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Phase space optimization of quantum representations: Direct-product
basis sets
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The quantitative phase space similarities between the uniformly mixed ensembles of eigenstates,
and the quasiclassical Thomas–Fermi distribution, are exploited in order to generate a nearly
optimal basis representation for an arbitrary quantum system. An exact quantum optimization
functional is provided, and the minimum of the corresponding quasiclassical functional is proposed
as an excellent approximation in the limit of large basis size. In particular, we derive a stationarity
condition for the quasiclassical solution under the constraint of strong separability. The
corresponding quantum result is the phase space optimized direct-product basis—customized with
respect to the Hamiltonian itself, as well as the maximum energy of interest. For numerical
implementations, an iterative, self-consistent-field-like algorithm based on optimal separable basis
theory is suggested, typically requiring only a few reduced-dimensional integrals of the potential.
Results are obtained for a coupled oscillator system, and also for the 2D Henon–Heiles system. In
the latter case, a phase space optimized discrete variable representation~DVR! is used to calculate
energy eigenvalues. Errors are reduced by several orders of magnitude, in comparison with an
optimized sinc-function DVR of comparable size. ©1999 American Institute of Physics.
@S0021-9606~99!00235-4#
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I. INTRODUCTION

With each passing year, experimentalists and theor
are gathering increasingly accurate and specific data, on
cessively larger polyatomic systems, at higher and hig
energies. For the theorists among us who calculate en
eigenspectra and the like, one fact has become very clear
choice of representation has acrucial effect on the efficiency
of the calculation. In all but the simplest applications, o
attempts to incorporate at least some of the underlying ph
ics into the representational basis itself—perhaps via a
monic expansion about some equilibrium geometry, for
ample. However, for many polyatomic systems and ene
regimes of current interest, the harmonic picture is simply
longer very helpful. Anharmonicity of the potential is on
widely recognized cause; but for multidimensional syste
at higher energies, nonseparability is probably an e
greater culprit.1 In any event, a more sophisticated physic
picture is evidently required, both from a pedagogical sta
point, and also from the practical perspective of improvi
computational efficiency.

The primary goal of this paper is to optimize the ba
representation for a particular system—with respect to
efficiency of the subsequent numerical computation—in
general and rigorous a manner as possible. It is also ho
that the resultant optimal basis may provide some phys
insight into the underlying system; but computational e
ciency is, in any event, the principal criterion for succe
Ideally, an optimization of this sort could be tailored to bo
the system itself and the energy range of interest—for
latter has a great impact upon the efficiency. Moreover, si

a!Electronic mail: billp@rainbow.uchicago.edu
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all computations are finite, it would be desirable to take
basis size into account as well. Another extremely valua
feature would be some quantitative measure of the meth
anticipated success in specific applications. This is impor
because it would enable one to distinguish the truly optim
representations from those that are merely ‘‘improved.’’ F
nally, it should be permissible to constrain the basis fu
tions, in whatever manner is appropriate for the compu
tional method being used.

The direct-product basis sets~DPBs!2,3 for instance, also
known as ‘‘strongly separable bases,’’4 comprise the focus of
this paper. There is an inherent significance to th
representations—consisting, as they do, of functions wh
are separable products in the coordinates. But our intere
direct products also stems from their being the appropr
constraint for the discrete variable representation~DVR! grid
methodology.5–10 As it happens, there is already a gene
framework for improving the efficiency of DPB represent
tions, known as the ‘‘potential-optimized DVR’’~PO
DVR!.11,12The general idea is to exploit the properties of t
true potential in the determination of the one-dimensio
marginal wave functions whose multidimensional produ
comprise the basis. In an inelastic scattering problem,
instance, the asymptotic form of the true potential may,
virtue of its separability, divide naturally into ‘‘effective’’
1D potentials for each of the various degrees of freedom.
using these effective potentials to define the basis set
each degree of freedom, one can obtain a DPB—and co
sponding DVR—that is tailored for the particular system
hand.

Such is the promise of the PO DVR approach. Howev
the success of this method in practice hinges on two
9 © 1999 American Institute of Physics
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factors: the particular procedure that is used to obtain
effective 1D potentials from the true multidimensional p
tential; and the choice of coordinates itself. The latter is p
sumed fixed for our purposes—although a coordinate tra
formation that renders the Hamiltonian more nea
separable might, in general, significantly improve matte
As for the former, various procedures have been propose
the past, and have met with considerable success in ce
applications.13–15 What has been lacking however, is a ge
eral, systematic means of evaluating the efficiency of th
proceduresa priori. It turns out that a simple, yet rigorou
quantum-mechanical functional for measuring represe
tional efficiency does, in fact, exist@Eq. ~2.8!#. Moreover,
minimization of this functional yields the particular DP
which is truly ‘‘optimized’’ with respect to the potential, in
the sense that there are no DPBs of comparable size w
yield more accurate eigenvalues. In mathematical terms,
optimization is a variational quantum mechanics problem
essentially a generalization of the standard variational p
ciple.

The exact quantum minimization is in general a diffic
task, although it has been applied previously in a limit
context.8 Recently, however, it has been found that there
corresponding quasiclassical optimization problem @Eq.
~2.12!# whose solution is almost trivial. The heart of th
argument lies in the fact that any finite basis set in quan
mechanics is represented approximately by some regio
phase space of finite volume. This region can be interpre
as a kind of Thomas–Fermi distribution.16–21 Moreover, us-
ing the correspondence rule developed by Weyl a
Wigner,22–25 we can make a quantitative comparison w
the exact quantum result directly on phase space. One fi
that the quasiclassical approximation is not very accurate
individual pure states, but that the correspondence beco
exceedingly accurate as the number of basis functions
comes large—even more so than a semiclassical approx
tion. This is, of course, precisely the limit in which the qua
tum problem becomes difficult, and for which an accur
approximation is desired.

We therefore advocate the use of the quasiclass
minimum—or some good approximation thereof—to gen
ate a nearly optimal DPB for the representation. In DV
applications, the resultant grid is expected to require fe
points than for any other PO DVR treatment. Exactly ho
few still depends on the specifics of the system, of cou
However, some indication is evident in Fig. 1~a!, a plot of
DVR grid points for a particularly troublesome potenti
with a localized ‘‘hole’’ in one small region. This kind o
situation—which occurs quite frequently in re
molecules26—is notoriously difficult for a standard sinc
function ~sinc! DVR treatment, because the high density
points required to adequately represent the range of mom
in the hole must be extended throughout the entire confi
ration space. As is evident from Fig. 1 however, this dif
culty is largely circumvented by the phase space optimi
~PSO! DVR.

It is instructive to compare the present PSO appro
with related optimization methods that have been used in
past. The PSO quantum functional is very similar to that
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optimal separable basis~OSB! theory,4,27,28though the latter
does not provide for optimization of the finite projection su
space. In general, finite projections are related to the fi
order reduced density matrices of density functional theo
These density matrices have been previously exploited
perform a one-parameter optimization of hybrid orbitals29

The vibrational self-consistent field~VSCF! method,1,30,31

however, is more closely related to the PSO approac
owing to the connection between the Hartree and OSB
tionarity conditions.4 Both methods yield separable bas
functions—but the VSCF functions are not mutually o
thogonal, and cannot be collectively optimized for a desi
energy range. Another difference is that the VSCF optimi
tion is quantum mechanical rather than quasiclassical,
though a semiclassical VSCF method has been develop32

For grid or DVR applications, a 1D phase space optimizat
technique known as the ‘‘mapped Fourier grid’’ method h
recently been introduced.33,34

The remainder of the paper is organized as follows.

FIG. 1. Zeroth-order phase space optimization ofH5(px
21py

2)/21(r 2

24)e2r 2
1ur u/10, with r 25x21y2 and maximum energyEmax

(0) 50.75.
There is a localized potential ‘‘hole’’ near the origin.~a! PSO DVR grid
points are dense in the hole region, but sparse elsewhere.~b! Marginal phase
space required by: sinc DVR~dashed!; Gauss–Hermite DVR~dot-
ted!; PSO DVR~solid!. Areas outside the solid curve result in extraneo
points.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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review of the pertinent theory is presented in Sec. II, inclu
ing OSB theory~Sec. II A! and the quantum–quasiclassic
correspondence on phase space~Sec. II B!. In addition, the
functionals of Eqs.~2.8! and ~2.12! are derived, as is a
simplea priori estimate of basis efficiency~Sec. II C!. Sec-
tion III focuses on the DPB problem, culminating in the s
tionarity condition for the exact quasiclassical solution~Sec.
III B !. An iterative algorithm suitable for computational a
plications is also presented~Sec. III C!, and applied to DVRs
~Sec. III D!. In Sec. IV, the exact quasiclassical direc
product solutions for both the coupled and uncoupled h
monic oscillator systems are derived analytically, and sho
to correspond to the exact quantum solutions. In Sec. V,
apply all of the previous ideas to the 2D Henon–Heiles s
tem. The PSO potentials are obtained numerically~Sec.
V B!, compared with another standard choice,15,35 and uti-
lized in the calculation of the PSO DPB~Sec. V C!. Finally,
in Sec. V D, the PSO DVR is constructed—both with a
without grid truncation—and a subsequent eigenvalue ca
lation performed. The accuracy of the results is compa
with that of an optimized sinc DVR, where the number
grid points is the same in both cases.

II. THEORETICAL BACKGROUND

A. Optimal representations

Let Ĥ be a quantum Hamiltonian. In this section, w
consider only kinetic-plus-potential (T1V) Hamiltonians
with two degrees of freedom:

Ĥ5
p̂x

2

2m
1

p̂y
2

2m
1V~ x̂,ŷ!. ~2.1!

The dimensional units are such that products of canonic
conjugate pairs such asxpx have units of reduced Planck’
constant—implying that\51, as is presumed throughout th
work. The generalization to arbitrary dimensionalityn, con-
sidered in the later sections, is for the most part straight
ward.

The eigenstates ofĤ are not, in general, direct-produc
functions inx andy. We are nevertheless interested in fin
ing the best direct-product basis set~DPB! in which to rep-
resentĤ. One approach is that of optimal separable ba
~OSB! theory, which provides the best separable approxim
tion Ĥ0 to the true HamiltonianĤ.4,27,28 More specifically,
Ĥ0 is chosen so as to minimize

tr@~Ĥ2Ĥ0!2#, ~2.2!

where the selection ofĤ0 is made from the set of all possibl
Hermitian operators, subject to a suitable separability c
straint.

Of the various constraints which one might conside4

the strongly separable constraint is appropriate here; th
becauseĤ0 then takes the form

Ĥ05Hx~ x̂,p̂x!1Hy~ ŷ,p̂y!, ~2.3!

whose eigenstates must necessarily comprise a DPB. In
~2.3!, the 1D36 operatorsĤx andĤy are known as ‘‘marginal
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-

-

r-
n
e
-

u-
d

f

ly

r-

-

is
-

-

is

q.

Hamiltonians.’’ The constraint of Eq.~2.3! is more restric-
tive than other forms of separability which have been utiliz
in previous applications.27,28On the other hand, an analytica
determination of the variational minimum is readily ava
able.

Using Eqs.~2.1!–~2.3! and the variational calculus, th
optimal strongly separableĤ0 can be shown to be

Ĥx5
p̂x

2

2m
1Vx~ x̂!, Ĥy5

p̂y
2

2m
1Vy~ ŷ!, ~2.4!

Vx~x!5
*V~x,y! dy

* dy
2

1

2
^V&,

~2.5!
Vy~y!5

*V~x,y! dx

* dx
2

1

2
^V&,

at least in principle—as is easily verified by adding an ar
trary strongly separable perturbation toĤ0 , and evaluating
Eq. ~2.2! in configuration space.@^V& is the expectation
value *V(x,y) dx dy/*dx dy, and it is assumed tha
min@V(x,y)#50.] In practice however, the right-hand sides
Eq. ~2.5! may diverge, because the coordinate and ene
limits are unrestricted.

For real-world applications, it is appropriate to introdu
restrictions, because there is always a maximum energ
basis size of interest. This is most naturally accomplished
working with the projection ofĤ on to a truncated set o
basis functionsuf i& of finite sizeN. The projected Hamil-
tonian is

Ĥpr5 r̂N Ĥ r̂N , ~2.6!

whose representation in theuf i& basis is anN3N matrix
known as the ‘‘variational basis representation’’~VBR!.8,9

The density operatorr̂N in Eq. ~2.6! is a uniformly mixed
ensemble~UME! of the truncated basis set wave function

r̂N[(
i 51

N

uf i&^f i u. ~2.7!

Note thatr̂N is invariant with respect to unitary transforma
tions of the N vectors uf i&. Formally, r̂N represents the
N-dimensional subspace spanned by those vectors, in
infinite-dimensional quantum Hilbert space. Theuf i& ’s are in
principle arbitrary, but in practice are taken to be the low
N eigenstates of some Hamiltonian-like operator.

For our purposes, the subspacer̂N of the projected
Hamiltonian is itself allowed to vary during the optimizatio
and in this crucial and complicating respect, the situation
quite different from that leading to Eqs.~2.4! and~2.5!. It is
in fact necessary to specify a new optimization criterion.
natural procedure—consistent with the general O
approach—is to minimize the total discrepancy between
eigenvalues ofĤpr and Ĥ. If we focus on thelowest Nei-
genvalues ofĤ, then the best choice ofr̂N is evidently that
which minimizes tr(Ĥpr)—or equivalently,

d tr~ r̂N Ĥ !50 ~2.8!

for all appropriate variations ofr̂N . In practice, one is often
interested in divorcing the number of desired eigenvalueK
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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from the basis sizeN>K, in which case the trace of Eq
~2.8! is replaced with the sum of the lowestK projected
eigenvalues.

If r̂N were allowed to be completely arbitrary@apart
from satisfying Eq.~2.7!#, then Eq.~2.8! would obviously
yield perfect results, in that the optimaluf i& would consist of
the true eigenfunctions ofĤ, and the eigenvalues ofĤpr

would match the firstN eigenvalues ofĤ exactly. For the
scope of this paper however,r̂N is constrainedto be a finite
DPB, so that the resultant stationary solution of Eq.~2.8!
yields only approximate eigenvalues ofĤ—albeit the best
such approximation possible. Even with these constraint
place, however, obtaining the quantum solution is gener
nontrivial, because an infinite-dimensional variation on
Hilbert space is still required to locate the extremum. In
stead, we will solve the corresponding constrained quasic
sical problem.

B. Quasiclassical approximation on phase space

It is convenient to reexpress the quantum problem in
exact phase space representation of Wigner and Weyl.
formalism provides a unique correspondence betw
quantum-mechanical operators, and observables o
classical-like phase space.22–25The Hamiltonian of Eq.~2.1!,
for instance, is mapped to the phase space functionH5(px

2

1py
2)/(2m)1V(x,y). The UME density operatorr̂N also

has a unique representationrN
qm(x,px ,y,py), although the

transformation here is far less trivial. In any event, it can
shown25 that the trace in Eq.~2.8! becomes

tr~ r̂N Ĥ !5~2p!22E rN
qm~x,px ,y,py!

3H~x,px ,y,py! dx dpx dy dpy ~2.9!

under the Wigner–Weyl correspondence.
Equation~2.9! is exact, but difficult to evaluate in prac

tice, because obtainingrN
qm(x,px ,y,py) is nontrivial. If r̂N

consists of the lowestN eigenstates of some operatorĤ0

however—as is appropriate here—then an excellent qu
classical approximation r(x,px ,y,py) is readily
available:19–21

r~x,px ,y,py!5Q~Emax2H0~x,px ,y,py!!, ~2.10!

where H0(x,px ,y,py) is itself obtained fromĤ0 via the
Wigner–Weyl correspondence, andEmax is such that the en
closed phase space volume is equal to (2p)2N. Equation
~2.10! can be regarded as a Thomas–Fermi phase space
tribution. Note thatĤ0 is not equivalent toĤ: the former is
not constrained to theT1V form of Eq.~2.1!, and moreover,
varies during the optimization in accord with varyingr̂N .

It would perhaps be more accurate to refer to
r(x,px ,y,py) of Eq. ~2.10! asr Ĥ0 ;N

qc (x,px ,y,py), to indicate

its quasiclassical nature and explicit dependence onĤ0 and
N. We use the former notation, however, to avoid an aw
ward proliferation of sub~super!scripts. In any event
r(x,px ,y,py) is easy to obtain in practice, has a simple a
intuitive phase space interpretation, satisfies the same a
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braic properties asr̂N , and—most importantly—converge
to the exactrN

qm(x,px ,y,py) in the largeN limit. In the 1D
case, individual eigenstates ofĤ0 correspond quasiclass
cally to solid rings of area 2p—adjacent and
nonoverlapping—whose boundaries occur along the conto
of H0(x,px). In a very literal sense therefore, Eq.~2.10! is a
classical ‘‘uniformly mixed ensemble,’’ albeit a 2D one.
can be convenient to interpret Eq.~2.10! not as a density, bu
simply as aregionof phase space, which we shall refer to
R. One might even generalize Eq.~2.10! by allowing any
phase space region of volume (2p)2N to approximate qua-
siclassically some quantum UME ofN basis functions. An
underlying Ĥ0 operator must be specified however, if th
correspondence is to be unique.

The quantum distributionrN
qm(x,px ,y,py) tends to oscil-

late slightly about the quasiclassicalr(x,px ,y,py), although
the integrals over phase space are the same. This situati
not surprising, and has in fact already been thoroughly inv
tigated in configuration space; for it can be shown that
projected density

rq~x,y!5~2p!22E r~x,px ,y,py! dpx dpy ~2.11!

is mathematically equivalent to the standard Thomas–Fe
density for a collection ofN noninteracting fermions de
scribed byĤ0 .19,21 In any event, the oscillatory behavio
suggests that the quasiclassical approximation
tr( r̂N Ĥ)—obtained by replacingrN

qm(x,px ,y,py) with
r(x,px ,y,py) in the integral of Eq.~2.9!—should be quite
accurate. We expect this to be the case even for relativ
small N, because the integrand is a smoothly varying qu
tity which is fully integrated over all phase space coor
nates.

The strategy therefore, is to minimize the quasiclass
approximation to tr(r̂N Ĥ), and to use the results to obta
the PSO DPB for representingĤ. The quasiclassical analo
of Eq. ~2.8! ~generalized for arbitrary dimensionalityn! is as
follows:

dE
R

H~q1 ,p1 , . . . ,qn ,pn! dq1 dp1 ••• dqn dpn50.

~2.12!

The quasiclassical optimization procedure is intuitively ve
clear: find the region of fixed phase space volume wit
which the integral of the Hamiltonian is minimized.

It is immediately evident that the unconstrained qua
classical solution is ‘‘exact,’’ in the sense that the corr
sponding basis set satisfies Eq.~2.8!. This is not generally
true, however, if a constraint is imposed onr̂N—of separa-
bility, or otherwise. In all cases though, the solution mu
approach exactness in the largeN limit. Moreover, we antici-
pate nearly optimal performance even for fairly smallN, be-
cause it is tr(r̂N Ĥ) rather thanr̂N itself that is approximated
The latter varies much less than the former near the va
tional extremum, due to the locally quadratic form of th
functional in this neighborhood.37
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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C. Quasiclassical estimate of efficiency

If the representational basis setr̂N is constrained, then in

general only some fraction of theĤpr eigenvalues will be
accurate. There is an excess of basis functionsN over the
number of accurate eigenvaluesK. The ‘‘efficiency’’ of the
constrained basis is defined as the ratioK/N. The quasiclas-
sical phase space picture provides a gooda priori estimate of
this fraction. IfR is the constrained region in question, th

let Run be the largest unconstrained solution@Ĥ05Ĥ in Eq.
~2.10!# which is completely enclosed byR. Qualitatively
speaking, the areas ofR lying outside ofRun are effectively
‘‘wasted,’’ as they correspond to theE.Emax eigenstates

that are only partially represented byr̂N . A quasiclassical
estimate of the efficiency is thus given by the ratio of t
phase space volume ofRun to that ofR.

Our definition of quasiclassical efficiency is almost ide
tical to that proposed previously by Fattalet al.,33,34 but is
more general, and obtained somewhat more rigorously. T
proposed optimal solution—based on a remapping sch
described many years earlier by Faist38—is essentially iden-
tical to the present result in the unconstrained 1D case.
more general situations however, for which there are c
straints or multiple degrees of freedom, the phase space
proach of Fattalet al. is incapable of providing the rigor
ously optimized result, because it does not establish

necessary quasiclassical correspondence for the basis sr̂N

itself.
The quasiclassical efficiency as defined above is a

appropriate for DVR applications, because the transform
tion to the DVR basis—being a unitary transformationwithin

the subspacer̂N—does not affect the eigenvalues ofĤpr . For
each degree of freedomq, the PSO DVR is constructed from
the PSO basis setuf i& in the standard way—i.e., by trans
forming to the eigenstatesuw i& of the projected position op

erator q̂pr , and using the eigenvalues ofq̂pr as the DVR
points.6,8 By considering the quasiclassical analog of th
procedure, incidentally, it is clear that the configurati
space densityrq(q) @Eq. ~2.11!# can be roughly interpreted
as the density of DVR points.

Using the ‘‘wasted phase space’’ picture describ
above, we can already apply a rudimentary phase space
timization to the standard 1D DVR calculations. In all su
cases, the underlying basis set is somehow constraine
sinc DVR, for instance, is constructed from the sinusoi

eigenfunctions ofp̂2. Quasiclassically, the constrainedR
corresponding to the sinusoidal basis is the interior of a r
angle in the (q,p) phase space, centered alongp50. There
are three parameters required to specify the rectangle, c
sponding to the extent and spacing of the sinc DVR g
points. Roughly speaking, the optimal rectangle is the sm
est one that containsRun, as in Fig. 1~b!, because this result
in the smallest possible wasted area.

As a less trivial example, the Gauss–Hermite DVR
often employed,8 because it is generally more efficient than
sinc DVR, and the analytic form forT1V Hamiltonians is
known. The reason is again clear from a phase space
spective. Here, we single out the smallestellipse, rather than
Downloaded 10 Aug 2003 to 128.135.132.83. Redistribution subject to A
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rectangle, that containsRun. There are again three param
eters specifying vertical and horizontal extents of the ellip
but sinceRun is generally more oval-shaped than rectang
lar, the wasted area is reduced@Fig. 1~b!#. In practice, exact
quantum optimization of the Gauss–Hermite DVR para
eters is a difficult proposition;8 instead, these values might b
chosen to match the equilibrium point. If the energy range
large however, or the potential far from quadratic, then t
choice will be considerably less efficient than the PS
choice presented here.

The simple 1D examples above are illuminating; but o
primary focus is direct-product representations of ma
dimensional Hamiltonians. This constraint is a rather sev
one, in that it is equivalent to working with a collection o
1D regionsRk—one for each degree of freedomk, residing
on the ‘‘marginal phase space’’ (qk ,pk). The individual
Rk’s are now completely unconstrained however, unlike
1D examples just considered. This distinction is very evid
in the rotationally invariant 2D example of Fig. 1. For an
sinc DVR treatment, the complete regionR5Rx3Ry must
be a four-dimensional box, in thatRx andRy must each be
rectangular. Because the potential has a narrow hole h
ever, the shadow39 of the unconstrainedRun on to (qx ,pk)
@or (qy ,py)# is broad with a narrow spike, so that the sma
est enclosing rectangle is much larger than the shadow
gion itself @Fig. 1~b!#. This can lead to great inefficiency
especially when compounded over several degrees of f
dom.

Figure 1~a! demonstrates how the situation can be i
proved with a PSO DVR. The hole region is densely co
ered, but the representation of the remaining area is m
more sparse, as desired. As a result, far fewer DVR po
are required to perform the same calculation. On the ot
hand, the direct-product constraint is responsible for
‘‘crosslike’’ pattern of points, which places extra points a
along the rows and columns of the hole, resulting in so
inefficiency. Nevertheless, the PSO DVR is far more e
cient than a sinc DVR, which would extend the high dens
of the hole region throughout the entire space. Incidenta
the shadow regions are not quite the optimal solutions~Sec.
III C !; but they should nevertheless suffice for estimating
efficiency of the latter.

III. PHASE SPACE OPTIMIZATION OF DIRECT-
PRODUCT BASES

In this section, the mathematical problem of optimizin
the direct-product basis set~DPB! for representing a given
HamiltonianĤ is rigorously examined. We derive a statio
arity condition for the exact quasiclassical solution, under
constraint of strong separability. We also present an itera
approximation scheme for practical use, and exhibit the
plicit connection to optimal separable basis~OSB! theory.
The latter is required in order to obtain the phase space
timized ~PSO! marginal Hamiltonians.

A. Direct-product basis sets

Let Ĥ5H(q̂1 ,p̂1 , . . . ,q̂n ,p̂n) be an arbitrary nD
Hamiltonian, not necessarily of the standardT1V form. For
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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a given maximum energy of interestEmax and finite basis
sizeN, we would like to specify the best possible DPB, wi
respect to the accuracy of the projected Hamiltonian eig
values belowEmax. The Hamiltonian is then represented
either the optimal basis itself, or in the DVR construct
from the latter~the direct-product PSO DVR!. It is conve-
nient to specify the DPB wave functions as the eigenfu
tions of 1D marginal HamiltoniansĤk5Hk(q̂k ,p̂k), where
(1<k<n). We have

F i 1••• i n
~q1 , . . . ,qn!5f i 1

1 ~q1!3•••3f i n
n ~qn!,

~3.1!
Ĥkuf i k

k &5l i k
k uf i k

k &,

where thei k index the eigenstates of theĤk .
The DPB wave functions of Eq.~3.1! are in principle

infinite in number, and comprise a complete orthonormal
sis of the underlying Hilbert space. In any computation
application however, we are constrained to using finite ba
sets only. It would clearly be desirable to use a direct ene
truncation criterion, for which we discard all statesF i 1••• i n

for which the expectation value ofĤ is greater than some
cutoff valueEcut.Emax. This approach might be appropria
for a basis set representation~Sec. III D!; however, for a
DVR application, the set of basis functions is required to
‘‘rectangular.’’ This means thateveryF i 1••• i n

for which i k

<Nk for all k, must be included in the basis set.Nk is thus
the number of one-dimensional functions associated with
kth degree of freedom, so that there are a total ofN5N1

3•••3Nn DPB functions in all.
Despite the rectangularity constraint, an energy trun

tion of the basis set can still be utilized in a slightly le
direct fashion. Assuming that thel i k

k ’s are arranged in in-

creasing order, we simply choose theNk’s such thatlNk

k

'Ecut, for eachk. There are, however, many possible ma
ginal Hamiltonians—with vastly different spectra—that ha
the samef i k

k eigenstates. Consequently, the particularĤk’s

which are actually used must be related toĤ itself in some
reasonable manner, if this energy truncation procedure i
be effective. We shall examine these issues more thorou
in Sec. III B and in the Appendix. For now, we simply wis
to emphasize the subtle, but important distinction betw
rectangularly constrained, and unconstrained, truncation
the basis set.

We now consider the UME density operator obtain
from the rectangularly truncated basis set:

r̂N5 (
i 151

N1

••• (
i n51

Nn

uF i 1••• i n
&^F i 1••• i n

u5)
k51

n

r̂k . ~3.2!

The resultant density operatorr̂N is a separable product o
1D density operators,r̂k . Moreover, each of ther̂k’s is also
a UME, albeit one that involves thekth degree of freedom
only. These facts are evident from Eqs.~3.1! and~3.2!, from
which we find

r̂k5 (
i k51

Nk

uf i k
k &^f i k

k u. ~3.3!
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For the present purpose, Eqs.~3.2! and ~3.3! constitute the
correct constraint on the variational minimization of E
~2.8!.

As discussed in Sec. II B, a reasonable approximation
the minimum of Eq.~2.9! is obtained by replacingr̂N with
the quasiclassical Thomas–Fermi distribution on ph
space. Thus, for the present direct-product application,
must determine the quasiclassical constraint analogou
Eqs. ~3.2! and ~3.3!. This is very straightforward however
the separable direct-product constraint implies a quasicla
cal density of the form

r~q1 ,p1 , . . . ,qn ,pn!5r1~q1 ,p1!3•••3rn~qn ,pn!,
~3.4!

where each of therk(qk ,pk)’s is itself a uniform distribution
over a regionRk in thekth marginal phase space. The pro
uct distribution r(q1 ,p1 , . . . ,qn ,pn) extends over a
2n-dimensional regionR, which is ‘‘rectangular’’~actually
cylindrical! with respect to the individual marginal phas
spaces of then degrees of freedom~Fig. 2!. Within each
marginal phase space however, theRk may describe any
arbitrary shape~Fig. 3!.

B. Phase space optimization

To optimize the direct product representation in acco
with Eq. ~2.12!, we must vary the individual shadow region
Rk until the integral of the HamiltonianH(q1 ,p1 , . . . ,
qn ,pn) within the product regionR is minimized ~Fig. 3!.
The total phase space volumeV enclosed byR must remain
fixed throughout the variation, implying a constant basis s
N'V/(2p)n. Note, however, that the individual margina
areasAk ~enclosed by the two-dimensional regionsRk) are

FIG. 2. Schematic of four-dimensional phase space of a 2D Hamilton
with each axis representing a single degree of freedom. Solid curve re
sents the contourH(q1 ,p1 ,q2 ,p2)5Emax

(0) , as well as the limits of the un-
constrained phase space regionRun. Constrained regionsR correspond to
rectangles, with the dotted-line choice above being the zeroth-order
mum. Shadows cast on the marginal phase spaces (R 1

(0) andR 2
(0)) are the

same for bothR andRun.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 3. Two marginal phase spaces for a non-T1V Hamiltonian of arbitrary dimensionality. Solid curves enclose the marginal regionsRk , etc., whose
product over all degrees of freedom definesR. In optimizing the latter, theRk may be varied arbitrarily, as indicated schematically by the dashed cu
above. However, the variation must not alter the total volumeV, i.e., the product of the areasAk enclosed by each of the marginal regions.
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not constrained by the variation—apart from the overall co
dition thatV5A13•••3An . This implies that theNk need
not be specifieda priori, but are determined automatically b
the optimization itself.

Mathematically, the procedure described above is a v
straightforward application of the standard variation
calculus.37 Each two-dimensional marginal regionRk is
uniquely represented by a multivalued functionpk

ext(qk),
specifying the boundary of the region. The minimization is
constrained optimization with respect to variations of t
pk

ext(qk). In the Appendix, we derive the stationarity cond
tion for the optimal solution, as well as a simple interpre
tion of the pk

ext(qk). These results are best understood
terms of OSB theory.

An OSB description is also motivated by the followin
concern. Suppose that the quasiclassical optim
r(q1 ,p1 , . . . ,qn ,pn) is obtained for a given system. On th
surface of it, the problem is solved, because eachrk(qk ,pk)
specifies a basis set subspace for thekth degree of freedom
However, an explicit association betweenrk(qk ,pk) and r̂k

is still required in order to obtain the actual basis. This is
accomplished directly, but through the Wigner–Weyl cor
spondence of the associated marginal HamiltoniansĤk ~Sec.
II !. It is therefore necessary to obtain explicit classical
pressionsHk(qk ,pk) for the marginal Hamiltonians.

Since ‘‘closeness’’ to the true Hamiltonian is a necess
criterion in this regard~Sec. III A!, the OSB marginal Hamil-
tonians are a natural choice; but these must be mod
somewhat for the projected, quasiclassical situation at h
Given that the Eq.~2.4! result for Ĥx can be interpreted a
theaverageof Ĥ with respect toy ~apart from a constant!, it
is natural to use an analogous formula here. We there
takeHk(qk ,pk) ~apart from a constant! to be the integral of
r(q1 ,p1 , . . . ,qn ,pn)H(q1 ,p1 , . . . ,qn ,pn) divided by the
integral of r(q1 ,p1 , . . . ,qn ,pn), with respect to all phase
space coordinates exceptqk and pk . The correspondenc
Downloaded 10 Aug 2003 to 128.135.132.83. Redistribution subject to A
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with the trace relations of Eqs.~2.2! and~2.5! is evident from
Eq. ~2.9!.

Having specified the marginalHk(qk ,pk)’s, the corre-
sponding operatorsĤk are obtained using the Wigner–We
rule. It is then a straightforward matter to specify the as
ciated UMEr̂k’s as the lowestNk'Ak /(2p) eigenstates of
the Ĥk’s. There is a possible difficulty to this procedur
however. Implicitly, we made use of the optimalrk(qk ,pk)’s
to obtain the Hk(qk ,pk)’s, via strongly separable OSB
theory. In turn, the contours of theHk(qk ,pk) functions give
rise to regionsRk which are the ones ultimately associat
with the quantum UMEs—but these may or may not be
sameRk’s that we started with! Intuitively, we would like
the two sets ofRk’s to be the same, of course. Whereas
the general case they must be distinct, it turns out that t
equivalence ispreciselythe stationarity condition heralding
the quasiclassical optimum~Appendix!.

In other words, the stationary solution of Eq.~2.12! sat-
isfies the following self-consistency relation, with respect
the strongly separable OSB marginal Hamiltonians:

Hk~qk ,pk!5
Ak

V E H~q1 ,p1 , . . . ,qn ,pn!

3)
j Þk

r j~qj ,pj ! dqj dpj2E0 , ~3.5!

r j~qj ,pj !5Q~Emax2H j~qj ,pj !!.

In Eq. ~3.5!, the areaAk is *rk(qk ,pk) dqk dpk , and the
constant

E05S n21

n D ^H&,

~3.6!

^H&5
*RH~q1 ,p1 , . . . ,qn ,pn! dq1 dp1 ••• dqn dpn

*R dq1 dp1 ••• dqn dpn
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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is analogous to thêV& terms in Eq.~2.5!.
Note that theRk-defining maximum energy contour

Hk(qk ,pk
ext(qk))5Emax are all characterized by the sam

value of Emax, for each of then degrees of freedom; th
value itself is arbitrary, however~Appendix!. With the E0

term included as above, it is reasonable to interpretEmax as
the maximum energy of interest, in accord with Sec. III
Note, however, that it is not the energyEmax, but the total
phase space volumeV, which is fixed in the variation; con
sequently, the value ofEmax is not determined until after the
variation is completed.

It turns out that in a purely quantum treatment, a simi
relationship to Eq.~3.5! also holds, i.e., the OSB result give
rise to marginal HamiltoniansĤk whose eigenstates are co
sistent with those obtained by minimizing tr(r̂N Ĥ). The
analogy between quantum and quasiclassical optimization
evidently very tight; though the end results are not neces
ily identical ~Sec. II B!. In any event, it should be empha
sized that in neither case is the OSB relation imposeda pri-
ori; Eq. ~2.8! or ~2.12! alone is thus sufficient for
determining both the basis setand the marginal Hamilto-
nians.

It is worth discussing the special case ofT1V Hamilto-
nians briefly. The optimalHk(qk ,pk)’s are not presumeda
priori to be of this simple and convenient form, since t
range of marginal Hamiltonians is completely unconstrain
in the variational optimization. Nevertheless, it can be sho
from Eq. ~3.5! that the marginal Hamiltonians are indeed
the kinetic-plus potential variety. In other words,

Hk~qk ,pk!5
pk

2

2mk
1Vk~qk!. ~3.7!

Consequently, the problem of finding the optim
Hk(qk ,pk)’s reduces to that of finding the optimal margin
potential functions,Vk(qk). This situation is clearly desirabl
from a computational perspective, because the 1DT1V
Hamiltonians are easy to deal with numerically, and a
because the optimization procedure itself now involves o
the n-dimensional configuration space, rather than the en
2n-dimensional phase space.

The self-consistency relations of Eq.~3.5! can be rewrit-
ten directly in terms of the marginal potentials, as follows

Vk~qk!5~2p!n21
Ak

V E V~q1 , . . . ,qn!

3)
j Þk

r j
q~qj ! dqj2E0

k ,

~3.8!

r j
q~qj !5~2p!21E r j~qj ,pj ! dpj

5 p21 Q~Emax2Vj~qj !!A2mk@Emax2Vj~qj !#.

The constant term is

E0
k5S n21

n D ^H&2(
j Þk

^pj
2&

2mj
, ~3.9!

where the expectation values are as in Eq.~3.6!. Note that the
E0

k are now formally dependent onk, in contrast to Eq.~2.5!.
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The reason for this discrepancy is subtle, but ultimately
flects the finite constraint present in the Eq.~3.8! case. In
practice, thek dependence of theE0

k’s is often slight, in
which case they can be replaced withE0 , or with @(n
21)/n#^V&.

C. Obtaining the marginal Hamiltonians

Equations~3.5! and~3.8! represent conditions of station
arity only, and do not in and of themselves provide a rec
for obtaining a solution. These equations are very similar
the self-consistent field equations of the Hartree theory,40–42

in quite a number of respects. Indeed, Hartree theory s
gests a natural procedure for actually obtaining solutio
here—namely, to select a zeroth-order approximationHk

(0)

andrk
(0) , and then to obtain successively more accurate

proximations via iteration, until self-consistency is achiev
to sufficient accuracy.

The determination ofrk
( l ) from the contours ofHk

( l ) is
trivial; whereas going fromrk

( l ) to Hk
( l 11) requires evaluating

the n integrals of the first line of Eq.~3.5! or ~3.8!. Numeri-
cally, these integrations are fairly straightforward, and wo
tend to make good candidates for a Monte Ca
calculation.43 Less computational effort is required than f
overlap integrals, for instance, because the integrands
quired here are generally smooth. Nevertheless, ifn is quite
large, the numerical integrations might be CPU intensive
many iterations are required.

For practical applications, it is not necessary to conve
to very high accuracy; getting anywhere near the quasic
sical optimum should yield an extremely efficient quantu
basis set. Moreover, there is a natural zeroth-or
approximation—to be described shortly—which is fairly a
curate on its own, and easily obtained. Starting with t
approximation, we anticipate that only a few iteratio
should be required to obtain an accuracy reasonable for m
purposes. This is borne out by the examples considere
Secs. IV and V, where only one iteration is applied. In t
case of Sec. IV, this is nevertheless sufficient to achieve
convergence.

The zeroth-order approximation referred to in the pre
ous paragraph is obtained by simply projecting theuncon-
strained quasiclassical solution on to each of the margin
phase spaces—as was already considered in Sec. II C. IfEmax

(0)

is the zeroth-orderEmax, then the optimal unconstraine
r(q1 ,p1 , . . . ,qn ,pn) is given by

run~q1 ,p1 , . . . ,qn ,pn!

[Q~Emax
(0) 2H~q1 ,p1 , . . . ,qn ,pn!! ~3.10!

~Section II B!. By varying the$qj Þk ,pj Þk% coordinates arbi-
trarily in Eq. ~3.10! above, we obtain the allowed range
(qk ,pk) values, and hence the shadow ofrun(q1 ,
p1 , . . . ,qn ,pn) on to the kth marginal phase space. Th
product of alln such regionsR k

(0) is the zeroth-order con
strainedR (0).

This definition ofR (0) is a very natural choice, in that i
is the smallest possible product region containingRun that
can be constructed~Fig. 2!. The rectangularity constraint o
the former, however, implies that the volume ofR (0) is
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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larger than that ofRun. We can expect the PSO DVR effi
ciency ~Sec. II C! to decrease as the dimensionality is i
creased, and also as the potential function becomes inc
ingly nonseparable. Note that even for a strongly separa
system, the quasiclassical efficiency estimate must be
than unity—even though the resultant eigenvalues are all
act. This is because the basis set truncation is rectangu
constrained, rather than unconstrained. Consequently,
r (0) distribution itself is not the optimal one; but it shou
generally serve as a good zeroth-order approximation.

The correspondingHk
(0)(qk ,pk) functions, incidentally,

are obtained in the following way: with (qk ,pk) fixed, vary
the $qj Þk ,pj Þk% arbitrarily within the range of Eq.~3.10!,
and set theminimumvalue of H(q1 ,p1 , . . . ,qn ,pn) as the
value forHk

(0)(qk ,pk). For T1V Hamiltonians, this reduce
to a minimization of the potential only, with respect to all b
one of then configuration space coordinates. This proced
has been successfully applied in previous applications.15,35

Note that the numerical effort involved in obtainingHk
(0) is

comparable to that of the more accurateHk
(1) , which requires

just a single application of Eq.~3.5! or ~3.8!. We therefore
advocate the use of the latter.

D. Constructing the PSO DVR

Having defined the optimal marginal Hamiltonian ope
tors Ĥk , we now turn to the construction of the PSO DV
itself. The first step is to decide how many basis functio
will be used to represent each degree of freedom. We
serve that the quasiclassical self-consistency relations of
III C give rise to a rectangular truncation criterion that
exactly analogous to that of Sec. III A. In the quasiclassi
case, it isEmax itself that is used in the truncation. Were w
to translate this ‘‘verbatim’’ into quantum mechanics~by
settingEcut5Emax), then we would be allowing the quas
classical procedure to determine bothEmax andN. In practice
however, it is much better to decouple these two parame
and to use a basis size that is larger than the quasiclas
value, by settingEcut.Emax ~Sec. III A!. This means that the
total basis sizeN can be variedindependentlyof the number
of desired accurate eigenvaluesK in a highly efficient
manner—a very desirable feature that has been lacking f
most previous DVR implementations.

We have thus far ignored the fact that a DVR is not qu
a true representation, because the ‘‘residual’’D̂5Ĥ2Ĥ0 is
represented onlyapproximately. The ‘‘quadrature error’’ in-
troduced by the DVR approximation is fundamentally d
tinct from the representational error discussed heretof
and only the former is accounted for in the optimization
Eq. ~2.8!. Nevertheless, it is unlikely that the results wou
be affected much if quadrature were incorporated—at le
for theT1V Hamiltonians, for whichD̂5V̂2V̂1•••2V̂n has
a potential-like form. Quadrature error decreases rapidly
the basis size is increased, and is further reduced by dec
ing the magnitude—and increasing the smoothness—of
residual potential. In the PSO DVR case, the marginal
tentials are smoother thanV(q1 , . . . ,qn), so it is the latter
that generally determines the smoothness ofD(q1 , . . . ,qn).
But this contribution is the same, regardless of which m
Downloaded 10 Aug 2003 to 128.135.132.83. Redistribution subject to A
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ginal potentials are chosen; thus, smoothness is not expe
to play a significant role in the optimization procedure.

In contrast, the overall size of the residual potential do
vary quite a bit with the choice of the marginal potentials. B
its very definition however, the OSB approximation is pr
cisely the one which minimizes the size of the residua4

Thus, in addition to~nearly! optimizing the representation
the quasiclassical procedure also minimizes the primary c
tribution to quadrature error. This fortuitous situation is o
viously quite relevant for DVR applications—although
should be mentioned that a rigorous characterization
quadrature errors is still lacking for the general PO DV
case. Nevertheless, it is expected that the quasiclassica
timization method presented herein may offer a signific
improvement for both basis set and DVR calculations. E
amples of both are considered in the next two sections.

IV. COUPLED HARMONIC OSCILLATOR EXAMPLE

We start with the trivial uncoupled harmonic oscillat
system,

Ĥ5
p̂x

2

2
1

p̂y
2

2
1

x̂2

2
1

ŷ2

2
. ~4.1!

Since the Hamiltonian is already strongly separable to be
with, it is obvious that the best quantum-mechanical m
ginal Hamiltonians must beĤx5( p̂x

21 x̂2)/2 and Ĥy5( p̂y
2

1 ŷ2)/2. It is nevertheless instructive to verify that the qu
siclassical method also returns this result.

The unconstrained regionRun(x,px ,y,py) is the interior
of a hypersphere, whose shadows on thex and y marginal
phase spaces are circular disks. Taking these regions a
zeroth-orderR x

(0) andR y
(0) , we find that they correspond t

zeroth-order marginal Hamiltonians Hx
(0)(x,px)5(px

2

1x2)/2, etc. It is easy to show however, that the first-ord
results Hx

(1) , etc., are identical to the zeroth-order one
These approximations are therefore self-consistent to b
with, and thus equivalent to the quasiclassical optimu
Moreover, the quasiclassical solution is seen to corresp
exactly to the quantum solution. Similar comments wou
hold for any strongly separable system.

The coupled oscillator system

Ĥ5
p̂x

2

2
1

p̂y
2

2
1

x̂2

2
1

ŷ2

2
2e x̂ŷ ~4.2!

is a bit more interesting. In reality, the above Hamiltoni
decouples in a different set of coordinates, so that the eig
value spectrum can be obtained analytically. Specifically
the coordinates (x,y) are rotated by 45°, thenĤ becomes the
sum of two harmonic oscillators with different frequenci
@Fig. 4~a!#. The eigenvalues are given in terms of the tw
~non-negative! quantum numbersm andn as

Emn5
~m11/2!

A12e
1

~n11/2!

A11e
, ~4.3!

where 0<e,1 is a measure of the difference between t
two fundamental frequencies.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Because of symmetry, the marginal solutions for thex
andy degrees of freedom must be identical. From the fo
of Eq. ~4.2!, we anticipate thatHx(x,px)5(px

21x2)/2,etc.;
but this should be verified via explicit calculation. We beg
with the zeroth-order marginal Hamiltonians. These are e
ily found to be Hx

(0)(x,px)5@px
21(12e2)x2#/2, etc. Note

that the marginal potential is somewhat shallower than
pected, to an extent depending one. This results in zeroth-
order shadow regionsR x

(0) , etc., which are oblong ellipses
rather than circular discs@Fig. 4~b!#.

IntegratingH(x,px ,y,py) over the product regionR (0)

using Eq.~3.8!, we find the first-order results to be in kee
ing with our intuitive expectations:

Hx
(1)~x,px!5~px

21x2!/2,
~4.4!

Hy
(1)~y,py!5~py

21y2!/2.

FIG. 4. Shadows of unconstrained regionH(x,px ,y,py)<3.0 on to relevant
subspaces, for coupled oscillator systemH5(px

21py
2)/21(x21y22xy)/2.

Region boundaries are indicated by solid curves.~a! Configuration space,
displayingx–y correlation which decouples under a 45° rotation. Dash
line is location of theV(x,y) minimum for eachx. ~b! Marginal x phase
space~identical toy!. The result is flattened slightly in comparison with th
true optimum, indicated by the dotted curve.
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Continuing the process,R x
(1) andR y

(1) are clearly circular
disks, and thus distinct fromR x

(0) , etc.
However, the second-order marginal Hamiltonians

once againHx
(2)(x,px)5(px

21x2)/2, etc. We have therefore
converged to the exact quasiclassical solution after jus
single iteration. Moreover, it is easily shown that the corr
sponding quantum operators are also equivalent to the o
mal ones. It should be noted that the present exampl
somewhat special, in that the optimal solution doesnot de-
pend on the maximum energyEmax. This can be traced to
the odd-symmetric form of the interaction potential, whi
effectively vanishes in all of the Eq.~3.8! integrations.

Since the optimal strongly separable approximation toĤ
is just the uncoupled harmonic oscillator of Eq.~4.1!, there is
not much to be gained from a full DVR calculation for th
model system. We will, however, consider the accuracy t
can be obtained by the PSO DPB representation itself, in
limit that e˜0. In this limit, Eq.~4.3! becomes

Emn'~m1n11!1e
~n2m!

2
, ~4.5!

whereas the strongly separable result is equal to just the
parenthetical expression above. Assuming the range ofn and
m values to be identical, we find the strongly separable e
to be positive as often as it is negative. We have, of cou
neglected to include the residual termD(x,y)52e xy in our
finite representation. The inclusion of this term would ne
essarily result in approximate eigenvalues that are all
large; consequently, the representational errors in the P
DPB must be zero, to second order ine.

FIG. 5. Contour plot of 2D Henon–Heiles potentialV(x,y)5x2/21y2/2
1(x2y2y3/3)/A80, exhibiting C3v symmetry. Dashed lines indicate th

dissociation triangle atV(x,y)5Edis513.333̄. Solid circles represent the
PSO DVR grid truncated viaV(x,y),Vcut518.0, for the basis truncation
energyEcut518.0.

d
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V. TWO-DIMENSIONAL HENON–HEILES EXAMPLE

A. Henon–Heiles potential

In this section, we apply the PSO DVR method to t
anharmonic Henon–Heiles system. This simple, but n
trivial, 2D model system has long been used as a benchm
for numerical methods.44–49 Analytically, it is equivalent to
the uncoupled harmonic oscillator of Eq.~4.1!, plus an addi-
tional interaction potential,

Vint~ x̂,ŷ!5lS x̂2ŷ2
ŷ3

3
D . ~5.1!

A naive separable approximation would simply ignore t
contribution of Eq.~5.1!. This would be accurate at low en
ergies, ifl were sufficiently small. At higher energies how
ever, the classical system becomes chaotic for the valuel
used in this paper and elsewhere44–48 (l51/A80). In this
case, Eq.~4.1! is no longer an adequate separable appro
mation.

For the value ofl specified, the Henon–Heiles syste
has a ‘‘dissociation’’ threshold atV(x,y)5Edis513.333̄,
where V(x,y) is the full potential~Fig. 5!. This particular
contour is an equilateral triangle centered at the origin.
general, the potential possesses threefold symmetry, and
creases to negative infinity as one extends beyond the d
ciation triangle in the direction of the triangular corne
~saddle points!. Quantum mechanically, this implies th
there are no true bound states, only quasibound resona
For the states within the energy range considered in this
per however (K536 desired eigenvalues!, there is very little
tunneling—no more than about one part in 1010 or so. For the
most part, this is insignificant in comparison to the accu
cies obtained in our eigenvalue calculations, and can be
nored. The negative divergence of the potential will play
important role in the determination of the optimal margin
potentials, however.

Figure 5 is a contour plot of the Henon–Heiles poten
for the l value specified. TheC3v symmetry induced by the
interaction potential is very evident in all but the lowest e
ergy bound state contours. It also gives rise quantum
chanically to a degenerate eigenvalue structure. In prev
quantum calculations, other authors45,47 have made use o
coordinates that exploit this symmetry. We deliberat
avoid doing so, and stick to a conventional Cartesian co
dinate treatment, in order to test the efficiency of the P
DVR method for a coordinate representation that is subs
tially nonseparable.

B. Marginal Hamiltonians

Using the iterative approximation method of Sec. III
we shall determine the zeroth-order and first-order marg
Hamiltonians inx andy, for a variety ofEmax

(0) values below
the dissociation threshold,Edis. Formally, the unconstraine
regionsRun arenot simply connected—consisting of a finit
piece within the dissociation triangle~Fig. 5!, and three dis-
connected pieces lying outside of the triangle and extend
to infinity. This reflects the fact that the true eigenfunctio
are actually resonances, rather than bound states. In kee
Downloaded 10 Aug 2003 to 128.135.132.83. Redistribution subject to A
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with our bound state approximation however, we discard
external regions, and consider only the portion ofRun which
lies within the dissociation triangle. The constrained reg
R does extend beyond these boundaries, however.

The zeroth-order, or minimal potentials, can be obtain
analytically, and are found to be

Vx
(0)~x!5x21

12~4l2 x211!3/2

12l2
,

~5.2!

Vy
(0)~y!5

y2

2
2

l y3

3
.

Equation ~5.2! holds for all values ofEmax
(0) . The Vy

(0)(y)
potential has a local minimum at the origin, but reache
maximum value ofEdis at y54A5'8.944, beyond which it
drops to negative infinity. This is not surprising given th
nature of V(x,y); moreover a separation ofR y

(0) into
bounded and unbounded portions exists only when the
ergy is less thanEdis. Perhaps more surprising is the beha

FIG. 6. Marginal potentials for 2D Henon–Heiles system: zeroth or
~dashed!, and first order~solid!. The latter are presented for various max
mum energiesEmax

(0) 5$2.0,5.0,8.0,12.0%, where higher energies are identifie
with lower potential values near the origin.~a! Marginalx potentials,Vx(x);
first-order curves are quadratics.~b! Marginaly potentials,Vy(y); first-order
curves are cubics, where the barrier height increases withEmax

(0) .
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ior of the evenVx
(0)(x) potential, which drops to negativ

infinity in both directions, after attaining a maximum valu
of Edis at uxu52A15'7.746~Fig. 6!.

If only the bounded portions ofR x
(0) andR y

(0) are re-
tained, then the constrained densityr (0)(x,y) is well-defined
only whenEmax

(0) ,Edis. Quasiclassically, this does not pose
major problem; however, the corresponding zeroth-or
quantum treatment would be severely restricted, in that
truncation energyEcut would also have to be less thanEdis,
in order to restrict the basis to quasibound states. The a
racy of such a representation would therefore diminish r
idly as the dissociation threshold was approached. In
event, the zeroth-order quasiclassical density functionsrx

0(x)
andry

0(y) are presented in Fig. 7 for several differentEmax
(0)

values.
By substituting the zeroth-order density functions in

the first line of Eq.~3.8!, we obtain the first-order margina
potentials,Vx(x)5Vx

(1)(x) and Vy(y)5Vy
(1)(y) ~for conve-

nience, we omit first-order superscripts in the subsequent
cussion!. These turn out to be simple polynomial expre
sions, and in that sense are more straightforward than
minimal potentials. However, there is now an energy dep

FIG. 7. Marginal phase space regions for 2D Henon–Heiles system:~a! x
phase space regionRx ; ~b! y phase space regionRy . Zeroth-order bound-
aries are presented for various maximum energiesEmax

(0)

5$2.0,5.0,8.0,12.0%, where higher energies are identified with larger e
closed areas. With the vertical axis interpreted asp 3 probability, thep
.0 curves also represent the density of DVR points alongx or y.
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dence which manifests itself in the polynomial constan
These cannot be determined analytically, but must be ca
lated separately for eachEmax

(0) value of interest. Being only
one-dimensional however, the corresponding integrals
numerically trivial.

Although we have calculated the polynomial consta
numerically for allEmax

(0) values considered in this paper, w
have also derived a general analytical approximation, va
in the smalll limit:

Vx~x!'
x2

2
1

Emax
(0)

4
2E0 ,

~5.3!

Vy~y!'
y2

2
1

Emax
(0)

4
2l S y3

3
2

Emax
(0) y

4 D 2E0 ,

where E0 is substituted forE0
k ~Sec. III B!. For the l

51/A80'0.1118 value used in this paper, the relative err
of the Eq.~5.3! approximate potentials are no larger than
few percent, over the relevant coordinate ranges. Moreo
the quadratic and cubic terms of theVy(y) expression are
exact. We have used the numerically integrated constan
all of the computational work presented in Secs. V C a
V D, and also for the marginal potential plots of Fig. 6. Ne
ertheless, Eq.~5.3! is pedagogically useful.

We observe, for instance, thatHx(x,px) is now a simple
harmonic oscillator. The standard Gauss–Hermite DVR
therefore optimal for this coordinate, to first order. Mor
over, the negative divergence associated withVx

(0)(x) is no
longer present, so that the basis sizeNx is completely unre-
stricted. According to Eq.~5.3!, the marginalVx(x) potential
is energy independent, apart from the constant term. In r
ity however, there is a slight narrowing of the harmonic w
with increasingEmax, as is clear from Fig. 6.

The Vy(y) potential function is a cubic expression
which therefore retains the negatively divergent behavio
the largey limit. This implies an upper limit onEcut, and on
the basis sizeNy . Nevertheless, the situation is much im
proved over the zeroth-order case, in that the barrier he
increases substantially with increasingEmax

(0) ~Fig. 6!, owing
to the energy dependence of the linear term of Eq.~5.3!.
Consequently, even ifEmax

(0) 'Edis, the resultantVy(y) well is
deep enough to sustain quite a number of quasibound b
functions with energies aboveEdis.

C. Direct-product basis

The first-order marginal potentialsVx(x) andVy(y), as
determined in Sec. V B, have been optimized for a variety
different Emax

(0) values. For the remainder of this section, w
consider only the specific caseEmax

(0) 512.0, for which the
first-order marginal potentials are given explicitly as

Vx~x!50.6106x222.4923,
~5.4!

Vy~y!5
y3

3A80
1

y2

2
11.0143y21.3441.

The Vy(y) potential attains a maximum value of 21.543
y5y0'9.864.
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The DPB, obtained from the marginal quantum Ham
tonians associated with Eq.~5.4!, is truncated by comparing
the marginal eigenvalues againstEcut. Consequently, it is
necessary to determine the eigenvalues of theĤx and Ĥy

operators, as well as their eigenfunctions. In the simple h
monic case ofĤx , these are known analytically. TheĤy case
is somewhat more complicated—not only because the eig
problem must be solved numerically, but also because of
decreasing potential fory.y0 . The latter implies thatĤy ,
like Ĥ itself, has no true bound states. In order to obtai
bound state basis, we have altered the potential slightly
settingVy(y)5Vy(y0) for y.y0 .

For the lower energy states, this alteration has almos
effect. Even for states nearEmax

(0) 512.0, the tunneling is al-
most negligible; despite the proximity toEdis, the Vy(y)
potential well is almost 25 units deep@Fig. 6~b!#. As Ecut

approachesVy(y0) however, there is of course pronounc
tunneling, which is ignored by our approximation. In th
limit however, these additional states are used only to l
additional accuracy to the DVR calculation, since the ma
mum energy of interestEmax is necessarily belowEdis. Con-
sequently, the tunneling discrepancy for states with ener
nearVy(y0) is probably not significantly detrimental to th
calculation.

Far more significant is the fact that the altered poten
in y has only a finite number of bound states—24 in all. T
largest possible basis size is therefore limited. However,
situation is much better than forHy

(0) , for which the ten

TABLE I. Eigenvalues for marginal Hamiltonians of 2D Henon–Heil

system (Emax
(0) 512.0). The harmonicĤx results are analytical. TheĤy po-

tential is an altered cubic, with 24 bound states. These were compute
10210 accuracy, using anN51551 sinc DVR.

Marginal Hamiltonian eigenvalues

State Ĥx energy Ĥy energy
index ~analytical! ~computed!

1 21.939 764 130 21.277 368 110
2 20.834 718 250 20.186 647 732
3 0.270 327 628 0.896 555 180
4 1.375 373 510 1.971 984 970
5 2.480 419 380 3.039 364 720
6 3.585 465 260 4.098 393 340
7 4.690 511 140 5.148 742 050
8 5.795 557 020 6.190 050 150
9 6.900 602 900 7.221 919 790

10 8.005 648 780 8.243 909 610
11 9.110 694 650 9.255 526 650
12 10.215 740 500 10.256 216 200
13 11.320 786 400 11.245 348 600
14 12.425 832 300 12.222 201 700
15 13.530 878 200 13.185 937 800
16 14.635 924 000 14.135 570 900
17 15.740 969 900 15.069 920 700
18 16.846 015 800 15.987 543 900
19 17.951 061 700 16.886 627 400
20 19.056 107 600 17.764 810 200
21 20.161 153 400 18.618 862 000
22 21.266 199 300 19.444 019 400
23 22.371 245 200 20.232 303 000
24 23.476 291 100 20.966 243 700
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bound states would only just reachEmax
(0) . This would be

insufficient for obtaining accurate DVR results for the high
energies in the desired range; whereas the basis obta
from the first-order calculation ofV̂y turns out to yield very
reasonable accuracy, as is discussed in Sec. V D.

In any event, using a 1D sinc DVR with 1551 points, w
have calculated the eigenfunctions and eigenvalues of th
bound states of the alteredĤy operator to an accuracy of a
least 10210. The convergedĤy—and analytical Ĥx—
eigenvalues are presented in Table I. The same trunca
energyEcut.Emax is used to limit both marginal basis set
The PSO DVR constructed from the resultant DPB is the
fore customized for an eigenvalue calculation ofĤ for ener-
gies up to the maximum value of interestEmax.

There is a slight ambiguity pertaining to the preci
value of Emax that should be taken in this regard. Techn
cally, the valueEmax

(0) 512.0 is only a zeroth-order approx
mation toEmax, which can change with successive iteratio

to

TABLE II. Computed eigenvalues~below E5Emax58.3) for 2D Henon–
Heiles system, using the largest PSO DVR (Ecut521.5,N5528). Uncertain
digits in column II are underlined. The last two columns: error comparis
between optimized sinc DVR and PSO DVR of identical size (N5380).

Henon–Heiles eigenvalues Deviations from column II

State PSO DVR energy Sinc DVR error PSO DVR erro
label N5528 N5380 N5380

1A1 0.998 594 772 608 20.27~211! 20.21~213!
1E 1.990 076 760 080 20.87~209! 0.94~213!
1E 1.990 076 760 090 0.82~209! 0.57~213!
2A1 2.956 242 988 990 20.15~208! 0.27~212!
2E 2.985 326 428 070 20.63~208! 0.16~212!
2E 2.985 326 428 070 0.47~208! 0.12~212!
3E 3.925 963 721 090 0.33~207! 0.50~211!
3E 3.925 963 721 090 1.00~207! 0.21~210!
3A1 3.982 417 283 280 20.47~207! 0.98~211!
1A2 3.985 760 926 080 1.00~207! 0.67~212!
4A1 4.870 144 005490 20.92~206! 0.65~209!
4E 4.898 644 204 450 20.16~205! 0.38~209!
4E 4.898 644 204 460 0.36~206! 0.58~209!
5E 4.986 251 014 940 20.10~205! 0.13~210!
5E 4.986 251 014 950 0.57~206! 0.25~209!
6E 5.817 019 099 880 0.33~205! 0.73~208!
6E 5.817 019 100 430 0.83~205! 0.31~207!
5A1 5.867 014 809 650 0.74~206! 0.21~207!
2A2 5.881 446 098760 0.44~205! 0.16~208!
7E 5.991 326 955770 20.44~205! 0.18~208!
7E 5.991 326 955790 0.47~205! 0.37~208!
6A1 6.737 916 244 810 20.21~204! 0.48~206!
8E 6.764 866 571950 20.35~204! 0.32~206!
8E 6.764 866 580150 0.15~204! 0.55~206!
9E 6.853 430 627710 20.32~204! 0.12~207!
9E 6.853 430 634960 0.27~204! 0.26~206!
3A2 6.998 931 928 770 0.30~204! 0.26~207!
7A1 6.999 386 910 290 20.27~204! 0.60~207!
10E 7.659 485 640670 20.86~204! 0.33~205!
10E 7.659 486 027880 0.44~204! 0.13~204!
8A1 7.697 721 758120 20.12~203! 0.97~205!
4A2 7.736 884760380 0.31~204! 0.88~206!
11E 7.832 735235730 20.16~203! 0.95~206!
11E 7.832 735281080 0.84~204! 0.27~205!
12E 8.009 424777490 20.15~203! 0.12~206!
12E 8.009 424815660 0.12~203! 0.91~206!
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~Sec. III C!. To be consistent, we should use the first-ord
Emax, defined quasiclassically as the contours ofHx

(1)(x,px)
andHy

(1)(y,py) for which the volume ofR (1) equals that of
R (0), i.e., V. The quantum procedure is even mo
straightforward—simply adjustEmax until the truncated basis
size is closest toV/(2p)n. This basis size is approximatel
94, which—from Table I—is found to yieldEmax5Emax

(1)

'8.3.

TABLE III. Comparison of errors of computed eigenvalues~below E
59.3) for 2D Henon–Heiles system, for rectangular PSO DVRs of incre
ing basis truncation energyEcut . Errors are deviations with respect to th
energies of Table II column II (N5528 PSO DVR!. The horizontal line near
the bottom denotes the maximum energy of interest,Emax58.3.

Convergence errors vsEcut for Henon–Heiles system

Ecut58.5 Ecut512.0 Ecut515.0 Ecut518.0 Ecut520.0
(N5100) (N5169) (N5256) (N5380) (N5440)

0.14~209! 0.42~212! 0.89~215! -0.21~213! 0.35~213!
0.81~208! 0.14~210! 0.18~212! 0.94~213! 0.79~213!
0.16~207! 0.67~210! 0.45~212! 0.57~213! 0.53~213!
0.94~206! 0.33~208! 0.24~210! 0.27~212! 0.12~212!
0.28~206! 0.16~208! 0.11~210! 0.16~212! 0.34~213!
0.74~206! 0.18~208! 0.15~210! 0.12~212! 0.79~213!
0.22~204! 0.40~207! 0.39~209! 0.50~211! 0.11~211!
0.49~204! 0.18~206! 0.19~208! 0.21~210! 0.49~211!
0.25~204! 0.77~207! 0.78~209! 0.98~211! 0.22~211!
0.19~205! 0.10~207! 0.76~210! 0.67~212! 0.14~212!
0.91~203! 0.34~205! 0.42~207! 0.65~209! 0.15~209!
0.18~203! 0.25~205! 0.26~207! 0.38~209! 0.89~210!
0.12~202! 0.25~205! 0.37~207! 0.58~209! 0.15~209!
0.96~204! 0.15~206! 0.68~209! 0.13~210! 0.33~211!
0.26~203! 0.12~205! 0.17~207! 0.25~209! 0.61~210!
0.42~202! 0.37~204! 0.34~206! 0.73~208! 0.19~208!
0.14~201! 0.85~204! 0.16~205! 0.31~207! 0.83~208!
0.13~201! 0.62~204! 0.10~205! 0.21~207! 0.54~208!
1.00~203! 0.89~205! 0.12~206! 0.16~208! 0.37~209!
0.34~203! 0.28~205! 0.71~207! 0.18~208! 0.50~209!
0.25~202! 0.14~204! 0.20~206! 0.37~208! 0.92~209!
0.35~201! 0.94~203! 0.18~204! 0.48~206! 0.13~206!
0.15~201! 0.61~203! 0.13~204! 0.32~206! 0.88~207!
0.72~201! 0.10~202! 0.20~204! 0.55~206! 0.16~206!
0.14~201! 0.20~203! 0.70~206! 0.12~207! 0.34~208!
0.75~201! 0.33~203! 0.99~205! 0.26~206! 0.74~207!
0.46~202! 0.61~204! 0.13~205! 0.26~207! 0.67~208!
0.13~201! 0.96~204! 0.18~205! 0.60~207! 0.17~207!
0.79~201! 0.76~202! 0.88~204! 0.33~205! 0.10~205!
0.80~201! 0.95~202! 0.36~203! 0.13~204! 0.41~205!
0.13~00! 0.10~201! 0.25~203! 0.97~205! 0.30~205!
0.12~00! 0.14~202! 0.37~204! 0.88~206! 0.24~206!
0.56~201! 0.57~203! 0.21~204! 0.95~206! 0.32~206!
0.18~00! 0.34~202! 0.80~204! 0.27~205! 0.79~206!
0.19~201! 0.38~203! 0.66~205! 0.12~206! 0.31~207!
0.22~00! 0.62~203! 0.21~204! 0.91~206! 0.30~206!

0.15~00! 0.42~201! 0.20~202! 0.11~203! 0.36~204!
0.14~00! 0.26~201! 0.17~202! 0.73~204! 0.24~204!
0.30~00! 0.75~201! 0.26~202! 0.15~203! 0.52~204!
0.23~00! 0.14~201! 0.29~203! 0.62~205! 0.17~205!
0.31~00! 0.26~201! 0.84~203! 0.44~204! 0.15~204!
0.19~00! 0.82~202! 0.36~203! 0.14~204! 0.44~205!
0.23~00! 0.11~201! 0.33~203! 0.20~204! 0.73~205!
0.11~00! 0.17~202! 0.49~204! 0.23~205! 0.82~206!
0.65~00! 0.25~202! 0.14~203! 0.78~205! 0.27~205!
Downloaded 10 Aug 2003 to 128.135.132.83. Redistribution subject to A
r

D. Results: PSO DVR eigenvalues

Using the PSO DVR constructed from the DPB d
scribed in Sec. V C, we have performed eigenvalue calc
tions of the Henon–Heiles system. A variety ofEcut trunca-
tions were used, starting near the first-orderEmax value
(Ecut58.5), and working up toEcut521.5, which yields all
24 of they-coordinate bound states. Results are presente
Tables II and III. SinceEcut is the only convergence param
eter, we use the results of the largest DVR grid (Ecut

521.5, N5223245528) as the reference for the errors
Table III.

The last column of Table III provides an indication o
the converged accuracy of these eigenvalues, which are
sented in Table II. Another indication is the numerical d
ference between the two eigenvalues of the theoretically
generate pairs ofE symmetry. Since we have not exploite
this symmetry in the PSO DVR computation, both eigenv
ues of each pair are calculated explicitly. In determining
significant figures of the second column of Table II, we u
the larger of the two error measures. We regard any ac
racy beyond;1029 as suspect however, due to the qua
bound nature of the Henon–Heiles system~Sec. V A!. Our
results fall within the error bars of previous calculations,44–48

for energies belowEmax.
Perhaps the most striking feature of Table III is the e

tremely sudden loss of accuracy that occurs as one cro
over theEmax'8.3 threshold. In all of the grids considere
one finds a sudden two-order-of-magnitude error increase
tween theE'8.01 andE'8.55 eigenvalues. Although
general loss of accuracy was expected, the abruptness o
transition is quite surprising, and definitely much more e
treme than what we had anticipated. It is reassuring to fi
that the transition energy does not vary at all with increas
basis size—suggesting that the PSO DVR method re
does decouple the energy range from the basis size. On
other hand, even within the range of interest the error te
to increase with increasing energy, as is—to o
knowledge—true of all other DVR schemes to date. Mo
over, there are certain large aberrations well belowEmax.

On the whole though, the PSO DVR appears to be qu
efficient. Even with as few as 380 points, the error of t
largest of the 36 energies belowEmax is only about one part
in 107. This should be contrasted with the results of a 2
sinc DVR calculation, which we have also applied to t
Henon–Heiles system. In the latter, potential energy trun
tion of the grid was performed to reduce its size. The g
spacing~0.6! and potential cutoff energy~17.0! were opti-
mized with respect to the accuracy of the eigenenergie
range. Nevertheless, the sinc DVR errors are several or
of magnitude larger than those of a PSO DVR of identi
size (N5380). A direct comparison for each of the 3
desired eigenvalues is given in the last two columns
Table II.

The preceding PSO DVR results were all obtained us
rectangular DVR grids, with the same number of grid poin
as basis functions. In principle, one can discard grid po
from areas where the potential energy is substantially lar
thanEmax, so as to reduce the size of the DVR matrix re
resenting the Hamiltonian. This truncation procedure is of

s-
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applied to sinc DVR grids,8 although its use has bee
discouraged13—particularly for PO DVRs, for which a par
of the potential function has already been used to define
basis.47 Nevertheless, in the remainder of this section,
examine the consequences of applying a potential en
truncation scheme to the PSO DVR grids.

A DVR point (i , j ) is discarded if and only ifV(xi ,yj )
.Vcut, with Vcut itself sufficiently larger thanEmax. It is
convenient to write the potential function asV(x,y)
5Vx(x)1Vy(y)1D(x,y). In the limit of smallD, it is clear
that for Vcut.Ecut, the accuracy of the desired eigenvalu
will not be significantly worse than that of the correspondi
rectangular grid. This accuracy may diminish exponentia
however, asVcut is decreased belowEcut. In reality of
course,D(x,y) is generally not negligible; nevertheless, t
PSO residual is known to have the smallest possible~aver-
aged! square magnitude, and an average value of zero. C
sequently, although the sudden transition of accuracy ve

TABLE IV. Comparison of errors of computed eigenvalues~below E
5Emax58.3) for 2D Henon–Heiles system, for truncated PSO DVR gr
of increasing potential cutoff energyVcut . Untruncated grid is theN5380
PSO DVR of Tables II/III column IV. Errors are with respect to Table
column II.

Convergence errors vsVcut for Henon–Heiles system

Vcut510.0 Vcut514.0 Vcut518.0 Vcut524.0
(N5247) (N5309) (N5348) (N5364)

0.13~206! 0.29~209! 0.11~211! 0.81~214!
0.12~205! 0.43~208! 0.14~210! 0.80~213!
0.22~205! 0.51~208! 0.28~210! 0.58~213!
0.19~204! 0.65~207! 0.33~209! 0.40~212!
0.11~204! 0.14~207! 0.11~209! 0.26~212!
0.14~204! 0.71~207! 0.33~209! 0.18~212!
0.10~203! 0.41~206! 0.19~208! 0.57~211!
0.14~203! 0.61~206! 0.41~208! 0.23~210!
0.71~204! 0.29~206! 0.24~208! 0.11~210!
0.68~204! 0.27~206! 0.95~209! 0.63~212!
0.69~203! 0.35~205! 0.25~207! 0.66~209!
0.49~203! 0.14~205! 0.11~207! 0.38~209!
0.65~203! 0.44~205! 0.32~207! 0.60~209!
0.24~203! 0.44~206! 0.82~208! 0.16~210!
0.36~203! 0.25~205! 0.11~207! 0.25~209!
0.26~202! 0.13~204! 0.99~207! 0.74~208!
0.30~202! 0.22~204! 0.23~206! 0.31~207!
0.19~202! 0.14~204! 0.17~206! 0.21~207!
0.23~202! 0.12~204! 0.60~207! 0.16~208!
0.10~202! 0.39~205! 0.41~207! 0.18~208!
0.11~202! 0.91~205! 0.62~207! 0.37~208!
0.98~202! 0.79~204! 0.13~205! 0.48~206!
0.73~202! 0.42~204! 0.67~206! 0.32~206!
0.10~201! 0.10~203! 0.17~205! 0.55~206!
0.63~202! 0.26~204! 0.46~206! 0.12~207!
0.75~202! 0.76~204! 0.62~206! 0.26~206!
0.30~202! 0.32~204! 0.27~206! 0.26~207!
0.38~202! 0.19~204! 0.25~206! 0.60~207!
0.25~201! 0.23~203! 0.54~205! 0.33~205!
0.28~201! 0.36~203! 0.18~204! 0.13~204!
0.21~201! 0.26~203! 0.14~204! 0.97~205!
0.28~201! 0.24~203! 0.24~205! 0.88~206!
0.17~201! 0.12~203! 0.25~205! 0.95~206!
0.20~201! 0.23~203! 0.43~205! 0.27~205!
0.86~202! 0.60~204! 0.13~205! 0.12~206!
0.99~202! 0.11~203! 0.14~205! 0.91~206!
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Vcut nearVcut5Ecut should be smoothed out somewhat due
D, we still expect there to be a minimalVcut value—larger
than, but on the same order as,Ecut—above which the accu
racy should be comparable to that of the rectangular grid

We have tested this idea on the 19320 Henon–Heiles
PSO DVR grid, corresponding toEcut518.0. Because the
potential is not very separable,D(x,y)—though
minimized—is not very small. Nevertheless, the eigenva
errors for the variousVcut values presented in Table IV~10.0,
14.0, 18.0, and 24.0! seem to bear out our expectations. A
though theN5348 grid ofVcut518.0 ~Fig. 5! is one or two
orders of magnitude less accurate than theN5380 rectangu-
lar grid ~Tables II and III, column IV!, the N5364 results
(Vcut524.0) are virtually indistinguishable from the latte
As expected, the error increases quite rapidly belowVcut

518.0.
The practical question however, is whether potential

ergy truncation is more efficient than simply using a sma
rectangular grid. Upon comparing Tables III and IV, th
appears unlikely for allVcut values considered exceptVcut

524.0, for which the grid size is reduced by only about 5
For the Henon–Heiles application therefore, potential ene
truncation does not appear to accomplish very much.
though this is anticipated for many applications, there
some situations for which potential energy truncation m
indeed be useful. If there are more than just a few degree
freedom, for example, then grid truncation may be quite
fective, as the multiplicative effect of shaving a small pe
centage of points per degree of freedom can accumulate
something quite substantial.

VI. SUMMARY AND CONCLUSIONS

The idea of tailoring a representation to a particular s
tem of interest is an important one, regardless of the spe
application or computational method. The difficulty how
ever, is that an exact optimization may be more challeng
than the original problem itself. Thirteen years ago, one
the authors~J.C.L.! summed up the situation as follows:47

‘‘The question of the besta priori basis for a specific prob
lem is one that cannot be answered in general, since it
pends on the number of eigenvalues required, the accura
which they are required, and the potential for which they
required.’’ Nevertheless, in the present work, we believe
have found the answer to precisely this question—at leas
the important special case of direct-product representatio

This is accomplished via an optimal separable ba
theory4 generalized to incorporate Hamiltonian projectio
~Sec. II A!—although this was not evident when we first e
tablished Eq.~2.8!. In any event, an equally essential com
ponent is the relation between the truncated basis oper
r̂N , and its quasiclassical analog, the Thomas–Fe
distribution.18–20 It is the quantitative similarity of the phas
space representations of these two entities that enables
obtain a nearly optimal solution by merely evaluating a fe
simple integrals. Moreover, the accuracy of this corresp
dence increases with the basis sizeN. It is encouraging that
the method becomes better in precisely the limit in which
problem becomes difficult.

It should be mentioned that strong separability, althou
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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a necessary prerequisite for conventional DVR applicati
~Sec. II C!, introduces its own inherent limitations. Th
direct-product constraint is decidedly severe, especially
there are many degrees of freedom. It greatly limits
maximum possible efficiency of the resultant basis, for
stance, so that we still expect the number of required b
functions ~or DVR points! N to be much larger than th
number of accurate eigenvaluesK. On the other hand, we ca
probably deviate slightly from the true optimum—as in t
quasiclassical solution of Eq.~3.8!, or even its first-order
approximation—without reducing the efficiency very muc
An additional limitation of the direct-product constraint—
even for the exact quantum solution—is that the efficien
may vary significantly with the choice of coordinates.

The important question is, however: in comparison w
other methods, how much is the efficiency expected to
prove? We believe that in general the improvement will
very significant—at least for eigenvalue calculations of ty
cal polyatomic systems. One indication of this can be fou
in the ‘‘wasted phase space’’ picture of Sec. II C and F
1~b!. One can think of the optimized sinc DVR regionRsinc

as a separable product of regions on each of the 2n phase
spacecoordinates. There are thus a total of 2n constraints of
separability, as opposed to the PSO result of this pa
which has onlyn such constraints. We therefore expect t
respective efficiencies to be given approximately bym2n and
mn, with 0,m,1, resulting inNPSO'mnNsinc.

Another, more concrete indication of this improveme
however, can be found in the last two columns of Table
Here we find the accuracy of a PSO vs sinc DVR calculat
of a given size improved by two to four orders of magnitud
Note that according to the argument just presented, the
ciency improvementshould be greater for higher dimensio
alities. This improvement should not be affected much by
separability of the Hamiltonian, although separability sho
have a great effect on the efficiency itself. Thus, the h
degree of nonseparability of the Henon–Heiles potentia
the relevant energy range is reflected in the fact thatN'10
K in order to achieve a competitive level of accuracy. In
dentally, the fact that all but one of the convergence error
Table III are positive suggests that the quadrature error
much smaller than the representational error, in accord w
Sec. III D.

We foresee many possible avenues for future explo
tion, both with and without the constraint of separability.
might be worthwhile, for instance, to apply the prese
method to angular coordinates and nonorthogonal kinetic
ergies, as arise when rotational symmetry is applied to m
lecular systems. It could also be useful to examine the qu
tion of coordinate choice more carefully. An optimization
coordinates with respect to Hamiltonian separability mig
improve the efficiency dramatically50—perhaps even result
ing in accurate eigenvalues aboveEcut. Ideally, one would
like to generalize the PSO formalism to optimize both t
coordinates and the basis functions simultaneously. A sim
approach has already been developed for the VSCF met
for example.51

In nondirect-product applications, it is the Thoma
Fermi density proper, i.e., therq(q1 , . . . ,qn) of Eq. ~2.11!,
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which is anticipated to be most useful. Since this can
interpreted as the density of DVR points in configurati
space, it could serve as a very useful guide for a general
nondirect-product DVR, or even a distributed Gaussian ba
~DGB!,47 treatment. These approaches are exempt from
direct-product limitations of the present method, and mig
potentially requireN to be only slightly larger thanK, at least
in principle. A final comment: Since a basis/DVR is the e
result of phase space optimization, the procedure may
used in conjunction with any other application where a ba
DVR is appropriate. These might include: Lancz
diagonalization,52,53 successive truncation an
diagonalization,3,10 and scattering applications such
Green’s function evaluation, optimized preconditioning27

etc.
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APPENDIX: SELF-CONSISTENCY OF THE OPTIMAL
SOLUTION

In this appendix, we derive a self-consistency relati
for the direct-product quasiclassical UME of Eq.~3.4! that
satisfies the stationarity condition of Eq.~2.12!. The
2n-dimensional UME densityr(q1 ,p1 , . . . ,qn ,pn) is a
product of n two-dimensional UME densitiesrk(qk ,pk),
which are essentially arbitrary. However, there is an ove
constraint that the total phase space volume enclosed bR
must remain fixed.

The regionRk , on the kth marginal phase space
uniquely determined by the curves that define its boundar
together with a specification of orientedness~i.e., ‘‘inside’’
versus ‘‘outside’’!. The curves themselves can be given
momentum functions of positionpk

ext(qk), as is done in
Wentzel–Kramers–Brillouin~WKB! or Hamilton–Jacobi
theory. Thepk

ext(qk) functions are necessarily multivalued,
they are to describe closed regions~Fig. 3!. In theT1V case
for instance, there are two such curves, symmetrically s
ated about theqk axis. It would therefore be more accurate
label the single-valued branches with an additional ind
such aspk

ext
(a)(qk). We can legitimately suppress this inde

however, as the argument can be applied—without sign
cant modification—to each branch independently.

Let thepk
ext(qk) be chosen so as to satisfy Eq.~2.12!, for

a given total phase space volumeV. The integral of Eq.
~2.12! can be rewritten in terms of thepk

ext(qk) as

E E
pn

ext(qn)2

pn
ext(qn)1

•••E E
p1

ext(q1)2

p1
ext(q1)1

H~q1 ,p1 , . . . ,qn ,pn!

3dp1 dq1 ••• dpn dqn , ~A1!

where the plus and minus signs in the limits of integrati
denote the orientedness of the branches. Small variation
the regionsRk are identified with the addition of small de
viation functions«k(qk) to the pk

ext(qk). Stationarity of the
functional implies that the integrated value of Eq.~A1! re-
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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mains constant, to first order in the«k(qk)’s, for all varia-
tions of the latter that preserve the total phase sp
volumeV.

We need consider only those variations for which a
two of then « ’s are nonzero~labeledj andk!. The fixed-V
constraint implies that

AjE 6«k~qk! dqk1AkE 6« j~qj ! dqj50 ~A2!

~integration limits suppressed!, whereAk is the marginal
area of the regionRk , etc.~Sec. III B!, and the plus or minus
sign again reflects orientedness. Stationarity of Eq.~A1! on
the other hand, requires that

E 6«k~qk!H E H~pk5pk
ext~qk!! )

iÞk
dqi dpi J dqk

1E 6« j~qj !H E H~pj5pj
ext~qj !! )

iÞ j
dqi dpi J dqj50.

~A3!

The inner integrals in Eq.~A3! resemble the margina
Hamiltonian expressions of OSB theory@Eq. ~3.5!, first line#.
Rewriting Eq.~A3! in terms of the latter, we find

AjE 6«k~qk! Hk~qk ,pk
ext~qk!! dqk

1AkE 6« j~qj ! H j~qj ,pj
ext~qj !! dqj50, ~A4!

where Eq.~A2! has been used implicitly to cancel theE0

constant terms.
Equation~A4! must hold for all variations of« j (qj ) and

«k(qk). If « j (qj )50, then the first term alone must be ze
for all variations«k(qk), implying thatHk(qk ,pk

ext(qk)) is a
constant, denoted byEk . The optimal regionsRk are thus
given by Hk(qk ,pk),Ek . By making this substitution into
Eq. ~A4! and allowing« j (qj ) to be arbitrary, we find

EkAjE 6«k~qk! dqk1Ej AkE 6« j~qj ! dqj50. ~A5!

By virtue of the Eq.~A2! constraint however, this implie
that Ej5Ek[Emax.

Therefore, the optimal quasiclassical solution satisfie
self-consistency relation vis-a-vis the OSB marginal Ham
tonians: the optimalRk are obtained from the optima
Hk(qk ,pk) via the contours of the latter;and, the same
Hk(qk ,pk) are obtained from the sameRk via OSB theory.
Moreover, the maximum energyEmax is the same for each o
the n degrees of freedom. These results are summarize
Eq. ~3.5!.
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