39), clearly different from

|α〉3 as indicated by the relatively low fidelity F (3)
mix = 0.66 (see

Table I).

For d = 4, from Eq. (5) one obtains the following quartit
CS:

|α〉4 =
1

2

∑

k=1,2

{

1

x2
k

cos yk|0〉 +
eiφ0

xk

sin yk|1〉

+ (−1)k
e2iφ0

√
3

cos yk|2〉 + (−1)k
e3iφ0

xk

sin yk|3〉
}

,

(A2)

where x1,2 = x
(4)
1,2 =

√

3 ±
√

6 are the roots of He4(x) and

yk = xk|α|. To show that this state for α = T4/2 is close to the

quartit odd CS, it is enough to calculate the contributions of

the Fock states |0〉 and |2〉, which are |〈0|α〉4|2 = 0.0004 and

|〈2|α〉4|2 = 0.0048. These contributions are clearly negligible,

as also shown in Fig. 7(b). The Wigner function and its

tomograms for this cat state are shown in Figs. 6(a) and 8(c)

in comparison to the cat states generated in the Hilbert spaces

of other dimensions.

An explicit calculation for α = β = γ = T4/2 leads

to |α〉4 ≈ [0.02,0.47, − 0.07,0.88] [see Fig. 6(a)], | ±
β〉4 ≈ [0.18, ± 0.38,0.57, ± 0.70] [see Fig. 6(d)], |γ 〉4 ≈
[−0.15,0.33, − 0.68,0.64], and |β−〉4 ≈ [0,0.48,0,0.88].

Thus, we see that |α〉4 ≈ |α−〉4 ≈ |β−〉4 resulting in a fidelity

close to 1 (as shown in Table I). This conclusion can be

drawn also for other dimensions d as seen by comparing

Figs. 6(a)–6(c) with Figs. 6(d)–6(f), respectively.
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Rev. A 83, 052326 (2011).

[59] Y. X. Liu, A. Miranowicz, Y. B. Gao, J. Bajer, C. P. Sun, and F.

Nori, Phys. Rev. A 82, 032101 (2010).

[60] N. Didier, S. Pugnetti, Y. M. Blanter, and R. Fazio, Phys. Rev.

B 84, 054503 (2011).

[61] D. T. Pegg, L. S. Phillips, and S. M. Barnett, Phys. Rev. Lett.

81, 1604 (1998).

[62] A. Miranowicz, J. Opt. B: Quantum Semiclassical Opt. 7, 142
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