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Abstract

We show that the Gamma distribution is not an adequate fit for the 
probability density function of drop diameters using the Kolmogorov-

Smirnov goodness of fit test. We propose a different parametriza-

tion of drop size distributions, which not depending by any particular 
functional form, is based on the adoption of standardized central mo-

ments. The first three standardized central moments are sufficient to 
characterize the distribution of drop diamters at the ground. These 
parameters together with the drop count form a 4-tuple which fully 
describe the variability of the drop size distributions. The Cartesian 
product of this 4-tuple of parameters is the rainfall phase space. Using 
disdrometer data from 10 different locations we identify invariant, not 
depending on location, properties of the rainfall phenomenon.

1 Introduction

At “punctual” space scale (∼50 cm2) rain can be described by a stochastic 
sequence of couples (Dj, τj ): Dj being the diameter of the j-th drops, and
τj the interval of time between the arrival of the j-th drop and the (j + 
1)-th drop (j = 1, 2, 3, ...). Partitioning the time axis in sampling time
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intervals of equal duration it is possible to build from the sequence (Dj, τj)
the sequence (pk(D), Nk), with pk(D) the probability density function of
drop diameter, and Nk the number of drops observed at the ground during
the l-th sampling time interval (l = 1, 2, ....). These two last quantities
are usually measured by disdrometers with a sampling time in the range 
10s-5min. Observational evidences suggest that rain is a non-homogeneous 
process as the variability observed in the sequence (pl(D), Nl) cannot simply 
ascribed to the variability expected when sampling from a single stochastic 
process [21, 14, 7, 5, 6]. The sequence (Dj, τj ), and thus (pl(D), Nl), is non-
stationary: the “statistical rules” to which the couples (Dj , τj) obey are not 
invariant under time translation [24].

A proper description of the distribution of drop sizes, which is funda-
mental for understanding the microphysics involved in the mechanisms of 
precipitation formation and retrieving rainfall from radar sensors, has been 
the main research goal since the introduction of the impact disdrometer has 
made reliable and prolonged measurements of drop diameters feasible. The 
main tool the meteorological community uses to describe the variability of the 
rainfall phenomenon is the drop size distribution, namely the concentration
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with a decaying constant depending on the rainfall rate. Later, Joss and
Gori [9] made clear that the exponential form is the results of sampling long
time intervals (∼30 minutes), and at smaller time intervals (∼1 minute) the 
drop size distribution does not have an exponential functional dependence.
Ulbrich [25] proposed the Gamma distribution as the functional form for the 
drop size distributions sampled at short time intervals. The rationale for 
this choice is that while an exponential decay is observed for the right tail 
of the distribution (recently [26] have shown that break-up due to air vis-
cosity is the main mechanism underlying the occurrence of exponential right 
tail), the density at smaller diameters is smaller than that of an exponential 
distribution. The Gamma distribution has been the only choice adopted in 
literature (if one excludes sporadic attempts with the log-Normal distribu-
tion, see e.g. [3], [19], and [17]) mainly because of two properties: 1) it is 
defined by two parameters, and 2) its moments can easily calculated so that 
any rain bulk variable can easily expressed in terms of the parameters of the 
Gamma distribution. The Gamma distribution has been widely accepted 
by radar meteorology and cloud physics communities, even if measurements 
show that the Gamma distribution is not general enough to represent ade-



quately the full range of the sample variability, [11]. The fit accuracy of the 
Gamma distribution to disdrometer data has not been properly addressed 
(aside from subjective statements: “a good fit” or “a reasonable fit” not sup-
ported by any objective measurement) or mistakenly addressed (see Section 
4) as in [20]. In the present work, we consider data from 10 different sites, 
and use the Kolmogorov-Smirnov goodness of fit test (e.g. [10, 12]) to show 
that the Gamma distribution is a poor fit to 1 minute sampled drop size 
distribution.

To obviate to this inadequacy, we propose a parametrization of the drop 
size distribution based on a standard procedure in statistical science: the 
description of an unknown probability density function in terms of its mean 
µ, standard deviation σ, skewness γ, and kurtosis κ. In particular, we show 
that mean, standard deviation and skewness are the minimum number of 
parameters, which effectively describe the drop size distributions. These pa-
rameters, together with the drop count N , are the variables necessary to de-
scribe the rainfall phenomenon at a punctual scale in space and at short time 
scales. All bulk variables of interest can be derived by the 4-tuple of param-
eters (N, µ, σ, γ). Adopting the jargon of the scientific community studying 
dynamical systems, we refer to the four dimensional Cartesian product R4 

spanned by the 4-tuple (N, µ, σ, γ) as the rainfall phase space.
The work is organized as follows. In Section 2, we discuss the data used 

in our analysis, Section 3 we illustrate all the methods of analysis adopted. 
Section 4 reports our results, and Section 5 our conclusions.

2 Data

We consider Joss-Waldvogel disdrometer data sampled at 1 minute time in-
tervals from ten different locations on Earth’s surface. Table 1 gives the list 
of the locations with a three letter code used to reference the site in the Fig-
ures. In addition, the Kppen-Geiger climate classification ([13]) of each site 
is provided. Table 2 completes the description of the data sets providing for 
each site the latitude, longitude, altitude, together with number of minutes 
and drops considered in the analysis.



2.1 Data processing

All data are processed as follows. We consider for each data base only minutes
for which the drop count is ≥60 (drop arrival rate ∼1 per second). The ratio-
nale for this choice is twofold: A) It guarantees a minimum reasonable accu-
racy for the estimation of the probability density function p(D), and the other
statistical parameters (mean, standard deviation, ...). B) It excludes time
intervals of observation which are quiescent (sparse precipitation) whose con-
tribution to the total cumulated precipitated volume is negligible (see discus-
sion in [7]). After this first filtering, we eliminate from the remaining minutes
of observation any outlier drop count. For each minute, we find the disdrom-
eter class with the maximum probability density, and we calculate the central
continuous non-zero span of the probability density: the set of contiguous dis-
drometer classes with non zero counts and which includes the class with maxi-
mum density. The counts in all disdrometer classes which do not belong to the
central continuous non-zero span are considered as outliers and are discarded:
e.g. the disdrometer count (3,11,18,31,30,35,80,52,41,39,44,21,5,0,1,0,0,0,0,0)
has an outlier in the 15-th class which is disregarded leading to the count
(3,11,18,31,30,35,80,52,41,39,44,21,
5,0,0,0,0,0,0,0). The removal of outliers drop counts improves the estimate
of higher moments of the probability density function p(D). A detailed dis-
cussion on outliers and their effects on estimated statistical parameters can
be found in [5].

3 Methods

We now describe the methods used to quantify the variability of the rainfall
phenomenon.

3.1 Variability of drop diameters

Two equivalent descriptions are possible for the variability of drop diameters.
1) The drop size distribution defined as the concentration per unit volume
and unit diameter N (D)

N (D) = NV f(D), (1)



where NV is the number of drops per unit volume and f(D) is the probability
density function of drop diameter in the unit volume. 2) The flux-equivalent
of Eq.(1): NV → N and f(D) → p(D). N is the number of drops observed
at the ground, and p(D) is the probability density function of drop diameter
at the ground. The two descriptions are equivalent as

p(D) =
AmTv(D)

N
NV f(D), (2)

and

N = AmTNV

∞
∫

0

v(D)f(D)dD. (3)

In the above equations, T is the time interval of observation (in seconds),
Am the capture area of the instrument (in m2), and v(D) the drop velocity
of diameter D (in m/s). Usually it is assumed that the arrival velocity of
drops is equal to their limit velocity and v(D) = CDb, where C = 3.78 m/(s
mm0.67) and b = 0.67 ([25]). With these definitions

p(D) = ΞD0.67NV f(D) Ξ =
AmTC

N
. (4)

By use of Eq.(4), we can connect the moments Mα,p of the probability density
function observed at the ground with those of the concentration per unit
volume Mα,N :

Mα,p = ΞM(α+0.67),N ⇐⇒ Mα,N = Ξ−1M(α−0.67),p. (5)

Using the above equation one is able to derive expressions for any rain bulk
variable. E.g. the rainfall rate R (in mm/h) is

R = 6π10−4CM3.67,N =
6π10−4

AmT
NM3,p. (6)

The concentration per unit volume, Eq.(1) is by far the most common quan-
titiy in literature, even if measurements of drop sizes at the ground are by 
large the only available data. Hereby, we adopt the probability density of 
drop diameter at the ground, Eq.(2), as measured by disdrometer counts.



3.2 The Gamma distribution for N (D) and p(D)

The most common functional form adopted for the probability density func-
tion f(D) in Eq.(1) is the Gamma distribution

f(D) = fΓ(D, λ, k) =
λk+1

Γ(k + 1)
Dk exp(−λD), (7)

where k is the shape,λ the inverse scale parameter, and Γ(x) is Gamma
function. Consequently the statistical moment of order α of the drop size
distribution N (D) is

Mα,N = NV

∞
∫

0

dDDαfΓ(D, λ, k) = NV
Γ(k + α + 1)

Γ(k + 1)
λ−α. (8)

However, it is common practice, in Literature, to write Eqs.(1) and (7) as

N (D) = N0D
k exp(−λD), (9)

where N0 is defined as

N0 = NV
λ(k+1)

Γ(k + 1)
. (10)

With the above notation

Mα,N = N0Γ(k + α + 1)λ−(k+α+1). (11)

Finally, if the probability density function f(D) is a Gamma distribution,
then also the probability density at the ground p(D) is a Gamma distribution

N (D) = NvfΓ(D, λ, k) ⇐⇒ p(D) = fΓ(D, λ, k + 0.67). (12)

3.3 Fitting the Gamma distribution to N (D) and p(D)

We briefly review the two main methods which have been adopted in litera-
ture to obtain the three parameters (NV , λ, k) in Eqs.(1) and (7).



3.3.1 Method of the Moments (MM)

The method of moments (MM) uses the moments of the observed distribution
to derive the parameters of the desired fitting function. For a drop size
distribution with a Gamma distribution for diameter density, the MMn1,n2,n3

method finds the number of drops per unit volume NV , the scale k and shape
λ such that the resulting distribution N (D) exactly matches the moments of
order n1, n2 and n3 of the observed distribution. Hereby, we use the MM3,4,6

and MM2,3,4 procedures as they are the ones usually adopted in Literature
(e.g. [23] and [22]), together with the MM0.67,1.67,2.67 adopted by [20]. This
last procedure finds the concentration NV , the scale k and shape λ of the
drop size distribution N (D) matching the observed number of drops at the
ground N (moment 0.67), the observed average drop diameter at the ground
µ (moment 1.67), and the observed second moment of drop diameter at the
ground M2,p (moment 2.67). Note that the last two conditions imply that
the resulting drop size distribution matches the standard deviation of drop
diameter σ observed at the ground. Therefore, we will use for brevity the
notation MMN,µ,σ instead of MM0.67,1.67,2.67.

Using Eqs. (1) and (8), the parameters NV , λ, and k are

MM3,4,6















Nv = Γ(k+1
Γ(k+5)

λ4M4

λ = (k + 4)M3

M4

k = 11G−8+
√
G2+8G

2−2G
G =

M3
4

M2
3
M6

(13)

MM2,3,4











Nv = Γ(k+1)
Γ(k+2.67)

λ1.67M1.67

λ = (k + 3)M2

M3

k = −7G+
√
G2+4G
2

G =
M2

3

M2M4

(14)

MMN,μ,σv











Nv = Γ(k+1)
Γ(k+2.67)

λ1.67M1.67

λ = (k + 1.67)M0,67

M1.67

k = −4.34G+
√
G2 + 4G G =

M2
1.67

M0.67M2.67

(15)



3.3.2 Method of Maximum Likelihood (MML)

The method of maximum likelihood is the main alternative to the method of
moments. Let fX (x, θ) be the probability density function of the variable X
given the vector of parameters θ, and x1, x, ..., xN is a sample of size N . The
likelihood L(θ) that the sample (x1, x2,, ..., xn) is drawn from the distribution

fX (x, θ) is defined as L (θ) =
N
∏

i=1

fX (xi, θ). In practice it is more convenient

to deal with the logarithm of the likelihood, denominated the log-likelihood

lnL (θ) =
N
∑

ln
i=1

fX (xi, θ), or the average log-likelihood l (θ) = 1
N
lnL (θ). The

ML method makes an estimation of θ maximizing the average log-likelihood,
i.e. θMML = argmax

θ
[l (θ)], [2]. Dealing with disdrometer data, it is impor-

tant to recall that disdrometers collect drops with a diameterD ≥ Dmin = 0.3
mm (for the JW disdrometer), making a lower truncation in the sample dis-
tribution. In the absence of small drops in sample datasets, the method
of maximum likelihood ignoring this problem exhibits large bias which do
not decrease increasing the sample size, [11]. Consequently, modifications to
the MML are necessary to deal explicitly situations where lower truncations
to the samples are present. We will consider the lower truncated Gamma
distribution which density is

f(D) = fΓ(D,Dmin, λ, k) =

λk+1

Γ(k+1)
Dk exp(−λD)

1− γ(k+1,λDmin)
Γ(k+1)

, D > Dmin (16)

where γ (k + 1, λDmin) is the incomplete Gamma function calculated in λDmin.
According to [8], the average log-likelihood is

l (λ, k) = − ln

(

1− γ (k + 1, λDmin)

Γ (k + 1)

)

+ (k + 1) lnλ− ln Γ (k + 1) +

+k

(

1

N

N
∑

lnDi

i=1

)

− λ

(

1

N

N
∑

Di

i=1

)

. (17)

The estimates of λ and k are obtained numerically minimizing the function
l (λ, k), using the R code provided by [8] in their appendix.



3.4 Statistical characterization of a probability distri-
bution function

Under some general condition (e.g. [18]), a probability density function is
completely determined by its moments: given the sequence of moments {Mj},
j = 1, 2, 3, . . . there exists an unique f(x) such that Mj =

∫

xjf(x)dx.
This fact has lead to the moment-characterization, in statistical sciences,
of probability density function for which a known parametric form is not
available. For this purpose a suitable number of moments and/or function
of moments will provide information on the unknown probability density
function f(x) and, as a consequence, on the dynamical process driving the
realizations of the stochastic variable x. We refer to these parameters as the
statistical descriptors of the probability density function.

The two most commonly used statistical descriptors are the mean µ = M1,
and the standard deviation σ =

√

M2 − (M1)2. In addition to these two pa-
rameters, the skewness γ, measuring the asymmetry of the distribution, and
the kurtosis κ, measuring the peakedness of the distribution, are used. Skew-
ness and kurtosis are the third and the fourth standardized central moments
(the expectation value of [(x− µ)/σ]3 and [(x− µ)/σ]4) and can be written
in terms of the moments of the distribution as follows:

γ =
M3 + 2(M1)

3 − 3M1M2

[M2 − (M1)2]3/2
(18)

and

κ =
M4 − 3(M1)

4 + 6(M1)
2M2 − 4M1M3

[M2 − (M1)2]2
. (19)

Higher standardized moments do not have a particular name and are
generally not used since the higher the moment the larger are the inaccuracies
of any estimate. However, hereby we will make use of the fifth standardized
central moment, the expectation values of [(x − µ)/σ]5, which will denote
with the letter η

η =
M5 + 4(M1)

5 + 10(M1)
2M3 − 10(M1)

3M2 − 5M4M1

[M2 − (M1)2]5/2
. (20)

Mean, standard deviation, skewness, and kurtosis are sufficient to achieve a 
satisfactory (albeit not full) description of any probability density function 
of interest. In many cases they are redundant as some of the statistical



descriptors are shown to be function of the others. For example if f(x) =
fΓ(x, λ, k) then only two elements of the 4-tuple (µ, σ, γ, κ) are independent.
This redundancy also occurs for rainfall as we will show in Section 4.

3.4.1 Phase space

For a dynamical system, the term “phase space” indicates the Cartesian
product Rn of the n variables necessary to describe the system. Note that
the cardinality (n) of a dynamical system is always larger or equal to its
degrees of freedom. To describe the motion a point particle of mass m in
one dimension we need its position x and its quantity of motion p (p = mv,
with v =velocity). In this case the phase space is the xp plane (R2), and at
each time t the state of the particle is associated to a point in the xp plane.
The time evolution of a dynamical system is described by the time evolution
(trajectory) of its associated point in the phase space.

In the case of the rainfall phenomenon, the variables of interest are bulk
variables (e.g rainfall rate, reflectivity), which implies a “summation” over
the number of drops in a given interval of time. All the bulk variables are
functions of either the couple (NV , f(D)), if one uses the concentration per
unit volume, or the couple (N, p(D)), if one uses the flux-equivalent descrip-
tion. If the probability density function at the ground p(D) (or that in a uni-
tary volume f(D)) has a parametric description: p(D) = p(D, θ1, θ2, ..., θm)
in term of m parameters, then we define the phase space of rainfall as the
Cartesian product Rm+1 spanned by (m+1)-tuple (N, θ1, θ2, ..., θm). E.g., if
we consider the concentration N (D) and assume a Gamma distribution for
the probability density function f(D) in Eq.(1), the rainfall phase space isR3

spanned by the 3-tuple (NV , λ, k). Hereby, we do not impose any particular
functional form on the function p(D) (and thus f(D)). We show (Section
4) that the parameters µ, σ, and γ are sufficient to describe the variability
of the probability density function at the ground p(D). Therefore the Carte-
sian product R4 spanned by the 4-tuple (N, µ, σ, γ) can be considered as the
rainfall phase space.

Any bulk variable B can be written as function of the phase space pa-
rameters B = B(N, µ, σ, γ). In the case of the rainfall rate R (expressed in
mm/h)

R =
6π10−4

AmT
N

[

µ3 + 3µσ2 + σ3γ

]

. (21)



This equation states that the set of observation time intervals (1 minute in
our case) with equal rainfall rate R is a three dimensional manifold in the
phase space.

3.5 Kolmogorov-Smirnov’s goodness fit for probability
distribution functions

The Kolmogorov-Smirnov (K-S) goodness-of-fit test is a non-parametric test 
used to check if a sequence of random samples can be considered as a real-
ization of a stochastic process with a given cumulative distribution function
F (x). The test compares the hypothetical F (x) with the cumulative fre-
quency FN (x), where FN (x) = i/ (N + 1) for x(i) ≤ x < x(i+1), x(i) is the
i-th order statistics, and i = 1, .., N . The K-S uses as test statistic the max-
imum difference DN = max |F (x) − FN (x)|. If no parameter in F (x) is 
determined from data, then DN has a distribution which is independent by
F (x). Thus the critical value of DN for a significance level of 5% and for 

large samples, N > 35, is 1.3581/
√
N , and reported in all statistical text-

books (see e.g. [12]). Contrary, if the parameters of F (x) are estimated, then
the distribution of DN is dependent on F (x), and the critical value of DN 
must be re-calculated, e.g. via Montecarlo simulations ([10]). The critical
value of DN re-calculated is always smaller than the value corresponding to 
the canonical case where it is assumed that “no parameter in F (x) is deter-
mined from data”. Disdrometer data report the occurrence of a drop in a
given range of diameter values (diameter class) and not an “exact” diameter 
value which is needed to perform the Kolmogrov-Smirnov test. To bypass
this limitation we assign to a drop in the j-th diameter class a random value 
selected uniformly in the range defined by the class itself.

4 Results

All the results reported in this Section refer to probability density function 
observed at the ground p(D). Similar results can be obtained for the concen-
tration per unit volume and diameter N (D) since the two distribution are 
connected via Eq.(2).



4.1 Measuring the adequacy of the Gamma distribu-
tion

The method of the moments MMn1,n2,n3 for the Gamma distribution finds
the number of drops per unit volume NV , the scale k and shape λ such that
the fitting concentration per unit volume and unit diameter exactly matches
the moments of order n1, n2 and n3 of the observed concentration per unit
volume and unit diameterN (D). None of the MM2,3,4, MM3,4,6, and MMN,µ,σ

methods exactly match the moment 3.67, so that the “reproducibility” of the
rainfall rate (observed versus the one derived from the fitted parameters) has
been considered as a “measure” of fit goodness: e.g. ([23]) and [20]). Hereby
, we show that accuracy with which the MMn1,n2,n3 method reproduces the
j-th moment of the concentration N (D) cannot be taken as a measure of
fit goodness as the accuracy depends on the separation between j and the
orders n1,n2,n3 and not just on the particular functional form chosen.

Let us consider the MM3,4,6 method. The fitting distribution by construc-
tion matches the third, fourth and sixth moment of N (D). Therefore it is
not surprising that the 3.67-th moment of the fitting N (D) (the rainfall rate)
is close to the observed value: the middle-left panel of Figure 1 indicates the
relative error χ is bounded in the range -0.5%,0.5%. However, instead of
a Gamma distribution for the functional form of f(D), one could use any
other distribution with two parameters (e.g. Gaussian, Lognormal, Beta)
and obtain similar accuracies. What about the number of drops observed at
the ground N (the 0.67-th moment of N (D))? As shown in the middle-right
panel of Figure 1, the agreement is not so good as relative error of the order
of ±25% are possible. Next, we consider the MMN,µ,σ method. It repro-
duces the rainfall rate reasonably well, relative error bounded in the -5%,5%
range (upper-left panel of Figure 1), but poorly reproduces the reflectivity Z
(the sixth moment of N (D)) as relative errors larger than ±25% are not so
uncommon (upper-right panel of Figure 1). Finally, the MM2,3,4 method re-
produces with the same accuracy of the MM3.4.6 method (extremely well) the
rainfall rate, the relative error is bounded in the range -0.5%,0.5% (bottom
left panel of Figure 1), but is better than the MM3.4.6 method with respect
the drop count N (2 is closer to 0.67 than 3), relative error in the range
-15%,15% (bottom right panel of Figure 1).

Figure 1 suggests that the Gamma distribution, as convenient and as
parsimonious it may be, is not a satisfactory functional form for the drop
size distribution. To prove this point we use a proper measure of goodness-

12



of-fit, such as the Kolmogorov-Smirnov test, and what is considered to be 
the best fitting procedure, the MML method. In Table 2, we report the 
percentage of acceptance (ACP) and rejection (RJC) of the lower truncated 
Gamma distribution with parameters estimated using the MML, using the 
Kolmogorov-Smirnov goodness-of-fit test with a 5% level of significance to 
each minute of the DRW data (6863). In columns 2 and 3, the percentages are 

calculated using as 5% critical value 1.3581/
√
N , the classical value reported 

in all statistical textbooks (e.g. [12]) assuming that no parameters of the 
Gamma distribution are estimated. In columns 4 and 5 the critical value 
is determined via Montecarlo simulations taking into account the fact that 
the parameters are estimated via the MML from data. The first row (ALL) 
reports the fraction of the total number of minutes in the DRW data sets for 
which the Gamma distribution can be considered a good fit. The percentage 
of acceptance passes from 71% to 45% when one takes in proper consideration 
that the parameters of the distribution are obtained from the sample ([10]). 
The remaining rows report the percentage of acceptance and rejection for 
subsets obtained using as thresholds the percentiles of the distribution of 
number of drops N per minute: 5%-, 25%-, 50%-, 75%-, 95%-percentile. 
E.g. the second row reports the results for the subsets with number of drops 
smaller than the 5%-percentile (N5% = 66 in our case): minutes with a 
small sample size. On the other hand, the last row reports the results for 
the subsets with number of drops larger than or equal to the 95%-percentile 
(N95% = 1589 in our case): minutes with a large sample size . We see that 
when we move to subsets of minutes with large drop counts the percentage 
of acceptance (rejection) diminishes (increases).

In summary, if we consider the entire DRW data set, we are confident (at 
the 95% level) that the Gamma distribution can be a proper fit for probabil-
ity density function p(D) only for 45% of 1 minute sampling time intervals. 
More disturbingly the percentage of rejection increases as the sample size in-
creases. Note that test like the Kolmogorov-Smirnov should be administered
to sample with a size of at least ∼100 ([12]) to have of any significance (in 
other words if the sample size is very small the effect of random fluctuations
is large enough that almost any tested distribution will pass the test). Re-
sults for the other nine data sets (no reported here for brevity) are similar 
to that of Darwin. On the ground of these results, we reject the Gamma 
distribution as a proper fit for drop size distributions.



4.2 Rainfall phase space
We show that the value of standardized central moments of order ≥4 are 
strictly dependent from than the third one (skewness). In particular we study
the dependence on the skewness γ of the fourth standardized central moment 
(kurtosis κ) and the fifth one denoted by the symbol η. As a consequence, 
mean (µ), standard deviation (σ), and skewness (γ) provide a satisfactory 
description of the variability of the probability density function p(D) and 
therefore the 4-tuple (N, µ, σ, γ) can be considered as the rainfall phase space.

4.2.1 higher standardized central moments

To examine the dependence of the parameters κ and η on γ, we calculate 
for each data set the median, 5%-, and 95%-percentile of the observed values 
of κ and η for a given value of γ (in practice this is accomplished dividing
each data sets in subsets with “equal” (±0.08) value of skewness). The 
results are reported in Figure 2. The median values are depicted with solid
lines of different colors one for each dataset. We also calculate, merging all 
the datasets, the 5% and 95% percentile for any given range value of the 
skewness if at least 100 samples (1 minute time interval of observation) are 
present. The range between the 5% and 95% percentile is shaded in gray 
in the figure. We see how in both cases (η vs γ, central panel and κ vs γ 
lower panel) the median lines are independent from the site chosen. The
discrepancies observed for values of skewness larger than ∼2.56 are mostly 
due to lack of statistics as shown in the upper panel of Figure 2, where we
plot the number of sample M for each range value of the skewness.

4.2.2 Relationship between phase space parameters

Figure 2 shows that mean µ, standard deviation σ and skewness γ are effective 
statistical descriptors for the probability density function of drop diameters 
at the ground p(D). Next, we show that these three parameters are not 
independent. We divide the range of value of the skewness in intervals of 
length 0.64 ([-1.60,-0.96],...,[2.88,3.52] as in [5, 6]), and the values of the 
mean diameter µ as follows: [0.3,0.4], [0.4,0.5], [0.5,0.6], [0.7,0.8], [0.9,1],
[1,1.2], [1.2,1.4], [1.4,1.6], [1.6,1.8], [1.8,2.0], [2.0,2.5], and [2.5,3] (indicated 
by the vertical dashed lines in Figure 3). The rationale for these choices 
is to have inside each range of skewness and mean a “reasonable” number 
(¿10) of 1 minute interval observations to calculate the median value of the



parameter σ. The results are reported in Figure 3. We see how for value of
the mean diameter less than 1 mm the median curves are approximatively
linear and do not depend on the site of observation. In this case, the site
average angular coefficient and average intercept are reported at the bottom
right of each panel, if at least the median from 5 sites was available. We
see how the slope (intercept) increases (decreases) with increasingly larger
value of the skewness until a sort of plateau is reached for the skewness
ranges [1.60, 2.24] and [2.24, 2.88] after which the slope decreases (intercept
increases) again. For values of the mean diameter larger than 1 the median
curves depend on the particular site of observation. However, the median
curve is also estimated from a smaller number of samples (in the range10-
100). Thus, with the present data, we cannot judge if the discrepancies
between sites for the median curve (in the range µ > 1) are real properties
of the rainfall phenomenon or merely artifacts due to the poor statistical
sampling available.

In summary, if µ is in the interval [0.3,1] then

σ = a(γ) + b(γ)µ (22)

where a is the intercept and b the slope. Note that if the Gamma distribution 
was indeed an extremely accurate fit to probability density function of drop 
diameter at the ground p(D) then σ = 0.5µγ which is not supported by the 
experimental evidences depicted in Figure 3. Eq.(22) suggests that only two 
parameters of the triplets (µ, σ, γ) are necessary to describe the probability 
density p(D) of drop diameters at the ground. Thus one could define the 
rainfall phase space as a tridimensional space: e.g. the Cartesian product of 
the 3-tuple (N, µ, γ). However, longer data sets are necessary to effectively 
estimate the functions a(γ) and b(γ), and to explore the relationship σ = 
a(γ) + b(γ)µ in the range µ > 1mm. Therefore, for the purpose of this 
manuscript, we conservatively consider R4 defined by the 4-tuple (N, µ, σ, γ) 
as the rainfall phase space.

4.2.3 Phase plots

To each 1 minute time interval of observation is associated the point of coor-
dinates (N, µ, σ, γ) in the phase space. The entire data set occupies a volume 
in R4. To visualize this volume, we need to consider the six 2D projections:
µ − log10(N), σ − log10(N), γ − log10(N), µ − σ, µ − γ, and σ − γ (we use



log10(N) instead of N for better visualization). Given a data set, we calcu-
late the density of points in the phase space for all six 2D projections. Ten 
separate figures (one for each data set) would be necessary to illustrate the 
results. To obviate to this difficulty and give an idea to the reader of the 
differences/similarities between data sets we adopted the concept of average 
bounding perimeter. For all 2D projections we calculate the center of mass 
of the phase space points (each point has the same mass). With the center of 
mass as fixed point we span with an 10o angle step the plane of the 2D projec-
tion. For each 10o cone we calculate the average distance from the center of 
mass of the points within the cone. The connection with a continuous line of 
all average distance creates the average bounding perimeter which is a “mea-
surement” of the volume of the phase space occupied by the database. The
results are shown in Figure 4. The plots on the µ − σ projection plane show 
how the average bounding perimeters reflect the linear relationship between
mean drop diameter and standard deviation of drop diameter depicted in
Figure 3. The plots on the µ − log10(N) plane projection indicate that large 
value of counts (log10(N) > 2.8) are reached (on average) only for values of
the mean drop diameter which are small (µ in the range 0.4-0.7 mm) or large 
(µ > 1mm). The first case, many drops with small diameter, is a common 
feature of orographic precipitation as shown (e.g. [5], [6], [16], [1], and [4]). 
The BBY and CZC data sets are the same ones used in ([5], [6], and [16]) 
while BAO data set come from an instrument located at 1,577 m asml. The 
second case, many drops with possibly large diameters, is typical of strong 
convective events. the DRW data sets (rain of monsoonic origin) and the 
MIK (small island at the equator) and BKT (another equatorial site) are the 
data sets, among those considered, where the combination of large number 
of drops and large drop diameters occur more frequently on average. The av-
erage bounding perimeter on the µ−γ plane projection show that a decrease 
in value of the mean drop diameter is linked to a raise of the skewness value,
although this may be in part an effect of the limitation of the instrument 
(Joss-Waldvogel impact disdrometer) which is not capable of detecting drop 
diameters smaller than 0.3 mm (reducing the contribution of left tails of p(D) 
to the skewness). Due to the approximate linear relationship between µ and 
σ, results of projection on planes for which one of the axis is the standard 
deviation σ are similar to those for which axis is substituted by the mean
µ. If we consider the result on the γ − log10(N) plane projection, we see 
how these two variable are quite uncorrelated as the shape of the average
bounding perimeters do not suggest any particular relation.



4.2.4 Rain rate and phase space parameters

The rainfall rate R aside from a multiplicative constant is the sum of three 
factors (Eq.21): Nµ3, 3Nµσ2, and Nσ3γ. Each factor accounts for a fraction
α ∈ [−1, 1] (negative values are possible only for the factor Nσ3γ) of the 
rainfall rate. We calculate α for each factor and each 1 minute time interval
of observation. Then we calculate the probability F (α) that the fraction does 
not exceed α. The results for each data base and each factor are shown in 
Figure 5. The F (α) curves are quite independent from the particular site. 
We see how the factor Nµ3 contributes the most to the rainfall rate with a 
median contribution αm (F (αm) = 0.5) which is in the range 0.7-0.75. The 
second largest contribution comes from the factor 3Nµσ2, αm in the range 
0.2-0.25, while the factor Nσ3γ accounts for the smallest contribution: αmin 
the range 0.025-0.05. These results can be explained noticing that at all sites 
and for all time interval of observation: 1) σ < 1, and 2) σ < µ. So that 
3µσ2 is almost always smaller than µ3, and while γ can be larger (in absolute 
value) than µ, σ3γ is always smaller than µ3 in virtue of 1) and 2).

5 Conclusions

When an objective measure of fit goodness is adopted, the Gamma distribu-
tion provides a poor fit to the drop size distribution sampled at short time 
scale (1 minute in our case) at all the ten sites considered. It is the opinion of 
the Authors that only an objective criterion of fit goodness (e.g. Kolmogorov-
Smirnov) should guide the choice of a particular functional form for the con-
centration N (D) and/or the probability density function at the ground p(D). 
For this reason we reject the Gamma distribution as a proper parametriza-
tion of the rainfall phenomenon. We propose an alternative parametrization 
based on the common statistical procedure of describing an unknown prob-
ability density function in term of its standardized central moments. We 
show that the 4-tuple of parameters (N, µ, σ, γ) is sufficient to describe the 
observed variability of disdrometer counts for all the ten sites considered, 
and refer to the Cartesian product of 4-tuple (N, µ, σ, γ) as the rainfall phase 
space. The volumes in the phase space relative to each data base (Figure 
4) have some common features and some discrepancies which reflect differ-
ent synoptic conditions and/or mechanisms of drop productions at play at 
the different site considered. However some results remarkably independent



from the site considered: 1) standardized central moments of order ≥ 4 have 
strong deterministic relationship with the third standardized moment: the
skewness. 2) mean µ, standard deviation σ, and skewness γ are related to 
each other via Eq.(22) with values of the slope b(γ) and intercept a(γ) which 
are not compatible with a Gamma distribution functional dependence. Fi-
nally, bulk variables of the rainfall can be written as a function of 4-tuple 
(N, µ, σ, γ). e.g. Eq.(21) for the rainfall rate R. Bulk variables, such as the 
liquid water content W and the reflectivity Z are proportional to fractional 
moments (2.33 and 5.33 respectively) of the probability density function of 
drop diameter at the ground p(D). Therefore, analytical expressions for the 
variables W ans Z in terms of the 4-tuple (N, µ, σ.γ) are necessarily approx-
imations, on the contrary the Gamma distribution approximation leads to 
exact analytical expression. However, the main result of this paper is that 
any approximated expression, obtained via the proposed parametrization, is 
physically meaningful while any exact expression, obtained via the Gamma 
distribution parametrization, is not.

6 Acknowledgment

We wish to thank Dr.C.R.Williams and the National Oceanic and Atmo-
spheric Administration (public availability of the data sets recorded at Bodega 
Bay, Eire, Cazadero, Darwin, and Kwajlein), the National Institute of Infor-
mation and Communications Technology, Japan (Kashima data set), the In-
stitute of Observational Research for Global Change together with the Japan 
Agency for Marine-Earth Science and Technology (Bukit Koto Tabang data 
set), Dr. Dan Brawn (Hassel data set), Dr. Martin Hagen of the Institut 
fuer Physik der Atmosphaere Deutsches Zentrum fuer Luft und Raumfahrt, 
Wessling, Germany (Macunaga data set), and the British Atmospheric Data 
Centre, Chilbolton data archive (Chilbolton data set).



Table 1: List of the sites from which Joss-Waldvogel disdrometer data are
considered, with a three letters code for short referral and the Köppen-Geiger
climate classification.

Site Code Köppen-Geiger climate clas-
sification

Eire, Colorado (USA) BAO Snow climate, fully humid with
warm summer

Bodega Bay, California (USA) BBY Warm temperate climate with
dry and warm summer

Bukit Koto Tabang, Indonesia BKT Equatorial rain forest, fully hu-
mid

Chilbolton, United Kingdom CHB Warm temperate climate, fully
humid with cool summer and cold
winter

Cazadero, California (USA) CZC Warm temperate climate with
dry and warm summer

Darwin, Australia DRW Equatorial savannah with dry
winter

Hassel, Germany HSL Warm temperate climate, fully
humid with warm summer

Kashima, Japan KSH Warm temperate climate with
dry and warm summer

Macunaga, Italy MAC Snow climate, fully humid with
cool summer and cold winter

Kwajalein Atoll, RMI MIK Equatorial rainforest, fully humid



Table 2: List of the sites (short code referral) from which Joss-Waldvogel
disdrometer data considered with latitude, longitude, altitude, number of 1
minute time interval in data set, and total number of drops in the data set.
The symbol (*) indicates quantities calculated after data sets are processed
according to the procedure described in Section 2.1.
Code Long. Lat. Alt. (m) #min* #drop*

BAO 40.05N 105.00W 1,577 6,016 2,349,280
BBY 38.20N 123.00W 12 10,804 5,389,240
BKT 0.12S 100.19E 864 68,389 25,109,376
CHB 51.14N 1.43W 82 29,122 7,015,480
CZC 38.61N 123.22W 475 76,137 44,252,384
DRW 12.45S 130.83E 12 6,863 2,753,037
HSL 51.51N 7.1E 60 26,402 7,072,649
KSH 35.95S 140.65E 45 68,570 19,752,935
MAC 45.97N 7.96E 1,300 9,956 3,275,264
MIK 8.71N 167.73W 1 20,170 7,594,915



Table 3: Percentage of acceptance and rejection of the (lower truncated)
Gamma distribution using the Kolmogorov-Smirnov goodness-of-fit test to
each minute of the DRW data (6863) with a 5% level of significance. In
columns 2 and 3 the critical value used is 1.3581/

√
N assuming that no pa-

rameters of the Gamma distribution are estimated, while in columns 4 and
5 the critical value is determined via Montecarlo simulations taking into ac-
count the fact that the parameters of Gamma are estimated via the MML
from data. The results refer to entire DRW dataset (first row), and to sub-
sets obtained considering as thresholds, the percentiles of the distribution
of number of drops N per minute (second tttlast row). The thresholds are
N5% = 66, N25% = 104, N50% = 182, N75% = 455, and N95% = 1589.

ACP RJC ACP RJC

ALL 71% 29% 45% 55%
< N5% 94% 6% 78% 22%
≥ N5% 70% 30% 44% 56%
< N25% 93% 7% 71% 29%
≥ N25% 64% 36% 37% 63%
< N50% 91% 9% 65% 35%
≥ N50% 52% 48% 25% 75%
< N75% 84% 16% 56% 44%
≥ N75% 34% 66% 13% 87%
< N95% 74% 26% 47% 53%
≥ N95% 24% 76% 5% 95%
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Figure 1: The observed frequency F (χ) of exceeding the relative error χ when 
calculating different bulk variables with the fitted Gamma distribution to the 
probability density function p(D) of drop diameters at the ground. Variables 
R and Z for the MMN,µ,σ method (upper panels), variables R and N for 
the MM3,4,6method (middle panels), and MM2,3,4 method (bottom panels). 
Different colors indicate different data bases.
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Figure 2: The number of samples M (upper panel), the kurtosis κ (mid-
dlepanel), and the fifth standardized central moment η (lower panel)as a
function of the skewness γ. Solid lines indicate the number of samples and
the median values for the parameters κ and η. Gray shadowed areas repre-
sent the 5%-, 95%-percentile range. Different colors indicate different data
bases.
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Figure 3: The median values of the standard deviation σ of drop diameters
for different range value of the mean diameter µ (indicated by vertical dashed 
lines) and different range values of the skewness of drop diameter γ (shown 
in the top left corner of each panel). Also shown in the bottom right corner
of each panel is the site average slope and intercept of the median standard
deviation curves in the interval µ ∈ [0.3 : 1]. Different colors indicate different 
databases.
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