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The quantitative phase space similarities between the uniformly mixed ensembles of eigenstates,
and the quasiclassical Thomas—Fermi distribution, are exploited in order to generate a nearly
optimal basis representation for an arbitrary quantum system. An exact quantum optimization
functional is provided, and the minimum of the corresponding quasiclassical functional is proposed
as an excellent approximation in the limit of large basis size. In particular, we derive a stationarity
condition for the quasiclassical solution under the constraint of strong separability. The
corresponding quantum result is the phase space optimized direct-product basis—customized with
respect to the Hamiltonian itself, as well as the maximum energy of interest. For numerical
implementations, an iterative, self-consistent-field-like algorithm based on optimal separable basis
theory is suggested, typically requiring only a few reduced-dimensional integrals of the potential.
Results are obtained for a coupled oscillator system, and also for the 2D Henon—Heiles system. In
the latter case, a phase space optimized discrete variable represefdationis used to calculate
energy eigenvalues. Errors are reduced by several orders of magnitude, in comparison with an
optimized sinc-function DVR of comparable size. 99 American Institute of Physics.
[S0021-960629)00235-4

I. INTRODUCTION all computations are finite, it would be desirable to take the

With each passing year, experimentalists and theoristQaSiS size into account as ngl. .Another extremely valuabl?
are gathering increasingly accurate and specific data, on sut€ature would be some quantitative measure of the method's
cessively larger polyatomic systems, at higher and highe?m'c'pat?d success in specific apphc.:atlo-ns. This is |mpo.rtant
energies. For the theorists among us who calculate enerddfcause it would enable one to distinguish the truly optimal
eigenspectra and the like, one fact has become very clear: tigPresentations from those that are merely “improved.” Fi-
choice of representation hasaucial effect on the efficiency nally, it should be permissible to constrain the basis func-
of the calculation. In all but the simplest applications, onelions, in whatever manner is appropriate for the computa-
attempts to incorporate at least some of the underlying phydional method being used.
ics into the representational basis itself—perhaps via a har- The direct-product basis se®PBs** for instance, also
monic expansion about some equilibrium geometry, for exknown as “strongly separable base$gomprise the focus of
ample. However, for many polyatomic systems and energ§his paper. There is an inherent significance to these
regimes of current interest, the harmonic picture is simply ndepresentations—consisting, as they do, of functions which
longer very helpful. Anharmonicity of the potential is one are separable products in the coordinates. But our interest in
widely recognized cause; but for multidimensional systemslirect products also stems from their being the appropriate
at higher energies, nonseparability is probably an evewonstraint for the discrete variable representat%R) grid
greater culprit In any event, a more sophisticated physicalmethodology’~*° As it happens, there is already a general
picture is evidently required, both from a pedagogical standframework for improving the efficiency of DPB representa-
point, and also from the practical perspective of improvingtions, known as the “potential-optimized DVR"(PO
computational efficiency. DVR).112The general idea is to exploit the properties of the

The primary goal of this paper is to optimize the basistrue potential in the determination of the one-dimensional
representation for a particular system—with respect to thenarginal wave functions whose multidimensional products
efficiency of the subsequent numerical computation—in agomprise the basis. In an inelastic scattering problem, for
general and rigorous a manner as possible. It is also hopefstance, the asymptotic form of the true potential may, by
that the resultant optimal basis may provide some physicalirtue of its separability, divide naturally into “effective”
insight into the underlying system; but computational effi-1p potentials for each of the various degrees of freedom. By
ciency is, in any event, the principal criterion for successysing these effective potentials to define the basis set for
Ideally, an optimization of this sort could be tailored to both g5¢h degree of freedom, one can obtain a DPB—and corre-

the system itself and the energy range of interest—for thgonding DVR—that is tailored for the particular system at
latter has a great impact upon the efficiency. Moreover, sincgng.

Such is the promise of the PO DVR approach. However,
dElectronic mail: billp@rainbow.uchicago.edu the success of this method in practice hinges on two key
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factors: the particular procedure that is used to obtain the(a)

effective 1D potentials from the true multidimensional po- 8
tential; and the choice of coordinates itself. The latter is pre-

sumed fixed for our purposes—although a coordinate trans -

formation that renders the Hamiltonian more nearly il s |
separable might, in general, significantly improve matters.
As for the former, various procedures have been proposed it - L . .
the past, and have met with considerable success in certai = : :
applications=>~'® What has been lacking however, is a gen- g o i I
eral, systematic means of evaluating the efficiency of these é | : : 1
proceduresa priori. It turns out that a simple, yet rigorous . .
guantum-mechanical functional for measuring representa 4 (-

tional efficiency does, in fact, exi$Eq. (2.8)]. Moreover,
minimization of this functional yields the particular DPB
which is truly “optimized” with respect to the potential, in I
the sense that there are no DPBs of comparable size whic -8 -4 0 4 8
yield more accurate eigenvalues. In mathematical terms, this position x
optimization is a variational quantum mechanics problem—(b)
essentially a generalization of the standard variational prin- 4
ciple.

The exact quantum minimization is in general a difficult
task, although it has been applied previously in a limited 2
context® Recently, however, it has been found that there is a
corresponding quasiclassical optimization problem [Eq.
(2.12] whose solution is almost trivial. The heart of the
argument lies in the fact that any finite basis set in quantum
mechanics is represented approximately by some region ir
phase space of finite volume. This region can be interpretec
as a kind of Thomas—Fermi distributiof.?* Moreover, us- :
ing the correspondence rule developed by Weyl and 4 , [ . . [ ,
Wigner??~?® we can make a quantitative comparison with -10 -5 0 5 10
the exact quantum result directly on phase space. One find position x
that the quasiclassical approximation is not very accurate for o S ,
individual pure states, but that the correspondence becomé&™ _1'2 Zeroth-order pEaSi Spfce optimization FOF (5 + py) 2+ (r

) . . —4)e " +]r|/10, with r?=x?+y? and maximum energyE{,=0.75.

exceedingly accurate as the number of basis functions bQ‘here is a localized potential “hole” near the origite) PSO DVR grid
comes large—even more so than a semiclassical approximgsints are dense in the hole region, but sparse elsewfdarginal phase
tion. This is, of course, precisely the limit in which the quan-space required by: sinc DVRdashett Gauss—Hermite DVR(dot-
tum problem becomes difficult, and for which an a(:Cw.mete@; PSO DVR(solid). Areas outside the solid curve result in extraneous
approximation is desired. points.

We therefore advocate the use of the quasiclassical
minimum—or some good approximation thereof—to gener-optimal separable basi©SB) theory??"?8though the latter
ate a nearly optimal DPB for the representation. In DVRdoes not provide for optimization of the finite projection sub-
applications, the resultant grid is expected to require fewegpace. In general, finite projections are related to the first-
points than for any other PO DVR treatment. Exactly howorder reduced density matrices of density functional theory.
few still depends on the specifics of the system, of courseThese density matrices have been previously exploited to
However, some indication is evident in Figial, a plot of  perform a one-parameter optimization of hybrid orbifdls.
DVR grid points for a particularly troublesome potential The vibrational self-consistent fiel/SCPH method!3%3
with a localized “hole” in one small region. This kind of however, is more closely related to the PSO approach—
situation—which occurs quite frequently in real owing to the connection between the Hartree and OSB sta-
molecule$®—is notoriously difficult for a standard sinc- tionarity conditions! Both methods yield separable basis
function (sing DVR treatment, because the high density of functions—but the VSCF functions are not mutually or-
points required to adequately represent the range of momentaogonal, and cannot be collectively optimized for a desired
in the hole must be extended throughout the entire configuenergy range. Another difference is that the VSCF optimiza-
ration space. As is evident from Fig. 1 however, this diffi- tion is quantum mechanical rather than quasiclassical, al-
culty is largely circumvented by the phase space optimizedhough a semiclassical VSCF method has been devefSped.
(PSO DVR. For grid or DVR applications, a 1D phase space optimization

It is instructive to compare the present PSO approachechnique known as the “mapped Fourier grid” method has
with related optimization methods that have been used in theecently been introduceti:*
past. The PSO quantum functional is very similar to that of = The remainder of the paper is organized as follows. A
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review of the pertinent theory is presented in Sec. Il, includ-Hamiltonians.” The constraint of Eq2.3) is more restric-
ing OSB theory(Sec. Il A) and the quantum—quasiclassical tive than other forms of separability which have been utilized
correspondence on phase spéBec. 11 B. In addition, the in previous application$’?On the other hand, an analytical
functionals of Egs.(2.8) and (2.12 are derived, as is a determination of the variational minimum is readily avail-
simplea priori estimate of basis efficiendisec. 11 Q. Sec-  able.

tion Il focuses on the DPB problem, culminating in the sta- Using Egs.(2.1)—(2.3 and the variational calculus, the
tionarity condition for the exact quasiclassical soluti@ec. optimal strongly separabllélo can be shown to be

[l B). An iterative algorithm suitable for computational ap- ~,
plications is also presenté8ec. |11 O, and applied to DVRs ~  Px - ~ Py

(Sec. IID). In Sec. IV, the exact quasiclassical direct- Hx_ﬁ+VX(X)’ Hy—%ﬂLVy(y), (2.4
product solutions for both the coupled and uncoupled har- Vo) dy 1

monic oscillator systems are derived analytically, and shown v (x)=————=— —(V),

to correspond to the exact quantum solutions. In Sec. V, we I dy 2

apply all of the previous ideas to the 2D Henon—Heiles sys- IV(x,y)dx 1 (2.5
tem. The PSO potentials are obtained numericéfhec. Vy(y)= TTrax §<V>,

V B), compared with another standard choieé and uti-
lized in the calculation of the PSO DRBec. V Q. Finally, ~ at least in principle—as is easily verified by adding an arbi-
in Sec. VD, the PSO DVR is constructed—both with andtrary strongly separable perturbation gy, and evaluating
without grid truncation—and a subsequent eigenvalue calcuEq. (2.2) in configuration spacel(V) is the expectation
lation performed. The accuracy of the results is comparettalue [V(x,y) dxdy/fdxdy, and it is assumed that
with that of an optimized sinc DVR, where the number of min[V(x,y)]=0.] In practice however, the right-hand sides of
grid points is the same in both cases. Eqg. (2.5 may diverge, because the coordinate and energy
limits are unrestricted.

For real-world applications, it is appropriate to introduce
Il. THEORETICAL BACKGROUND restrictions, because there is always a maximum energy or
A. Optimal representations basis size of interest. This is most naturally accomplished by
working with the projection ofd on to a truncated set of

Let H be a quantum Hamiltonian. In this section, we pagis functiong ;) of finite sizeN. The projected Hamil-

consider only kinetic-plus-potentialTG-V) Hamiltonians

- tonian is
with two degrees of freedom: .
PRy Hy=pnHpns (2.6)
A= ;_;1+ 2%+V(§<,§/). (2.1)  whose representation in tHep;) basis is anNXN matrix

known as the “variational basis representatio("}\’/BR).&9

The dimensional units are such that products of canonicallrhe density operatopy in Eq. (2.6) is a uniformly mixed
conjugate pairs such asp, have units of reduced Planck’s ensemblgUME) of the truncated basis set wave functions:
constant—implying that =1, as is presumed throughout this

N
work. The generahzauor_] to a_rbltrary dlmensmnahtycqn— ;)NEE | i) il 2.7
sidered in the later sections, is for the most part straightfor- i=1
ward.

Note that[)N is invariant with respect to unitary transforma-

. . . Ot~ tions of the N vectors|¢;). Formally, py represents the

Tgniﬂzngé;x d?rnedci/—. \Q/)Gc}il?cr'?br;es\i/sers‘ir;lgsir:n\}\/ek:iﬁetg Irg f|_nd- N-dimensional subspace spanned by those vectors, in the
9 P P _infinite-dimensional quantum Hilbert space. Tlkig)'s are in

resentH. One approach is that of optimal separable basig,inciple arbitrary, but in practice are taken to be the lowest
(OSB) theory, which provides the best separable approximay eigenstates of some Hamiltonian-like operator.

The eigenstates dfi are not, in general, direct-product

tion H, to the true HamiltoniarH.*2"2¢ More specifically, For our purposes, the subspapg of the projected
Hy is chosen so as to minimize Hamiltonian is itself allowed to vary during the optimization;
t(B—Fy)2]. 2.2 and in this crucial and complicating respect, the situation is

quite different from that leading to Eq&.4) and(2.5). It is
where the selection dfl, is made from the set of all possible in fact necessary to specify a new optimization criterion. A

Hermitian operators, subject to a suitable separability connatural procedure—consistent with the general OSB
straint. approach—is to minimize the total discrepancy between the

Of the various constraints which one might consitler, eigenvalues oﬂpr andH. If we focus on theowest Nei-
the strongly separable constraint is appropriate here; this igenvalues of1, then the best choice @fy is evidently that
becauseH, then takes the form which minimizes trfl ,)—or equivalently,

Flo=Hy(X,py) +Hy(¥.Dy), (2.3 Str(pyH)=0 (2.8

whose eigenstates must necessarily comprise a DPB. In Egbr all appropriate variations gfy. In practice, one is often
(2.3), the 10 operatorsH, andH, are known as “marginal interested in divorcing the number of desired eigenvakies
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from the basis siz&=K, in which case the trace of Eq. praic properties apy, and—most importantly—converges
(2.8 is replaced with the sum of the lowekt projected tg the exactpﬂ,m(x,px,y,py) in the largeN limit. In the 1D

e|genv§1lues. case, individual eigenstates 6f, correspond quasiclassi-

If pn were allowed to be completely arbitrafgpart cally to solid rings of area #—adjacent and
from satisfying Eq.(2.7)], then Eq.(2.8) would obviously  nonoverlapping—whose boundaries occur along the contours
yield perfect results, in that the optimah;) would consist of  of Ho(x,p,). In a very literal sense therefore, H§.10 is a
the true eigenfunctions ofi, and the eigenvalues cﬁlpr classical “uniformly mixed ensemble,” albeit a 2D one. It
would match the firsN eigenvalues ofd exactly. For the —can be convenient to interpret EQ.10 not as a density, but
scope of this paper howevérN is constrainedo be a finite  SIMply as qegion of phase space, which we shall_refer to as
DPB, so that the resultant stationary solution of Eg8 - One might even generalize EQ.10 by allowing any
yields only approximate eigenvalues Bf—albeit the best phase space region of volume#¥N to approximate qua-

such approximation possible. Even with these constraints iﬁlclassu.:allx some quantum UME of t?§5|s funcuons..An'
place, however, obtaining the quantum solution is generally"derlyingHo operator must be specified however, if this
nontrivial, because an infinite-dimensional variation on theCOrréspondence is to be unique. .
Hilbert space is still required to locate the extremum. Inits  1he quantum distributiop™(x,py.y.py) tends to oscil-

stead, we will solve the corresponding constrained quasiclad@t€ slightly about the quasiclassigalx,py,y,py), although
sical problem. the integrals over phase space are the same. This situation is

not surprising, and has in fact already been thoroughly inves-
tigated in configuration space; for it can be shown that the
projected density

It is convenient to reexpress the quantum problem in the

B. Quasiclassical approximation on phase space

exact phase space representation of Wigner and Weyl. This q s

formalism provides a unique correspondence between P (X.Y)=(27) j P(X,Px.Y,Py) dpyxdpy (219
guantum-mechanical operators, and observables on a

classical-like phase spa&>The Hamiltonian of Eq(2.1),  is mathematically equivalent to the standard Thomas—Fermi

for instance, is mapped to the phase space funcbti@r(pi density for a collection ofN noninteracting fermions de-

+p2)/(2m)+V(x,y). The UME density operatopy also  scribed byH,. %" In any event, the oscillatory behavior
has a unique representatiq:‘,i]m(x,px,y,py), although the suggests that the quasiclassical approximation to
transformation here is far less trivial. In any event, it can be(r(;,N H)—obtained by replacing pA™(x, py Y.py)  with

showrf® that the trace in Eq2.8) becomes p(X,py,Y,py) in the integral of Eq.(2.9—should be quite
o accurate. We expect this to be the case even for relatively
tr(pn H)=(27T)72f PR (X, P, Y, Py) small N, because the integrand is a smoothly varying quan-
tity which is fully integrated over all phase space coordi-
XH(X,px,Y,py) dx dp dy dp, (29  nates.

under the Wigner—Weyl correspondence. The strategy therefore, is to minimize the quasiclassical

Equation(2.9) is exact, but difficult to evaluate in prac- @Pproximation to trgy H), and to use the results to obtain
tice, because obtainingﬂ,m(x,px,y,py) is nontrivial. If ;’N the PSO DPB for representirtd. The quasiclassical analog

consists of the lowesN eigenstates of some operalﬁro of Eq. (2.8) (generalized for arbitrary dimensionality is as

however—as is appropriate here—then an excellent quas]‘pllows.

classical — approximation p(X,py,y,py) is  readily
available:*~*! 5JRH(q1,p1, .+ Gn,Pn) gy dpy -+ dg, dp,=0.

p(xapxvyapy):G)(Emax_HO(vaxry:py))a (2.10 (2.12

where Ho(X,py.,Y,Ppy) is itself obtained fromI:|O via the
Wigner—Weyl correspondence, akdg,,, is such that the en-
closed phase space volume is equal tar2N. Equation
(2.10 can be regarded as a Thomas—Fermi phase space d
tribution. Note that, is not equivalent toH: the former is
not constrained to th&+V form of Eq.(2.1), and moreover,

varies during the optimization in accord with varyipg .
It would perhaps be more accurate to refer to th

The quasiclassical optimization procedure is intuitively very
clear: find the region of fixed phase space volume within
Jhich the integral of the Hamiltonian is minimized.

It is immediately evident that the unconstrained quasi-
classical solution is “exact,” in the sense that the corre-
sponding basis set satisfies E8.8). This is not generally
true, however, if a constraint is imposed pg—of separa-
ac e ebility, or otherwise. In all cases though, the solution must
p(X,Px,Y,Py) OF EQ.(2.10 aspy .\ (X,Px,Y,Py), toindicate  approach exactness in the lafgdimit. Moreover, we antici-
its quasiclassical nature and explicit dependencéigrand ~ pate nearly optimal performance even for fairly snilibe-

N. We use the former notation, however, to avoid an awk-cause it is trpy H) rather tharpy itself that is approximated.
ward proliferation of sutsupejscripts. In any event, The latter varies much less than the former near the varia-
p(X,Px,Y,Py) is easy to obtain in practice, has a simple andtional extremum, due to the locally quadratic form of the
intuitive phase space interpretation, satisfies the same algésnctional in this neighborhoot.
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C. Quasiclassical estimate of efficiency rectangle, that containR"". There are again three param-
eters specifying vertical and horizontal extents of the ellipse;
but sinceR"" is generally more oval-shaped than rectangu-
lar, the wasted area is reducgelg. 1(b)]. In practice, exact

_ NP " quantum optimization of the Gauss—Hermite DVR param-
number of accurate eigenvaluls The “efficiency” of the  giarg js a difficult propositiofjnstead, these values might be
constrained basis is defined as the r&idN. The quasiclas- .hosen to match the equilibrium point. If the energy range is

sical phase space picture provides a gaquiiori estimate of  |3yge however, or the potential far from quadratic, then this
this fraction. IfR is the constrained region in question, then choice will be considerably less efficient than the PSO
let R"" be the largest unconstrained solutidiy,=H in Eq.  choice presented here.
(2.10] which is completely enclosed bR. Qualitatively The simple 1D examples above are illuminating; but our
speaking, the areas & lying outside ofR"" are effectively  primary focus is direct-product representations of many-
“wasted,” as they correspond to thE>E, eigenstates dimensional Hamiltonians. This constraint is a rather severe
that are only partially represented hy,. A quasiclassical one, in that it is equivalent to working with a collection of
estimate of the efficiency is thus given by the ratio of thelD regionsR,—one for each degree of freeddmresiding
phase space volume &"" to that of R. on the “marginal phase space”qf,py). The individual
Our definition of quasiclassical efficiency is almost iden-Rx's are now completely unconstrained however, unlike the
tical to that proposed previously by Fatet al,****but is 1D examples just considered. This distinction is very evident
more general, and obtained somewhat more rigorously. Theip the rotationally invariant 2D example of Fig. 1. For any
proposed optimal solution—based on a remapping schem@nc DVR treatment, the complete regih= R, < R, must
described many years earlier by Féfistis essentially iden- e a four-dimensional box, in thd&, andR, must each be
tical to the present result in the unconstrained 1D case. Fdfctangular. Because the potential has a narrow hole how-
more general situations however, for which there are congVer, the shgdo% of the unconstraine®"" on to (ax,py)
straints or multiple degrees of freedom, the phase space afR' (dy.Py)]is broad with a narrow spike, so that the small-
proach of Fattakt al. is incapable of providing the rigor- €St enclosing rectangle is much larger than the shadow re-
ously optimized result, because it does not establish th@ion itself [Fig. 1(b)]. This can lead to great inefficiency,

. . A especially when compounded over several degrees of free-
necessary quasiclassical correspondence for the basig set dom
itself.

. . - , . Figure Xa) demonstrates how the situation can be im-

The quasiclassical efficiency as defined above is alsg : L
. L proved with a PSO DVR. The hole region is densely cov-
appropriate for DVR applications, because the transforma:

: ) : ; N h [ f th ini i h
tion to the DVR basis—being a unitary transformatieithin ered, but the representation of the remaining area is muc

If the representational basis g&¢ is constrained, then in

general only some fraction of thl or €igenvalues will be
accurate. There is an excess of basis functidnsver the

N ’ - more sparse, as desired. As a result, far fewer DVR points

the subspacgy—does not affect the eigenvaluestdf,. For  are required to perform the same calculation. On the other

each degree of freedogy the PSO DVR is constructed from pang, the direct-product constraint is responsible for the

the PSO basis s¢tp;) in the standard way—i.e., by trans- «crosgjike” pattern of points, which places extra points all

forming to the eigenstatds;) of the projected position op- ajong the rows and columns of the hole, resulting in some

erator g,,,, and using the eigenvalues of, as the DVR inefficiency. Nevertheless, the PSO DVR is far more effi-

points®® By considering the quasiclassical analog of thiscient than a sinc DVR, which would extend the high density

procedure, incidentally, it is clear that the configurationof the hole region throughout the entire space. Incidentally,

space density9(q) [Eqg. (2.1D] can be roughly interpreted the shadow regions are not quite the optimal soluti(@ex.

as the density of DVR points. II1 C); but they should nevertheless suffice for estimating the
Using the “wasted phase space” picture describedefficiency of the latter.

above, we can already apply a rudimentary phase space op-

timization to the standard 1D DVR calculations. In all such

cases, the underlying basis set is somehow constrained—II  PHASE SPACE OPTIMIZATION OF DIRECT-

. . . . . ODUCT BASES

sinc DVR, for instance, is constructed from the sinusoidal

eigenfunctions ofp?. Quasiclassically, the constrained In this section, the mathematical problem of optimizing

corresponding to the sinusoidal basis is the interior of a rectthe direct-product basis s€DPB) for representing a given

angle in the ¢,p) phase space, centered algmg 0. There  HamiltonianH is rigorously examined. We derive a station-

are three parameters required to specify the rectangle, corrarity condition for the exact quasiclassical solution, under the

sponding to the extent and spacing of the sinc DVR gridconstraint of strong separability. We also present an iterative

points. Roughly speaking, the optimal rectangle is the smallapproximation scheme for practical use, and exhibit the ex-

est one that contairB"", as in Fig. 1b), because this results plicit connection to optimal separable bas$3SB) theory.

in the smallest possible wasted area. The latter is required in order to obtain the phase space op-
As a less trivial example, the Gauss—Hermite DVR istimized (PSO marginal Hamiltonians.

often employed because it is generally more efficient than a

sinc DVR, and the analytic form fof +V Hamiltonians is

known. The reason is again clear from a phase space per- Let H=H(q;,p;,-...ds.Py) be an arbitrary nD

spective. Here, we single out the smallellipse rather than  Hamiltonian, not necessarily of the standdr¢t vV form. For

A. Direct-product basis sets
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a given maximum energy of intere&,,, and finite basis
sizeN, we would like to specify the best possible DPB, with
respect to the accuracy of the projected Hamiltonian eigen-
values belowE,,,. The Hamiltonian is then represented in | ——————
either the optimal basis itself, or in the DVR constructed

from the latter(the direct-product PSO DVRIt is conve- =
nient to specify the DPB wave functions as the eigenfunc- E’?
tions of 1D marginal Hamiltoniansl,=H(q,,px), where I

(1=<k=n). We have
Di i (G, - - Gn) = @7, (A1) X X @) (an),

- (3.1
Hid )=\ 1),

where thei, index the eigenstates of th, .

The DPB wave functions of Eq3.1) are in principle
infinite in number, and comprise a complete orthonormal ba-
sis of the underlying Hilbert space. In any computational
application however, we are constrained to using finite basis
sets only. It would clearly be desirable to use a direct energ¥!G. 2. Schematic of four-dimensional phase space of a 2D Hamiltonian,

truncation criterion, for which we discard all statds..... with each axis representing a single degree of freedom. Solid curve repre-
’ 17" sents the contou (q;,p;.9,,p,) =E{),, as well as the limits of the un-

for which the expectation value o is greater than some constrained phase space regiBH". Constrained region® correspond to

cutoff ValueEcut> Enax- This approach might be appropriate rectangles, with the dotted-line choice above being the zeroth-order opti-

for a basis set representatiéSec. 1llD); however, for a MU Shadows cast on the marginal phase spakd® @ndR ) are the
S . S "\ same for botiR and R"™".

DVR application, the set of basis functions is required to be

“rectangular.” This means thatveryq)il...in for which i

=N for all k, must be included in the basis skl is thus  For the present purpose, Eq8.2) and (3.3 constitute the
the number of one-dimensional functions associated with thgorrect constraint on the variational minimization of Eq.
kth degree of freedom, so that there are a totaNefN;  (2.g).

X-+- XN, DPB functions in all. _ As discussed in Sec. |1 B, a reasonable approximation of
. Despite the rectangularity constraint, an energy runCag, e minimum of Eq.(2.9) is obtained by replacingy with

tion of the basis set can still be utilized in a slightly less e asiclassical Thomas—Fermi distribution on phase
direct fashion. Assuming that the; 's are arranged in in- gy500 Thys, for the present direct-product application, we
creasing order, we simply choose thg's such that)\hk must determine the quasiclassical constraint analogous to
~Eqy, for eachk. There are, however, many possible mar-Egs. (3.2) and (3.3). This is very straightforward however;
ginal Hamiltonians—with vastly different spectra—that havethe separable direct-product constraint implies a quasiclassi-
the same¢!‘k eigenstates. Consequently, the particiigts ~ cal density of the form

which are actually used must be relateddtself in some p(d1,P1s -+ - GnsPn) = p1(d1,P1) X - X pn(dn,Pn),
reasonable manner, if this energy truncation procedure is to (3.4

be effective. We _shaII examine_these issues more thorogghwhere each of the,(qy,py)'s is itself a uniform distribution
in Sec. lIB and in the Appendix. For now, we simply wish gyer a regioriR, in the kth marginal phase space. The prod-

z, =(q;,p,)

to emphasize the subtle, but important distinction betweefct distribution p(d1,P1s - .- Gn,Py) €xtends over a
rectangularly constrained, and unconstrained, truncations of-dimensional regiorR, which is “rectangular” (actually
the basis set. _ ~ cylindrical) with respect to the individual marginal phase
We now consider the UME density operator obtainedspaces of then degrees of freedoniFig. 2). Within each
from the rectangularly truncated basis set: marginal phase space however, tRg may describe any
N, N, n arbitrary shapéFig. 3.
pn= 2 o 2 @i M@ =TT py (3.2
i;=1 in=1 k=1

B. Phase space optimization

The resultant density operatpy, is a separable product of To optimize the direct product representation in accord

1D density operatorsy, . Moreover, each of thp’s is also  with Eq. (2.12), we must vary the individual shadow regions
a UME, albeit one that involves thith degree of freedom R, until the integral of the HamiltoniarH(qy,py, - . .,

Only. These facts are evident from E(qgl) and(3.2), from qn,pn) within the product regiorR is minimized (F|g 3)

which we find The total phase space voluriveenclosed byR must remain
Ny fixed throughout the variation, implying a constant basis size
;’k:,E |¢:<k><¢:<k|- (3.3 N~V/(2m)". Note, however, th_at the_ individu_al marginal
=1 areasAy (enclosed by the two-dimensional regioRg) are
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j’th degree of freedom k’th degree of freedom
L I T Ll I 1 T I Ll T I L]
a | | a | |
E g
= [=
g =
1 I 1 1 I 1 1 l 1 1 I 1
position g; position ¢,

FIG. 3. Two marginal phase spaces for a nbrV Hamiltonian of arbitrary dimensionality. Solid curves enclose the marginal redignsetc., whose
product over all degrees of freedom defirfes In optimizing the latter, thék, may be varied arbitrarily, as indicated schematically by the dashed curves
above. However, the variation must not alter the total volumee., the product of the area$, enclosed by each of the marginal regions.

not constrained by the variation—apart from the overall con-with the trace relations of Eq€.2) and(2.5) is evident from

dition thatV=A;X--- X A,. This implies that the\N, need Eg. (2.9).

not be specifie@ priori, but are determined automatically by Having specified the marginadl, (g, ,py)’s, the corre-

the optimization itself. sponding operatorsl, are obtained using the Wigner—Weyl
Mathematically, the procedure described above is a veryyle. It is then a straightforward matter to specify the asso-

straightforward application of the standard variationaljateq UMEp,’s as the lowesN,~.4,/(2) eigenstates of

37 ; ; ; ; ; A
calculus.” Each two-dimensional marginal re_g|oka 'S" the Ay’s. There is a possible difficulty to this procedure,
uniquely represented by a multivalued functipf(q,), however. Implicitly, we made use of the optimald, . py)'’s

specifying the boundary of the region. The minimization is &0 obtain the H(qe.p)’s, via strongly separable OSB

constrained optimization with respect to variations of the . .
. . . . . theory. In turn, the contours of thé ,Pi) functions give
p(qy). In the Appendix, we derive the stationarity condi- y (G P 9

tion for the optimal solution, as well as a simple interpreta-nse to regionsk, which are the ones ultimately associated

. oxt ' . with the quantum UMEs—but these may or may not be the

tion of the p,"(d). These results are best understood 'nsameRk’s that we started with! Intuitively, we would like

terms of OSB theqry: . . . the two sets ofR,’s to be the same, of course. Whereas in
An OSB description is also motivated by the following the general case they must be distinct, it turns out that their

concern. Suppose. that. the quagclassmal Optlmun%quivalence ireciselythe stationarity condition heralding
p(Q1,P1, - - - On,Pn) is Obtained for a given system. On the the quasiclassical optimurippendiy.

surfa_c_e of it th_e problem is solved, because gl py) In other words, the stationary solution of §§.12 sat-

specifies a basis _Se_t subsp-ac-e forktedegree of freedp M- isfies the following self-consistency relation, with respect to

However, an explicit association betwegg(dx.Px) andpk  the strongly separable OSB marginal Hamiltonians:

is still required in order to obtain the actual basis. This is not

accomplished directly, but through the Wigner—Weyl corre-

spondence of the associated marginal Hamiltonl%hpQSec.

I1). It is therefore necessary to obtain explicit classical ex-

pressiondH,(q,,py) for the marginal Hamiltonians. XH p;(a;,p;) dg; dp;—Eo, (3.5
Since “closeness” to the true Hamiltonian is a necessary j#k

criterion in this regardSec. Il A), the OSB marginal Hamil-

tonians are a natural choice; but these must be modified Pi(9i+P)=© (Emax—H;(q;.pj)).

somewhat for the projected, quasiclassical situation at hangy £q. (3.5), the aread, is [p.(qx.pe) dg.dpe, and the

Given that the Eq(2.4) result forI:|x can be interpreted as constant

the averageof H with respect toy (apart from a constatit

is natural to use an analogous formula here. We thereforEO:(E)<H>,

takeH,(qy,px) (apart from a constahto be the integral of n

Ay
Hk(qkipk):VJ H(q11p11 s vqnvpn)

p(d1,P1, - - - Gn,P)H(d1,P1, - - - Gn,Pn) divided by the 3.9
integral of p(dy,P1, - - -,0n.Pn), With respect to all phase (H)= JrH(A1.P1, - - - Gn.Pn) dGr dpy -~ A APy
space coordinates except and p,. The correspondence Jrdaydpy -+ dg,dp,
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is analogous to théV) terms in Eq.(2.5).
Note that theR,-defining maximum energy contours

B. Poirier and J. C. Light

The reason for this discrepancy is subtle, but ultimately re-
flects the finite constraint present in the E§.8) case. In

H (0. PE(aw)) =Emax are all characterized by the same practice, thek dependence of th&K's is often slight, in

value of E,,,, for each of then degrees of freedom; the
value itself is arbitrary, howeveiAppendiy. With the Eg
term included as above, it is reasonable to interfrgt, as

the maximum energy of interest, in accord with Sec. Il A.

Note, however, that it is not the ener@y,.,, but the total
phase space volumé which is fixed in the variation; con-
sequently, the value d . is not determined until after the
variation is completed.

which case they can be replaced wily, or with [(n
—1)/In{V).
C. Obtaining the marginal Hamiltonians

Equationg3.5) and(3.8) represent conditions of station-
arity only, and do not in and of themselves provide a recipe

for obtaining a solution. These equations are very similar to
the self-consistent field equations of the Hartree th&%1

It turns out that in a purely quantum treatment, a similarin quite a number of respects. Indeed, Hartree theory sug-

relationship to Eq(3.5) also holds, i.e., the OSB result gives
rise to marginal Hamiltoniansl, whose eigenstates are con-
sistent with those obtained by minimizing g(H). The

gests a natural procedure for actually obtaining solutions
here—namely, to select a zeroth-order approximaﬁtiﬂ)
and pﬁo), and then to obtain successively more accurate ap-

analogy between quantum and quasiclassical optimizations Rroximations via iteration, until self-consistency is achieved

evidently very tight; though the end results are not necessaf

ily identical (Sec. IIB. In any event, it should be empha-
sized that in neither case is the OSB relation impoesguli-
ori; Eq. (2.8) or (2.12 alone is thus sufficient for
determining both the basis sand the marginal Hamilto-
nians.

It is worth discussing the special caseTof V Hamilto-
nians briefly. The optimaH(q,,px)’'s are not presumed

priori to be of this simple and convenient form, since the

o sufficient accuracy.

The determination op{’ from the contours oH{" is
trivial; whereas going from{ to H{ *¥) requires evaluating
the n integrals of the first line of Eq(3.5 or (3.8). Numeri-
cally, these integrations are fairly straightforward, and would
tend to make good candidates for a Monte Carlo
calculation®® Less computational effort is required than for
overlap integrals, for instance, because the integrands re-
quired here are generally smooth. Nevertheless,i#f quite

range of marginal Hamiltonians is completely unconstrained®'9€: the numerical integrations might be CPU intensive if

in the variational optimization. Nevertheless, it can be show
from Eq. (3.5 that the marginal Hamiltonians are indeed of

the kinetic-plus potential variety. In other words,

2
Pk
H(qk . k) = 2m, +Vi(Qw)-

(3.7
Consequently, the problem of finding the optimal
H.(qx,p)’s reduces to that of finding the optimal marginal
potential functionsy,(qy). This situation is clearly desirable
from a computational perspective, because the LBV
Hamiltonians are easy to deal with numerically,

and also

Jmany iterations are required.

For practical applications, it is not necessary to converge
to very high accuracy; getting anywhere near the quasiclas-
sical optimum should yield an extremely efficient quantum
basis set. Moreover, there is a natural zeroth-order
approximation—to be described shortly—which is fairly ac-
curate on its own, and easily obtained. Starting with this
approximation, we anticipate that only a few iterations
should be required to obtain an accuracy reasonable for most
purposes. This is borne out by the examples considered in
Secs. IV and V, where only one iteration is applied. In the
case of Sec. IV, this is nevertheless sufficient to achieve full

because the optimization procedure itself now involves Onlyconvergence

the n-dimensional configuration space, rather than the entire

2n-dimensional phase space.
The self-consistency relations of E&.5) can be rewrit-
ten directly in terms of the marginal potentials, as follows:

nflAk
Vk(qk):(zﬂ') V V(q11 LR lqn)
xI1 pf(a;) do;—ES,
J#k

(3.8
P?(Qj)Z(ZW)_lf pi(Qj.p;) dp;

= 7 1O (Epmax— Vj(0)) V2M[ Epax— V;(a;)) 1.
The constant term is

E';,:(

where the expectation values are as in Bcf). Note that the
E'g are now formally dependent dq in contrast to Eq(2.5).

n—-1
(3.9

The zeroth-order approximation referred to in the previ-
ous paragraph is obtained by simply projecting threon-
strained quasiclassical solution on to each of the marginal
phase spaces—as was already considered in Sec. IB{f

is the zeroth-ordelE,,,, then the optimal unconstrained

p(d1,P1, - - - Gn,Pn) Is given by
pun(qlvplv s vqn1pn)
E®(E§;X_H(qlipl! e !qnipn)) (3:]-@

(Section 11 B. By varying the{q;.«,p;j-«} coordinates arbi-
trarily in Eq. (3.10 above, we obtain the allowed range of
(9k,px) Vvalues, and hence the shadow ¢f*"(qq,
P1, - --.0n,Pn) ON to thekth marginal phase space. The
product of alln such regionsR(kO) is the zeroth-order con-
strainedR (©.

This definition ofR (%) is a very natural choice, in that it
is the smallest possible product region containfdy' that
can be constructetFig. 2). The rectangularity constraint of
the former, however, implies that the volume &f(® is
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larger than that ofR"". We can expect the PSO DVR effi- ginal potentials are chosen; thus, smoothness is not expected
ciency (Sec. 11Q to decrease as the dimensionality is in-to play a significant role in the optimization procedure.
creased, and also as the potential function becomes increas- In contrast, the overall size of the residual potential does
ingly nonseparable. Note that even for a strongly separablgary quite a bit with the choice of the marginal potentials. By
system, the quasiclassical efficiency estimate must be ledts very definition however, the OSB approximation is pre-
than unity—even though the resultant eigenvalues are all excisely the one which minimizes the size of the residual.
act. This is because the basis set truncation is rectangularlihus, in addition to(nearly optimizing the representation,
constrained, rather than unconstrained. Consequently, ttBe quasiclassical procedure also minimizes the primary con-
p(O) distribution itself is not the optimal one; but it should tribution to quadrature error. This fortuitous situation is ob-
generally serve as a good zeroth-order approximation. ~ Viously quite relevant for DVR applications—although it
The corresponding-l(ko)(qk,pk) functions, incidentally, should be mentioned that a rigorous characterization of
are obtained in the following way: withg(,p,) fixed, vary ~ quadrature errors is still lacking for the general PO DVR
the {d; k. pj+«} arbitrarily within the range of Eq(3.10), case. Nevertheless, it is expected that the quasiclassical op-
and set theminimumvalue of H(q;,p;, . .. .0n.Pn) a@s the timization method presented herein may offer a significant
value forH(kO)(qk,pk)_ For T+V Hamiltonians, this reduces improvement for both basis set and DVR calculations. Ex-
to a minimization of the potential only, with respect to all but @mples of both are considered in the next two sections.
one of then configuration space coordinates. This procedure
has been successfully applied in previous applicattor.
Note that the numerical effort involved in obtainiff® is  IV. COUPLED HARMONIC OSCILLATOR EXAMPLE
comparable to that of the more accurblt%), which requires

just a single application of Eq3.5) or (3.8). We therefore We start with the trivial uncoupled harmonic oscillator
advocate the use of the latter. system,
N2 n2 52 02
~ Px py X y
D. Constructing the PSO DVR H=Z+5+5+5. (4.1

Having defined the optimal margingl Hamiltonian opera-gjnce the Hamiltonian is already strongly separable to begin
tors Hy, we now turn to the construction of the PSO DVR with, it is obvious that the best quantum-mechanical mar-
itself. The first step is to decide how many basis functionsgina| Hamiltonians must bél, = (p2+x2)/2 and Fly:(f)z

X y

will be used to represent each degrge of freedom. we Ob%L 92)/2. It is nevertheless instructive to verify that the qua-
serve that the quasiclassical self-consistency relations of Segi'classical method also returns this result
[IIC give rise to a rectangular truncation criterion that is .

. . The unconstrained regioR""(x,py,y,py) is the interior
exactly gnalog_ous to thqt of Seq. A, In the.quasmlassmalOf a hypersphere, whose shadows on dy marginal
case, it isE, . itself that is used in the truncation. Were we

1o translate. this “verbatim” int ntum mechanicsy phase spaces are circular disks. Taking these regions as our
0 transiate this “verba 0 guantum mecha . zeroth-orderR (¥ andR (?), we find that they correspond to
setting E¢,=Emay, then we would be allowing the quasi- Y

; e 0) —(n2
. . . zeroth-order marginal Hamiltonians H{®(x,p,) =
classical procedure to determine b&th,,andN. In practice 2 marg x 06Dy , (px
. +Xx9)/2, etc. It is easy to show however, that the first-order
however, it is much better to decouple these two parameters (1) . .
S . : .TésultsHy’, etc., are identical to the zeroth-order ones.
and to use a basis size that is larger than the qu""‘S'dalss':f“r1ese approximations are therefore self-consistent to begin
value, by settind= ;> Enax (Sec. Il A). This means that the bp 9

L ) with, and th ivalen h iclassical imum.
total basis sizéN can be variedndependentlyf the number th, and thus equivaie .t ot € quasiciassica optimu
. . . ’ - Moreover, the quasiclassical solution is seen to correspond
of desired accurate eigenvalués in a highly efficient

. . exactly to the quantum solution. Similar comments would
manner—a very desirable feature that has been lacking frorﬂold for anv stronalv separable svstem
most previous DVR implementations. y gy sep y '

We have thus far ignored the fact that a DVR is not quite The coupled oscillator system

a true representation, because the “residual=H—H is . P2 op:ox2oyro.
0 _ MPx y

represented onlgpproximately The “quadrature error” in- H=Z+5+5+ 5 —exy (4.2
troduced by the DVR approximation is fundamentally dis- ) . . . o
tinct from the representational error discussed heretofordS @ bit more interesting. In reality, the above Hamiltonian
and only the former is accounted for in the optimization of d€couples in a different set of coordinates, so that the eigen-
Eq. (2.9). Nevertheless, it is unlikely that the results would Valué spectrum can be obtained analytically. Specifically, if
be affected much if quadrature were incorporated—at leaghe coordinatesx,y) are rotated by 45°, theit becomes the
for the T+ V Hamiltonians, for whicltA=V—V,---—V, has  SUm of two harmonic oscillators with different frequencies

a potential-like form. Quadrature error decreases rapidly ak19- 4@]. The eigenvalues are given in terms of the two
the basis size is increased, and is further reduced by decred§°N-negativequantum numberg andn as

ing the magnitude—and increasing the smoothness—of the (m+1/2) (n+1/2

residual potential. In the PSO DVR case, the marginal po- Emn=—F7—+ : (4.3
tentials are smoother thaw(q, , . . . ,q,), SO it is the latter N1-e V1te

that generally determines the smoothnesa@dy, ... ,d,). where O<e<1 is a measure of the difference between the

But this contribution is the same, regardless of which martwo fundamental frequencies.
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FIG. 5. Contour plot of 2D Henon—Heiles potentid(x,y)=x2/2+y?/2
+(x%y—y3/3)/4/80, exhibiting C3, symmetry. Dashed lines indicate the
dissociation triangle aV(x,y)=Egys= 13.333 Solid circles represent the
PSO DVR grid truncated vi&(X,y) <V.,=18.0, for the basis truncation
energyE = 18.0.

X

Continuing the processg (¥ and R (! are clearly circular
disks, and thus distinct from® (), etc.

However, the second-order marginal Hamiltonians are
1 once agairH{?(x,p,) = (p2+x?)/2, etc. We have therefore
s g converged to the exact quasiclassical solution after just a
o, . L singleiteration. Moreover, it is easily shown that the corre-
-4 sponding quantum operators are also equivalent to the opti-
mal ones. It should be noted that the present example is
somewhat special, in that the optimal solution doesde-
FIG. 4. Shadows of unconstrained regid(x, p,,y,p,)<3.0 ontorelevant  pend on the maximum enerdyac. This can be traced to
subspaces, for coupled oscillator systeiw (pi+py)/2+(x*+y?—xy)/2.  the odd-symmetric form of the interaction potential, which

Region boundaries are indicated by solid curv@s.Configuration space, : : ; R H
displayingx—y correlation which decouples under a 45° rotation. Dashedeffectlvely vanishes in all of the E¢3.8) integrations.

momentum p

position x

line is location of theV(x,y) minimum for eachx. (b) Marginal x phase Since the optimal strongly separable approximatiohl to
space(identical toy). The result is flattened slightly in comparison with the is just the uncoupled harmonic oscillator of E4.1), there is
true optimum, indicated by the dotted curve. not much to be gained from a full DVR calculation for this

model system. We will, however, consider the accuracy that
) ] can be obtained by the PSO DPB representation itself, in the
Because of symmetry, the marginal solutions for ¥he |imit that e—0. In this limit, Eq. (4.3 becomes
andy degrees of freedom must be identical. From the form
of Eq. (4.2), we anticipate thaH (x,p,)=(p2+x?)/2,etc.;
but this should be verified via explicit calculation. We begin (n—m)
with the zeroth-order marginal Hamiltonians. These are eas- Epp~(m+n+1)+e——F—, (4.5
ily found to be H{O(x,p,) =[p2+ (1— €?)x?]/2, etc. Note
that the marginal potential is somewhat shallower than ex-
pected, to an ex“?”‘ d((—:-op;endmg an_Thls results in ze-_roth— whereas the strongly separable result is equal to just the first
order shadovy regmr@x ' etc., which are oblong ellipses, parenthetical expression above. Assuming the rangeaoid
rather than _cwcular disdgrig. 4b)]. - (0) m values to be identical, we find the strongly separable error
_ IntegratmgH(x,pX ,y,py)_over the product reg|o_r7R to be positive as often as it is negative. We have, of course,
using Eq.(3.8), we find the first-order results to be in keep- neglected to include the residual tetnix,y) = — e xy in our

ing with our intuitive expectations: finite representation. The inclusion of this term would nec-
Hﬁl)(x,px)=(p§+ x2)/2, essarily result in approximate eigenvalues that are all too
" o, (4.4) large; consequently, the representat_|onal errors in the PSO
Hy (Y, py) = (py+y°)/2. DPB must be zero, to second orderdn
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V. TWO-DIMENSIONAL HENON—-HEILES EXAMPLE (a)

A. Henon—Heiles potential

In this section, we apply the PSO DVR method to the
anharmonic Henon—Heiles system. This simple, but non-
trivial, 2D model system has long been used as a benchmar
for numerical method&*=*° Analytically, it is equivalent to
the uncoupled harmonic oscillator of Ed.1), plus an addi-
tional interaction potential,

potential V_(x)

. o Y
Vim(x,y)=>\(x2y—§

. (5.1

A naive separable approximation would simply ignore the _10 \ | , , | ,
contribution of Eq.(5.1). This would be accurate at low en- -10 -5 0 5 10
ergies, if\ were sufficiently small. At higher energies how- position x

ever, the classical system becomes chaotic for the valie of

used in this paper and elsewh&&® (A=1/,/80). In this  (b)

case, Eq(4.1) is no longer an adequate separable approxi- 30
mation.

For the value of\ specified, the Henon—Heiles system
has a ‘“dissociation” threshold a¥(x,y)=E4s=13.333
where V(x,y) is the full potential(Fig. 5. This particular
contour is an equilateral triangle centered at the origin. In
general, the potential possesses threefold symmetry, and d¢
creases to negative infinity as one extends beyond the dissc
ciation triangle in the direction of the triangular corners
(saddle points Quantum mechanically, this implies that
there are no true bound states, only quasibound resonance i 1

potential Vy(y)
= S

o

For the states within the energy range considered in this pa ~10 1 ' . | . 1
per however K =36 desired eigenvalugghere is very little -5 o 5 10
tunneling—no more than about one part int%ér so. For the position y

mOSt par’;, thls_ IS 'nSlg_mflcant In compar_lson to the accur"_""FIG. 6. Marginal potentials for 2D Henon—Heiles system: zeroth order
cies obtained in our eigenvalue calculations, and can be igdashey and first order(solid). The latter are presented for various maxi-
nored. The negative divergence of the potential will play anmum energie€{®) ={2.0,5.0,8.0,12)9 where higher energies are identified
important role in the determination of the optimal marginalWith lower potential values near the origita) Marginalx potentials V/,(x);
potenti als, however. first-order curvgs are quadraticb) l\./largln.aly potentlals,\/y(y); first-order
. . . . curves are cubics, where the barrier height increases &fth.

Figure 5 is a contour plot of the Henon—Heiles potential
for the A value specified. Th€5, symmetry induced by the
interaction potential is very evident in all but the lowest en-
ergy bound state contours. It also gives rise quantum mewith our bound state approximation however, we discard the
chanically to a degenerate eigenvalue structure. In previousxternal regions, and consider only the portiorif' which
quantum calculations, other autht¥$’ have made use of lies within the dissociation triangle. The constrained region
coordinates that exploit this symmetry. We deliberatelyR does extend beyond these boundaries, however.
avoid doing so, and stick to a conventional Cartesian coor- The zeroth-order, or minimal potentials, can be obtained
dinate treatment, in order to test the efficiency of the PSQanalytically, and are found to be
DVR method for a coordinate representation that is substan-

tially nonseparable. 1—(4N%2x?+1)%7

12)\2

VO(x)=x2+

B. Marginal Hamiltonians (5.2

. o o Oy Y AY

Using the iterative approximation method of Sec. IlIC, Vyily)= 2 T3 -
we shall determine the zeroth-order and first-order marginal
Hamiltonians inx andy, for a variety ofE{?), values below Equation (5.2 holds for all values ofE(),. The V{”(y)
the dissociation threshold,;. Formally, the unconstrained potential has a local minimum at the origin, but reaches a
regionsRU" arenot simply connected—consisting of a finite maximum value of 4 at y=4.5~8.944, beyond which it
piece within the dissociation triang(€ig. 5), and three dis- drops to negative infinity. This is not surprising given the
connected pieces lying outside of the triangle and extendingature of V(x,y); moreover a separation OR§/O) into
to infinity. This reflects the fact that the true eigenfunctionsbounded and unbounded portions exists only when the en-
are actually resonances, rather than bound states. In keepieggy is less thaikys. Perhaps more surprising is the behav-
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(a) dence which manifests itself in the polynomial constants.
4 — T — T These cannot be determined analytically, but must be calcu-

] lated separately for eadh(®), value of interest. Being only
one-dimensional however, the corresponding integrals are
- numerically trivial.
R i Although we have calculated the polynomial constants
/\ numerically for allE’), values considered in this paper, we
have also derived a general analytical approximation, valid
\/ 1 in the small\ limit:
_ x2 EO©
_ Vx(x)= 5 + == ~Eq,

]
|

momentum p,
o

2
_ R R R R (5.3
Y75 0 =25 o0 25 50 75 . y2 ER (v® ERk E
position x y(Y)~?+ 4 M3 g o
(b) where E, is substituted forE'g (Sec. 1IB). For the A
4 — — =1/,/80~0.1118 value used in this paper, the relative errors

N

momentum p,
o

|
n

of the Eq.(5.3) approximate potentials are no larger than a
i T few percent, over the relevant coordinate ranges. Moreover,
2 - the quadratic and cubic terms of thg(y) expression are
| ] exact. We have used the numerically integrated constants in
/ all of the computational work presented in Secs. VC and
V D, and also for the marginal potential plots of Fig. 6. Nev-
\ . ertheless, Eq(5.3) is pedagogically useful.
We observe, for instance, thit (x,p,) is now a simple
7] harmonic oscillator. The standard Gauss—Hermite DVR is
. therefore optimal for this coordinate, to first order. More-

) B T over, the negative divergence associated Wiff¥(x) is no
-75 -5.0 -25 0.0 25 5.0 75 longer present, so that the basis sikgis completely unre-
position y stricted. According to Eq’5.3), the marginalV,(x) potential
FIG. 7. Marginal phase space regions for 2D Henon—Heiles sys@m: !S energy mdependent, a}part from the constant term'_ln real-
phase space regidR, ; (b) y phase space regidR, . Zeroth-order bound- Ity however, there is a slight narrowing of the harmonic well
aries are presented for various maximum energie(%),  with increasingE,, as is clear from Fig. 6.
:{2.0,5.0,8.0,12..p where higher gngrgies are identified Wlth larger en- The Vy(y) potentia' function is a cubic expression’
closed areas. With the vertical axis interpretedras probability, thep  \hjch therefore retains the negatively divergent behavior in
>0 curves also represent the density of DVR points alomog y. .. .. . L
the largey limit. This implies an upper limit ork.;, and on
the basis sizeN,. Nevertheless, the situation is much im-
ior of the evenV{®)(x) potential, which drops to negative proved over the zeroth-order case, in that the barrier height
infinity in both directions, after attaining a maximum value increases substantially with increasigf), (Fig. 6), owing
of Egis at|x|:2\/1—5%7_746(|:ig_ 6). to the energy dependence of the linear term of Eq3).

If only the bounded portions oR () and R (%) are re- ~ Consequently, even E ().~ Eq;, the resultanv/,(y) well is
tained, then the constrained dengif{’(x,y) is well-defined  deep enough to sustain quite a number of quasibound basis
only whenE(®) <E ;. Quasiclassically, this does not pose afunctions with energies abov&ys.
major problem; however, the corresponding zeroth-order
guantum treatment would be severely restricted, in that the
Fruncation energ)ECut woulq also havg to be less thé&ty, C. Direct-product basis
in order to restrict the basis to quasibound states. The accu-
racy of such a representation would therefore diminish rap- ~ The first-order marginal potentialg,(x) andV(y), as
idly as the dissociation threshold was approached. In angletermined in Sec. V B, have been optimized for a variety of
event, the zeroth-order quasiclassical density fUﬂCt-ﬂS(]E) different Er(T?a)lx values. For the rergainder of this section, we
and pY(y) are presented in Fig. 7 for several differdg|f), ~ consider only the specific ca 2=12.0, for which the

values. first-order marginal potentials are given explicitly as
By sgbstituting the zeroth-o_rder de_nsity functions_ into V,(x)=0.6106x2— 2.4923,

the first line of Eq.(3.8), we obtain the first-order marginal (5.4)

potentials,V,(x) = V{M(x) and V,(y)=V{Y(y) (for conve- VY2 :

nience, we omit first-order superscripts in the subsequent dis-  Vy(Y)= =+ > +1.0143—1.3441.
: ) : 3./80
cussion. These turn out to be simple polynomial expres-
sions, and in that sense are more straightforward than théhe V,(y) potential attains a maximum value of 21.543 at
minimal potentials. However, there is now an energy depeny=y,~9.864.
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TABLE |. Eigenvalues for marginal Hamiltonians of 2D Henon—Heiles TABLE Il. Computed eigenvaluetbelow E=E,,,=8.3) for 2D Henon—
system E© =12.0). The harmoni¢l, results are analytical. Thgy po- Heiles system, using the largest PSO DMR (=21.5,N=528). Uncertain

max P . N .
tential is an altered cubic, with 24 bound states. These were computed t@gits in column Il are underlined. The last two columns: error comparison

10 2° accuracy, using ahl=1551 sinc DVR. between optimized sinc DVR and PSO DVR of identical sike=380).
Marginal Hamiltonian eigenvalues Henon—Heiles eigenvalues Deviations from column Il
State |:|x energy I:ly energy State PSO DVR energy Sinc DVR error PSO DVR error
index (analytica) (computed label N=>528 N=380 N=380
1 ~1.939 764 130 ~1.277368 110 1A, 0998594772608  —027-11) —0.21(-13)
2 ~0.834 718 250 ~0.186 647 732 1E 1.99007676080  —0.871-09 0.94-13
3 0.270 327 628 0.896 555 180 1E 1.990 076 76090 0.82-09 0.57-13)
4 1375373510 1971 984 970 2A,  2.956242988990  —0.15-08) 0.271-12)
5 2.480 419 380 3.039 364 720 2B 2985826428070  —0.63-09) 0.16-12)
5 3 585 465 260 4,098 393 340 2E 2.985 326 428 070 0.47.08) 0.12-12
7 4.690 511 140 5.148 742 050 SE 3925963721 0.33-07) 0.50—11)
8 5.795 557 020 6.190 050 150 SE 3.925963 721 1.00-07) 0.21—10)
9 6.900 602 900 7.221919 790 3A; 30824172838  -0.47-07) 0.98-11)
10 8.005 648 780 8.243 909 610 1A, 3985760926 080 1.06.07) 0.67-12)
11 9.110 694 650 9.255 526 650 4A, 487014400390  -0.92-06) 0.64-09)
12 10.215 740 500 10.256 216 200 4E 480864420480  —0.14-09 0.38-09)
13 11.320 786 400 11.245 348 600 4E 4.898 644 204 80 0.36-06) 0.54-09)
14 12.425 832 300 12.222 201700 SE 498625101480  -0.10-05) 0.13-10)
15 13.530 878 200 13.185 937 800 SE 4.986 25101450 0.57-06) 0.25-09)
16 14.635 924 000 14.135 570 900 6E 581701909880 0.33-09 0.7-08)
17 15.740 969 900 15.069 920 700 6E 5.817019 10 430 0.83-09 0.31(-07)
18 16.846 015 800 15.987 543 900 5A; 586701480650 0.74-06) 0.21(-07)
19 17.951 061 700 16.886 627 400 2A,  5.88144609960 0.44-09 0.16-08)
20 19.056 107 600 17.764 810 200 s 5.99132695570  —0.44-09 0.18-08)
21 20.161 153 400 18.618 862 000 /E 5.991 326 95590 0.47-09 0.37-08)
22 21.266 199 300 19.444 019 400 6A, 673791624810  -0.21-04) 0.48—06)
23 22,371 245 200 20.232 303 000 8E 676486651950  —0.35-04) 0.32-06)
24 23.476 291 100 20.966 243 700 8E 6.764 866 80150 0.1%-04) 0.55-06)
9E 6.853430@7710  —0.32-04) 0.12-07)
9E 6.853 430 84 960 0.27-04) 0.26—06)
3A,  6.99893128770 0.30-04) 0.26-07)
7A, 699938630290  —0.27-04) 0.60—07)
The DPB, obtained from the marginal quantum Hamil- 10 7.659 4% 640670 —0.86—04) 0.33-05)
tonians associated with E¢.4), is truncated by comparing 108 7.659 4% 027880 0.44-04) 0.13-04)
the marginal eigenvalues agairt,. Consequently, it is 8A,  7.69774758120  —0.12-03 0.97-05)
, : A . 4A,  7.736 884760380 0.31-04) 0.89-06)
necessary to determine the eigenvalues of theand H, 11E 7.832 739235730 ~0.16-03) 0.95-06)
operators, as well as their eigenfunctions. In the simple har- 11e 7.832 733281080 0.84-04) 0.27-05)
12E 8.009424777490  —0.15-03) 0.12—06)

monic case ofl, , these are known analytically. Tﬂﬂg, case 1o
is somewhat more complicated—not only because the eigen-
problem must be solved numerically, but also because of the

decreasing potential foy>y,. The latter implies that:ly,

like H itself, has no true bound states. In order to obtain % ound states would only just reacﬁf,?gx. This would be

bound state E)asis, we have altered the potential slightly by tficient for obtaining accurate DVR results for the higher
settingVy(y) =V,(Yo) for y=Yyo. energies in the desired range; whereas the basis obtained

For the lower energy states, this alteration has almost n . . - .
0 _ T rom the first-order calculation d¥, turns out to yield very
effect. Even for states ne&{’) =12.0, the tunneling is al- o Y ;
reasonable accuracy, as is discussed in Sec. VD.

most negligible; despite the proximity Bgs, the Vy(y) In any event, using a 1D sinc DVR with 1551 points, we

potential well is almost 25 units dedfig. 6(b)]. As E¢ . . .
approache/,(y) however, there is of course pronounced have calculated the eigenfunctions and eigenvalues of the 24

tunneling, which is ignored by our approximation. In this PoUnd states of the altered), operator to an accuracy of at
limit however, these additional states are used only to lendgast 10 The convergedH,—and analytical H,—
additional accuracy to the DVR calculation, since the maxi-€igenvalues are presented in Table I. The same truncation
mum energy of interedE .., is necessarily belo . Con-  €NErgyE > Enay is used to limit both marginal basis sets.
sequently, the tunneling discrepancy for states with energieshe PSO DVR constructed from the resultant DPB is there-
nearVy(Yo) is probably not significantly detrimental to the fore customized for an eigenvalue calculatiortbfor ener-
calculation. gies up to the maximum value of interdsf, ..

Far more significant is the fact that the altered potential  There is a slight ambiguity pertaining to the precise
in y has only a finite number of bound states—24 in all. Thevalue of E,,, that should be taken in this regard. Techni-
largest possible basis size is therefore limited. However, theally, the vaIueEET?gX= 12.0 is only a zeroth-order approxi-
situation is much better than fdﬂ§°), for which the ten mation toE,,,, Which can change with successive iterations

8.009 424815660 0.12-03) 0.9%(—06)
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TABLE lll. Comparison of errors of computed eigenvaluéselow E D. Results: PSO DVR eigenvalues
=09.3) for 2D Henon—Heiles system, for rectangular PSO DVRs of increas-

ing basis truncation energ§.,. Errors are deviations with respect to the Using the PSO DVR constructed from the DPB de-
energies of Table Il column IIN=528 PSO DVR. The horizontal line near  scribed in Sec. V C, we have performed eigenvalue calcula-
the bottom denotes the maximum energy of interBgh,—8.3. tions of the Henon—Heiles system. A variety Bf,, trunca-

tions were used, starting near the first-ordey,, value
(Ecu=8.5), and working up tde.=21.5, which yields all
Ecu=85  Eqi=120  Eq=150  Eq=180  Ew=200 24 of they-coordinate bound states. Results are presented in
(N=100)  (N=169) (N=256) (N=380) (N=440) Tables Il and lll. SinceE,,; is the only convergence param-
0.14-09  0.42-12 0.89-15 -02%-13)  0.35-13 eter, we use the results of the largest DVR grifl.

081-08 ~ 0.14-10  0.18-12  094-13  0.79-13 =21.5,N=22x24=528) as the reference for the errors in
0.16-07) 0.67-10) 045-12  057-13  053-13 Table Il
094-06) 0.33-08 024-10 027-12 0.12-12 '

Convergence errors s, for Henon—Heiles system

029-06 016-08 011-10 016-12 034-13 The last column of Table IlI provides an indipation of
0.74—-06) 0.18-08)  0.15-10) 012-12  0.79-13) the converged accuracy of these eigenvalues, which are pre-
0.22-04  0.40-07)  0.39-09) 0.50—-11)  0.1%—11) sented in Table Il. Another indication is the numerical dif-
049-04  0.18-06  0.19-0§  021-10  0.49-11) ference between the two eigenvalues of the theoretically de-

0.25-04  077-07) 078-09  098-11) 022-11) : : i
019-05 010-07) 076-10  061-12 0.14—12) generate pairs oE symmetry. Since we have not exploited

091-03 034-05 042-07)  0.65-09  0.15-09) this symmetry in the PSO DVR computation, both eigenval-

0.18-03 0.25-05  0.26—07) 0.34-09  0.89—10) ues of each pair are calculated explicitly. In determining the
0.12-02  0.25-05  0.37-07) 0.58-09  0.15-09 significant figures of the second column of Table Il, we use
0.96-04  0.15-06  068-09  013-10  0.33-1) the larger of the two error measures. We regard any accu-

0.26-03  0.12-05 0.17-07)  0.25-09  0.61—10 109 i
047-02 03104 034-06  073-08 01908 racy beyond~10° as suspect however, due to the quasi

0.14-01) 085-04 016-05  031—07) 0.83—08) bound nature of the Henon—Heiles systésec. VA. Our

013-01) 062-04 010-05  0.21—07)  0.54—08) results fall within the error bars of previous calculatiGfg'®
1.00—-03) 0.89-05  0.12-06) 0.16-08)  0.37—09) for energies belovE ..

8-2‘5‘((*83 8?;‘(*82 8-;(31(*83 g-ég(*gg 8-2;’(*83 Perhaps the most striking feature of Table Il is the ex-
035-01) 00403  0.18—04) 04306  013-06) tremely sudden loss of accuracy that OCCUr's as one crosses
015-01) 061—03 013—04) 0.32-06)  0.88—07) over theE,,.,~8.3 threshold. In all of the grids considered,
0.72-01) 0.10-02  0.20-04) 0.55-06)  0.16-06) one finds a sudden two-order-of-magnitude error increase be-
0.14-01)  0.20-03)  0.70—06) 0.12-07)  0.34-08) tween theE~8.01 andE~8.55 eigenvalues. Although a
g-zg—gg 8-2?((—8‘33 8-2?82 ggg_g% 8-;‘7‘((—83 general loss of accuracy was expected, the abruptness of the
013-01) 098-04  0.18-05) 060-07)  017-07) transition is quite surpnsmg,'a.nd deﬂmtgly much more ex-
079-01) 076-02  0.84—04) 0.33-05  0.10—05) treme than W_h_at we had anticipated. It is reassuring to f_lnd
0.80—01) 0.95-02  0.3§-03) 0.13-04)  0.41(—05) that the transition energy does not vary at all with increasing
0.1300) 0.10-01)  0.25-03) 0.97-05  0.30(—05) basis size—suggesting that the PSO DVR method really
8-;2(00())1) 8-;‘((*83 8-2?82 8-35*82 8-3;*82 does decouple the energy range from the basis size. On the
0.1800) 034-02  0.80—04) 027-05  0.79-06) othe_r hand, even W|tr_1|n the range of interest thg error tends
019-01) 038—03 0.68-05  012-06  0.31—07) to increase with increasing energy, as is—to our

0.2200) 0.62—03)  0.21(—04) 0.91—06  0.30-06) knowledge—true of all other DVR schemes to date. More-
over, there are certain large aberrations well belyyy.

0.1500) 0.42-01)  0.20—02) 0.11—03  0.36-04) On the whole though, the PSO DVR appears to be quite
0.1400) 0.26-01)  0.17-02) 0.73—-04)  0.24-04) efficient. Even with as few as 380 points, the error of the
0.30000 0.74-01)  0.26-02  015-03  052-04 largest of the 36 energies beldy,.,, is only about one part
g'gigg 8'%2:83 g'giigg 8'22:82 8'12:82 in 10°. This should be contrasted with the results of a 2D
0.1900) 0.84-02  0.36-03) 0.14-04  0.44—05) sinc DVR calculation, which we have also applied to the
0.2300) 0.11(-01)  0.33-03 0.20—04)  0.73—05) Henon—Heiles system. In the latter, potential energy trunca-
0.11(00) 0.17-02  0.49-04 0.23-05  0.82-06) tion of the grid was performed to reduce its size. The grid
0.6500) 025-02  014-03  0.78-05  0.27-05 spacing(0.6) and potential cutoff energyl17.0 were opti-

mized with respect to the accuracy of the eigenenergies in
range. Nevertheless, the sinc DVR errors are several orders
of magnitude larger than those of a PSO DVR of identical
size (N=380). A direct comparison for each of the 36
(Sec. IIIQ. To be consistent, we should use the first-orderdesired eigenvalues is given in the last two columns of
Emnax, defined quasiclassically as the contoursHé’f)(x,pX) Table II.

and Hg,l)(y,py) for which the volume ofR ) equals that of The preceding PSO DVR results were all obtained using
RO “ie., V. The quantum procedure is even morerectangular DVR grids, with the same number of grid points
straightforward—simply adjudf . until the truncated basis as basis functions. In principle, one can discard grid points
size is closest td/(27)". This basis size is approximately from areas where the potential energy is substantially larger
94, which—from Table |—is found to vyieldE = Efnla)x thanE,,,, SO as to reduce the size of the DVR matrix rep-
~8.3. resenting the Hamiltonian. This truncation procedure is often
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TABLE IV. Comparison of errors of computed eigenvalugslow E Vo nearVo,= Ecutshould be smoothed out somewhat due to

=Ea=8.3) for 2D Henon—Heiles system, for truncated PSO DVR gridsA we still expect there to be a minimsl.... value—larger
of increasing potential cutoff energy,,.. Untruncated grid is thé&=380 ! P cut g

PSO DVR of Tables Il/lll column IV. Errors are with respect to Table 1l than, but on the same order &, —above which the accu-
column I1. racy should be comparable to that of the rectangular grid.

We have tested this idea on the X80 Henon-Heiles
PSO DVR grid, corresponding t&.,~=18.0. Because the

Convergence errors W, for Henon—Heiles system

Veur=10.0 Veu=14.0 Veu=18.0 Veu=24.0 potential is not very separable, A(x,y)—though
(N=247) (N=309) (N=2348) (N=364) minimized—is not very small. Nevertheless, the eigenvalue
0.13-06) 0.29-09) 0.11(—11) 0.81(—14) errors for the variou¥; values presented in Table I20.0,
0.12-05) 0.43-08) 0.14—10 0.80—13) 14.0, 18.0, and 24)Gseem to bear out our expectations. Al-
0.22-05) 0.51(-08) 0.28-10 0.58-13 though theN =348 grid ofV_,=18.0(Fig. 5 is one or two
0.19-04 0.65-07) 0.3-09) 0.40(-12) orders of magnitude less accurate thanhe380 rectangu-
0.11(—04) 0.14-07) 0.11(—09) 0.26-12 . -

0.14—04) 0.7~07) 0.33-09) 0.18-12) lar grid (Tables Il and lll, column 1V, the N=364 results
0.10-03) 0.41(—06) 0.19-08) 0.57—11) (Veu=24.0) are virtually indistinguishable from the latter.
0.14-03) 0.61(—06) 0.41(—08) 0.23-10) As expected, the error increases quite rapidly belMy
0.74(—04) 0.29-06) 0.24-098) 0.11(—10) =18.0.

0.68—04) 0.27—06) 0.95-09) 0.63-12 ; ; ; ; )
0.64-03 0.35-05) 0.25-07) 0.66-09) The pra<_:t|cgl guestion _h_owever, is _Whether_ potential en
0.49—03) 0.14—05) 0.11(—07) 0.38—09) ergy truncation is more efficient than simply using a smaller
0.65-03) 0.44—05) 0.32-07) 0.60(—09) rectangular grid. Upon comparing Tables 1ll and IV, this
0.24-03 0.44—06) 0.82-098) 0.16—10) appears unlikely for alV values considered except
8-22((*82; 8?;(*82 8-;{1{(*82 83‘5‘((*83; =24.0, for which the grid size is reduced by only about 5%.
0:30(_02) 0:22(_04) 0:23_06) 0:31(_07) For the.Her:jon—Helles application theref?ri, potential ehnerg?y
0.19-02) 0.14—04) 0.17-06) 0.21(~07) truncation does not appear to accomplish very much. Al-
0.23-02) 0.12—04) 0.60—07) 0.16—08) though this is anticipated for many applications, there are
0.10-02) 0.39-05) 0.4%—-07) 0.18-08) some situations for which potential energy truncation may
0.11(-02) 0.91(-05) 0.62-07) 0.371-08) indeed be useful. If there are more than just a few degrees of
0.98-02) 0.79-04) 0.13-09) 0.48-06) freedom, for example, then grid truncation may be quite ef-
0.73-02 0.42—04) 0.67—06) 0.32-06) focti h ltilicati fect of shavi I
0.10-01) 0.10-03) 0.17-05) 0.55-06) ective, as the multiplicative effect of shaving a small per-
0.63-02) 0.26-04) 0.46—06) 0.12-07) centage of points per degree of freedom can accumulate into
0.75-02) 0.76—04) 0.62—06) 0.26—06) something quite substantial.

0.30-02 0.32-04) 0.27—06) 0.26-07)

0.38-02) 0.19-04) 0.25-06) 0.60—-07) VI. SUMMARY AND CONCLUSIONS

0.25-01) 0.23-03 0.54—05) 0.33-05) ) o . .

0.28-01) 0.36-03) 0.18-04) 0.13-04) The idea of tailoring a representation to a particular sys-
0.2(—01) 0.26—03) 0.14—04) 0.97(—05) tem of interest is an important one, regardless of the specific
0.28-0) 0.24-03 0.24-05) 0.88-06) application or computational method. The difficulty how-
0.17-01) 0.12-03) 0.25-09 0.95-06) ever, is that an exact optimization may be more challenging
0.20-01) 0.23-03 0.43—05) 0.27—05) o ; :

0.86-02) 0.60—04) 0.13-05) 0.12-06) than the original problem itself. Thirteen years ago, one of
0.99—02) 0.11(—03) 0.14—05) 0.91(—06) the authors(J.C.L) summed up the situation as follos:

“The question of the best priori basis for a specific prob-
lem is one that cannot be answered in general, since it de-
pends on the number of eigenvalues required, the accuracy to
applied to sinc DVR grid§, although its use has been Which they are required, and the potential for which they are
discouragetf—particularly for PO DVRs, for which a part required.” Nevertheless, in the present work, we believe we
of the potential function has already been used to define theave found the answer to precisely this question—at least for
basis?’ Nevertheless, in the remainder of this section, wethe important special case of direct-product representations.
examine the consequences of applying a potential energy This is accomplished via an optimal separable basis
truncation scheme to the PSO DVR grids. theory* generalized to incorporate Hamiltonian projections
A DVR point (i,j) is discarded if and only i/(x; ,y;) (Sec. Il A—although this was not evident when we first es-
>V, With Vg, itself sufficiently larger tharE,,,. It is  tablished Eq(2.8). In any event, an equally essential com-
convenient to write the potential function a¥(x,y) ponent is the relation between the truncated basis operator
=V, (x) +Vy(y) +A(x,y). In the limit of smallj, it is clear pn, and its quasiclassical analog, the Thomas—Fermi
that for V> Eqy. the accuracy of the desired eigenvaluesdistribution!®-?°1t is the quantitative similarity of the phase
will not be significantly worse than that of the correspondingspace representations of these two entities that enables us to
rectangular grid. This accuracy may diminish exponentiallyobtain a nearly optimal solution by merely evaluating a few
however, asV., is decreased belovE.,. In reality of simple integrals. Moreover, the accuracy of this correspon-
course, A(x,y) is generally not negligible; nevertheless, the dence increases with the basis sitelt is encouraging that
PSO residual is known to have the smallest possialer-  the method becomes better in precisely the limit in which the
aged square magnitude, and an average value of zero. Comproblem becomes difficult.
sequently, although the sudden transition of accuracy versus It should be mentioned that strong separability, although
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a necessary prerequisite for conventional DVR applicationsvhich is anticipated to be most useful. Since this can be
(Sec. I1Q, introduces its own inherent limitations. The interpreted as the density of DVR points in configuration
direct-product constraint is decidedly severe, especially iSpace, it could serve as a very useful guide for a generalized
there are many degrees of freedom. It greatly limits thenondirect-product DVR, or even a distributed Gaussian basis
maximum possible efficiency of the resultant basis, for in-(DGB),*’ treatment. These approaches are exempt from the
stance, so that we still expect the number of required basigirect-product limitations of the present method, and might
functions (or DVR point9 N to be much larger than the potentially requireN to be only slightly larger thaK, at least
number of accurate eigenvalu€sOn the other hand, we can in principle. A final comment: Since a basis/DVR is the end
probably deviate slightly from the true optimum—as in theresult of phase space optimization, the procedure may be
quasiclassical solution of Eq3.8), or even its first-order used in conjunction with any other application where a basis/
approximation—without reducing the efficiency very much.DVR is appropriate. These might include: Lanczos

An additional limitation of the direct-product constraint— diagonalizatiorr”>® successive truncation and
even for the exact quantum solution—is that the efficiencydiagonalizatior?,’® and scattering applications such as
may vary significantly with the choice of coordinates. Green's function evaluation, optimized preconditionffig,

The important question is, however: in comparison withetc.
other methods, how much is the efficiency expected to im-
prove? We believe that in general the improvement will be
very significant—at least for eigenvalue calculations of typi-ACKNOWLEDGMENTS
cal polyatomic systems. One indication of this can be found  This work was supported, in part, by the National Sci-
in the “wasted phase space” picture of Sec. IIC and Fig.ence Foundation under Grant. No. CHE-9634440.

1(b). One can think of the optimized sinc DVR regi®y;,.

as a separable product of regions on each of thepRase

spacecoordinates. There are thus a total of @onstraints of APPENDIX: SELF-CONSISTENCY OF THE OPTIMAL
separability, as opposed to the PSO result of this papeﬁ,O'-U-'—'O'\I

which has onlyn such constraints. We therefore expect the | this appendix, we derive a self-consistency relation
respective efficiencies to be given approximatelydy and o the direct-product quasiclassical UME of E®.4) that

u", with 0<p<1, resulting iNNpsg~ 1 "Nsine. satisfies the stationarity condition of Ed2.12. The
Another, more concrete indication of this improvementa_gimensional UME densityp(dy,p1, . - . Gn.Pn) IS a

however, can be found in the last two columns of Table Il.product of n two-dimensional UME densitieg,(qx,py),

Here we find the accuracy of a PSO vs sinc DVR calculationyhich are essentially arbitrary. However, there is an overall
of a given size improved by two to four orders of magnitude.constraint that the total phase space volume encloseR by
Note that according to the argument just presented, the effinyst remain fixed.
ciencyimprovemenshould be greater for higher dimension- The regionR,, on the kth marginal phase space is
alities. This improvement should not be affected much by thg niquely determined by the curves that define its boundaries,
separability of the Hamiltonian, although separability shouldiogether with a specification of orientedndgs., “inside”
have a great effect on the efficiency itself. Thus, the highyersus “outside’). The curves themselves can be given as
degree of nonseparability of the Henon—Heiles potential inmomentum functions of positiop®{(qy), as is done in
the relevant energy range is reflected in the fact Mat10  \entzel-Kramers—Brillouin(WKB) or Hamilton—Jacobi
K'in order to achieve a competitive level of accuracy. Inci-theory. Thep®(qy) functions are necessarily multivalued, if
dentally, the fact that all but one of the convergence errors ifhey are to describe closed regidifsg. 3. In the T+ V case
Table IIl are positive suggests that the quadrature error isfor instance, there are two such curves, symmetrically situ-
much smaller than the representational error, in accord witlted about the, axis. It would therefore be more accurate to
Sec. llID. label the single-valued branches with an additional index,
We foresee many possible avenues for future explorasych aspEXt(a)(qk). We can legitimately suppress this index
tion, both with and without the constraint of separability. It however, as the argument can be applied—without signifi-
might be worthwhile, for instance, to apply the presentcant modification—to each branch independently.
method to angular coordinates and nonorthogonal kinetic en- | et thepﬁ“(qk) be chosen so as to satisfy Eg.12), for
ergies, as arise when rotational symmetry is applied to moa given total phase space volure The integral of Eq.
lecular systems. It could also be useful to examine the ques2.12) can be rewritten in terms of tmﬁXt(CIk) as
tion of coordinate choice more carefully. An optimization of o o
coordinates with respect to Hamiltonian separability mightJ f”n (qn)+...f fpl t(“1)+|_|(q PLs - GniPr)
improve the efficiency dramaticafiy—perhaps even result- pp(an) P (A~ b s
ing in accurate eigenvalues abokg,. Ideally, one would
like to generalize the PSO formaﬁustm to optimize both the Xdpydg, -~ dp,ddp, (AD)
coordinates and the basis functions simultaneously. A similawhere the plus and minus signs in the limits of integration
approach has already been developed for the VSCF methodenote the orientedness of the branches. Small variations to
for example! the regionsR, are identified with the addition of small de-
In nondirect-product applications, it is the Thomas—viation functionse,(q,) to the pp*(q,). Stationarity of the
Fermi density proper, i.e., thé'(qq, ... .q,) of Eq.(2.1),  functional implies that the integrated value of E41) re-
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mains constant, to first order in thg(q,)’s, for all varia-
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