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0. Introduction

This paper brings a unifying point of view for several problems of nonlinear particle
dynamics (including the classical Kepler, Coulomb, and Manev problems) by using
the qualitative theory of dynamical systems. We consider two-body problems with
potentials of the type A=r + B=r2, where r is the distance between particles, and A; B
are real constants. Using McGehee-type transformations and exploiting the rotational
symmetry speci�c to this class of vector �elds, we set the equations of motion in a
reduced phase space and study all possible choices of the constants A and B. In this new
setting the dynamics appears elegant and simple. In the end we use the phase-space
structure to tackle the question of block-regularizing collisions, which asks whether
orbits can be extended beyond the collision singularity in a physically meaningful way,
i.e. by preserving the continuity of the general solution with respect to initial data.

0.1. History

The above class of problems is over three centuries old. Newton was the �rst to con-
sider central-force and two-body problems in his monumental work Principia, whose
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�rst edition was published in 1687. But, in spite of their fame, these questions have
taken a long time to be understood. Even the case A¿0, B=0 of the Kepler prob-
lem has been solved as late as 1710 by Johann Bernoulli, not by Newton as it is
traditionally believed, who had tackled only the elliptic case. Newton included the
proof that the Kepler problem leads to conics in the second edition of Principia, pub-
lished in 1713 (see [10]). It is less known, however, that Newton also considered
the case A; B¿0. In Principia’s Book I, Article IX, Proposition XLIV, Theorem XIV,
Corollary 2, he showed that a central-force problem given by a potential of the type
A=r + B=r2, leads to a precessionally elliptic relative orbit. (This means that the tra-
jectory of one particle – considered with respect to a �xed frame that has the other
particle at its origin – is that of a point moving along an ellipse whose focal axis
rotates in the plane of motion.) Newton’s interest in this model was aroused by his
failure to explain the Moon’s orbit around the Earth within the framework of the clas-
sical inverse-square-force model. Except for the above property, Newton published no
other results concerning this gravitational law. However, in the 1888-catalogue of the
Portsmouth Collection of unpublished manuscripts, one can trace Newton’s keen e�ort
to understand the subject. After Newton, the potential A=r+B=r2 was tackled by Alexis
Clairaut, who �nally abandoned it in favor of the classical one. In the second decade
of our century, this model was used as a possible approximation of the �eld equations
of general relativity (in a sense that will be made clear in Section 1) and succeeded
to explain the observed perihelion advance of planet Mercury, which cannot be jus-
ti�ed within the framework of the classical model. A few years later, the Bulgarian
physicist Manev [18–21], proposed a similar gravitational model by taking A= � and
B=3�2=(2c2) (� and c being the gravitational parameter of the two-body system and
the speed of light, respectively), bringing physical arguments in favor of this choice
of the constants. Manev’s arguments were based on the following facts.
In �Electricit�e et Optique, published in 1901, Poincar�e had noticed that Lorentz’s the-

ory concerning the electrodynamics of moving bodies, on which special relativity would
be founded, failed to satisfy the action–reaction principle. Two years later, M. Abraham
de�ned the quantity of electromagnetic movement, which helped Hasen�ohrl prove the
accuracy of Lorentz’s contraction principle. In 1908, using this new quantity of elec-
tromagnetic movement, Max Planck stated a more general action–reaction principle,
veri�ed by special relativity, and from which Newton’s third law followed as a the-
orem. Making use of those results, Manev showed that by applying the more general
action–reaction principle to classical mechanics, he was naturally led to a law given by
a potential of the type A=r + B=r2. Thus, Manev considered this model as a substitute
to general relativity. (We will point out in Section 1 that in a planetary approximation
Manev’s model is the natural classical analog of the Schwarzschild problem.) Therefore,
Manev’s theory seems rather suited to the needs of celestial mechanics than to those
of cosmology, in which relativity has brought tremendous contribution. The advantage
of Manev’s model is that it explains solar-system phenomena with the same accuracy
as relativity, but without leaving the framework of classical mechanics. Besides, 80
years of research have shown that relativity is powerless in de�ning a meaningful n-
body problem. Though works like [14] and [17] have had important consequences in
physics and even a notable impact in celestial mechanics (see [2]), they had never been
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developed toward understanding the dynamics of gravitating particle systems, which
has established itself as the fundamental problem in celestial mechanics, if not as “the
most celebrated of all dynamical problems”, as Whittaker put it in his treatise on the
analytical dynamics of particles and rigid bodies [35, p. 339].

0.2. Recent developments

Unfortunately, Newton’s treatment of the case A; B¿0 was far from complete. The
false impression that Newton had exhausted the problem, and that this model had
nothing but historical value, persisted (especially among physicists) until very recently
(see, for example, Moulton’s [27, Problem 4, p. 96] or Goldstein’s [15, Problem 14,
p. 123]). Using McGehee transformations, Delgado, Diacu, Lacomba, Mingarelli, Mioc,
Perez, and Stoica understood the dynamics of the case A; B¿0 in 1996 (see [6]). Their
paper appeared as a natural consequence of the recent interest in Manev’s potential.
Papers like [3,5,16,24,25] applied modern mathematical results (like KAM theory, the
Melnikov method, etc.) as well as classical techniques, or went into the physical and
astronomical signi�cance of the model; for details regarding the speci�c results of these
works see [6]. From the mathematical point of view, Manev’s potential opens a new
�eld of research; it has o�ered up to now surprising results concerning the dynamics
of gravitational particles, which disagree with the classical ones when the motion
takes place in the neighborhood of singularities (see [5, 6, 8, 9]). Thus Manev’s law
seems to build a bridge between classical mechanics and general relativity. The study
of the n-body problem (n≥ 3) given by this potential appears to be a big challenge
(see [9]).

0.3. Goal and methods

In the following sections we are mostly interested in the mathematical aspects of
this class of potentials. We describe the global 
ow of the generalized Manev problem
(i.e. the two-body problem given by the Manev potential for all possible choices of
the real constants A and B) and then see, in case collisions occur, whether they are
block-regularizable, i.e. whether the property of continuity of solutions with respect
to initial data is preserved after collision. The �rst part uses McGehee transformations
and the qualitative theory of dynamical systems, o�ering a way of unifying the Manev
and Newton potentials (i.e. the cases A; B¿0 and A¿0, B=0, respectively, which
are – along with A¡0, B≥ 0 – the most important ones from the point of view of
applications) by using a reduced phase-space description. This is possible due to the
rotational symmetry Manev-type potentials have, which allows us to give a simple
representation of these problems. The �nal part is based on the ideas advanced by
Conley, Easton, and McGehee concerning the technique of surgery of isolated blocks
and block-regularization of singularities (see [4, 12, 13, 22, 23]). It is important to
note, however, that while the impossibility of regularizing collisions in particle-system
dynamics has up to now been usually related to the nonexistence of an extension
of a certain di�eoomorphism, this impossibility appears here generically because that
extension is not unique.
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0.4. Summary of results

In Section 1 we show that the natural classical analog of the Schwarzschild problem
in the framework of the solar system is the Manev problem. This favors a strong
connection between general relativity and Manev-type potentials. In Section 2 we obtain
the analytic solution of the generalized Manev problem in closed form. Unfortunately,
as it is the case for many nonlinear integrable systems, this formula o�ers no insight
into the problem, so we continue with a qualitative analysis. In Section 3 we use
McGehee-type transformations [22] to blow up the collision singularity (for the values
of A and B for which singularities occur), and paste instead a so-called collision mani-
fold to the phase space. The McGehee transformations are the key step in simplifying
the problem. Due to the continuity of solutions with respect to initial data, the study
of the (�ctitious) 
ow on the collision manifold provides information about the local

ow near collision. In this case, the regularized equations of motion allow us to give a
full qualitative description of the global 
ow. We will see that the collision manifold
is homeomorphic to a torus (embedded in the four-dimensional full phase space), on
which the 
ow is foliated by periodic orbits, except for the upper and lower circles,
which consist of degenerate equilibria. Since the 
ow has a rotational symmetry, we
factorize it by S1; consequently the four-dimensional phase space is factorized to a
three-dimensional reduced phase space. Regarding the energy-integral constant as a
parameter, we further determine the structure of the reduced phase space. Considering
the energy integral in McGehee coordinates, we see that every energy level in the
reduced phase space is part of a quadric surface, which degenerates in certain cases.
Each energy level is itself foliated by orbits of di�erent angular momenta. In the
reduced phase space, the collision manifold is a circle of equilibria only if B¿0. For
B=0 the collision manifold becomes a point in the reduced phase space. For B¡0
the system is free of collisions (a fact that has already been noticed by Saari [29]), so
the collision manifold is the empty set.
In Sections 4–6 we describe the global 
ow in the reduced phase space with respect

to the parameters A; B, the energy-integral constant h, and the angular momentum
constant C. The 
ow for B¿0 is given in Section 4. For A¿0 the energy levels in
the reduced phase space are portions of ellipsoids (h¡0), paraboloids (h=0), and
hyperboloids of one or two sheets or cones (h¿0), as we have already seen in [6].
The physical motions correspond to both radial and spiral ejection–collision, ejection–
escape, capture–collision, capture–escape, periodic, or quasiperiodic orbits. For A=0,
in the reduced phase space we have portions of ellipsoids (h¡0), cylinders (h=0),
and hyperboloids of one sheet (h¿0), with physical interpretations similar to those
given in the previous case. For A¡0 the energy levels are caps of ellipsoids and
paraboloids for h¡0 and h=0, respectively, and portions of hyperboloids (of one
or two sheets) or cones of two sheets for h¿0. There appear saddles outside the
collision manifold for h≥A2=(2B). Except for the periodic and quasiperiodic solutions,
all previous motions occur in this case too; in addition, we obtain spiral and radial
ejection – unstable-equilibrium, unstable-equilibrium – collision, unstable-equilibrium –
escape, capture – unstable-equilibrium trajectories, unstable circular orbits, and unstable
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rest points. Moreover, we �nd ejection–collision and capture–escape orbits coexisting
for the same angular momentum.
In Section 5 we describe the global 
ow for B=0. If A¿0 we are in the case of

the Kepler problem. For A=0 we recover the classical results concerning the �eld-free
motion of a particle. For A¡0 the motion is possible only if h¿0, and the orbits in
the reduced phase space are branches of hyperbola, which physically correspond to
capture–escape orbits.
In Section 6 we describe the global 
ow for B¡0. In case A¿0 the motion ex-

ists only for h≥A2=(2B). In the reduced phase space the negative energy levels are
ellipsoids, and the physical orbits correspond to periodic orbits. (If h=A2=(2B) the
ellipsoids degenerate to a point, which physically means that the particle is at rest.)
For zero angular momentum the motion is a radial libration. The zero and positive
energy levels (which in the reduced phase space are paraboloids and upper sheets of
hyperboloids of two sheets, respectively) correspond physically to in�nity–in�nity tra-
jectories. If A¡0 or A=0, the motion is possible only for h¿0. In the reduced phase
space the positive energy levels are upper sheets of hyperboloids of two sheets, and
the corresponding physical orbits are of capture–escape type.
In Section 7 we prove a general theorem concerning the block-regularization of

collision orbits, from which will follow that, for Manev-type potentials, collision sin-
gularities are, generically, not block-regularizable. The Newtonian case is an exception.

1. The Schwarzschild and the Manev problem

Einstein’s general relativity replaced the view of classical mechanics, which regarded
gravitation as a force in a three-dimensional space, with the idea that gravitation can
be described by the intrinsic geometrical properties of the four-dimensional space-time
manifold. More precisely, a solution of Einstein’s �eld equations is a line element, i.e.
the mathematical expression of the metric of the four-dimensional time-space manifold.
In the particular case of the relativistic center-force problem (the relativistic analog of
the classical Kepler problem), the solution of the �eld equations was obtained by Karl
Schwarzschild in 1916 [31]. Therefore this problem bears Schwarzschild’s name.
In this section we show that there is a strong connection between the Schwarzschild

and the Manev problem, in what we will call a planetary approximation. Starting from
the solution of the Schwarzschild problem, we see that the corresponding di�erential
equations of the classical case are given by a Manev-type potential, i.e. one of the form
A=r + B=r2. Our derivation of this fact follows a classical idea (see, e.g., [1] for an
elementary presentation or [26] for a modern one). Let us start by making the above
notion precise.

De�nition 1.1. A central-force problem is said to have a planetary approximation if
the motion of the particle is periodic of period � and v=2�r=�, where v is the tangential
velocity of the particle, and r is its distance to the center.
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The Schwarzschild line element in coordinates (t; r; �; �), where t is the time and
(r; �; �) are the spatial spherical coordinates of the physical space, is the metric given by

ds2 = (c2 − 2GM=r) dt2 − [c2r=(c2r − 2GM)] dr2 − r2 d�2 − r2 sin2 � d�2;
where G is the gravitational constant, c is the speed of the light, and M is the mass
of the �eld-generating body. To determine the orbit of the moving particle in the
Schwarzschild problem, orbit which is given by a geodesic in the four-dimensional
space-time manifold that has the above metric, we need to solve the variational problem
�
∫
ds=0, which is equivalent to solving

�
∫ [

(c2 − 2GM=r)
(
dt
ds

)2
− c2r
c2r − 2GM

(
dr
ds

)2

−r2
(
d�
ds

)2
− r2 sin2 �

(
d�
ds

)2]
ds=0:

This means we must �nd the curve with �xed end points that extremises the above
integral. We will now prove the following result:

Theorem 1.2. In the solar-system approximation, the equations of motion describing
the motion of a particle in the relativistic Schwarzschild problem have the same
form as the Binet-type system of the central-force problem given by the Manev-type
potential.

Remark. By a Manev-type potential we understand a function of the type A=r+B=r2.
The notion of Binet-type equation will be made clear during the proof.

Proof. A standard result of the calculus of variations states that the above variational
problem is equivalent to �nding the solution of the corresponding Euler–Lagrange
equations, which in our case take the form

d
ds

(
r2
d�
ds

)
= r2 sin � cos �

(
d�
ds

)2
;

d
ds

(
r2 sin2 �

d�
ds

)
=0;

d
ds

[
(c2 − 2GM=r) dt

ds

]
=0;

(c2 − 2GM=r)
(
dt
ds

)2
− c2r
c2r − 2GM

(
dr
ds

)2
− r2

(
d�
ds

)2
− r2 sin2 �

(
d�
ds

)2
= 1;

(1.1)

where the unknowns t, r, �, �, dt=ds, dr=ds, d�=ds, d�=ds are functions of s. Our
immediate goal is to reduce this system to a di�erential equation involving the variables
r and dr=ds alone. This will be done by �nding two �rst integrals.



F. Diacu et al. / Nonlinear Analysis 41 (2000) 1029–1055 1035

For suitable initial conditions, standard results of di�erential equations theory assure
the existence and uniqueness of a solution 
=(t; r; �; �; dt=ds; dr=ds; d�=ds; d�=ds) of
Eqs. (1.1). Let us now see that the set �= {
 | �= �=2; d�=ds=0} is invariant for
Eqs. (1.1). This means that if 
(s0) belongs to �, where s0 is an initial value for the
independent variable s, then 
(s) belongs to � for all values s for which 
 is de�ned.
Indeed, the invariance of � follows from the �rst equation in Eqs. (1.1): for �(s0)= �=2
and (d�=ds)(s0)= 0, we have �(s)= �=2 and (d�=ds)(s)= 0.
Let us now restrict Eqs. (1.1) to the invariant set �. Then the second equation in

Eqs. (1.1) is easy to integrate; we obtain the relation

r2(d�=ds)= � (constant); (1.2)

which is a �rst integral for Eqs. (1.1). The third equation in Eqs. (1.1) is also easy to
integrate; we obtain the relation

[1− 2GM=(c2r)](dt=ds)= � (constant); (1.3)

which is also a �rst integral for Eqs. (1.1). Using Eqs. (1.2) and (1.3), the last equation
in Eqs. (1.1) restricted to � takes the form

�2c4r
c2r − 2GM − c2r

c2r − 2GM
(
dr
ds

)2
−
(�
r

)2
= 1; (1.4)

which is a relation between r and dr=ds alone. Let us simplify now Eq. (1.4). For this
we make � play the role of the independent variable. Abusing the notation, we denote
by r the function that depends on the �-variable. Prime will denote di�erentiation
with respect to �, so r′=dr=d�. From Eq. (1.2) we then obtain dr=ds=(�=r2)r′, and
Eq. (1.4) becomes

�2

r4
(r′)2 +

�2

r2
− 2GM�2

c2r3
− 2GM

c2r
= �2c2 − 1: (1.5)

The change of variable r=1=u transforms Eq. (1.5) into

(u′)2 =
2GM
c2

u3 − u2 + 2GM
�2c2

u+
�2c2 − 1
�2

; (1.6)

which, if di�erentiated with respect to �, yields

u′
(
u′′ − 3GM

c2
u2 + u− GM

�2c2

)
=0: (1.7)

Two equations arise from here. The �rst one, u′=0, leads to r=constant, i.e. circular
periodic solutions like in the classical case. The second equation,

u′′=
3GM
c2

u2 − u+ GM
�2c2

; (1.8)

is similar to the Binet equation that describes the motion of a particle in a central-
force �eld (the part of the constant angular momentum being played by the quantity
�c; see Eq. (1.2)). More precisely, it would correspond to the Binet equation having
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the potential U (r)=GM=r+�2GM=r3. If we denote by v the tangential velocity of the
particle and use the fact that �2=r2 is equal to v2=c2, the potential can be approximated
by U (r)= (GM=r)[1 + (v=c)2]. Most orbits in the solar system are almost circular
(planets, satellites, most asteroids, many comets), so we can assume that v=2�r=�,
where � is the period of revolution of the particle. We are thus in the hypotheses
of the planetary approximation given in De�nition 1.1. Also, by Kepler’s third law,
r(v=c)2 = �, where � is the same constant for all mentioned bodies. Thus, the potential
can be approximated by U (r)=GM=r+ �GM=r2, which is of the form A=r+B=r2, i.e.
of Manev type. This completes the proof.

Remark. We do not claim that the above theorem proves that the Schwarzschild
solution leads to the Manev-type potential via the planetary approximation. The
statement that Eq. (1.8) were given by the potential U (r)=GM=r + �2GM=r3 would
be wrong. The reason is that Eq. (1.8) was obtained in the framework of relativity,
whereas the concept of the Binet-type equation belongs to classical mechanics. Such
a statement would mean applying results of one model, with some kind of hypothe-
ses, to another model, in which other hypotheses reign. Therefore, the conclusion of
Theorem 1:2 is that, within the framework of classical mechanics and in a planetary
approximation, the natural analog of the relativistic gravitational theory is the law
of Manev. Besides Manev’s physical arguments in favor of this gravitational model,
the above theorem shows the importance of understanding the mathematics of the
Manev-type potential.

In the following sections we will apply the qualitative methods of dynamical systems
theory to investigate the dynamics of Manev-type potentials A=r+B=r2 for all possible
real values of the constants A and B.

2. The general solution

The equations of motion of the Manev-type problem are given by the Hamiltonian
system

q̇= @H (q; p)=@p; ṗ=−@H (q; p)=@q; (2.1)

where q=(q1; q2) is the con�guration of the system, q1; q2 are the position vectors of
the two particles with respect to an absolute frame, p=(p1; p2) is the momentum of the
system, p1; p2 are the momenta of the two particles, the dot represents di�erentiation
with respect to the time variable, and H is the Hamiltonian function

H (q; p)= (pT1p1 + p
T
2p2)=2− A=|q2 − q1| − B=|q2 − q1|2; (2.2)

(T denoting transposition), which yields the integral of energy

H (q; p)= h=2; (2.3)

where h is the energy constant.
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Since H depends only on the relative positions q2 − q1 and not on the position
vectors q1 and q2, the Manev-type problem can be reduced to a central-force problem
by introducing the relative coordinates r= q2 − q1. Eqs. (2.1) take the form

ṙ= @H (r; p)=@p; ṗ=−@H (r; p)=@r; (2.4)

where

H (r; p)= (pTp)=2− A=|r| − B=|r|2: (2.5)

Eliminating the momentum, Eq. (2.3) form the second-order system

�r=−(A=r3 + 2B=r4)r; (2.6)

where r= |r|. In polar coordinates (r; u), Eqs. (2.6) become
�r − ru̇2 =−A=r2 − 2B=r3;
r �u+ 2ṙu̇=0:

(2.7)

The second equation of Eq. (2.7) yields the angular-momentum integral

r2u̇=C; (2.8)

where C is the constant of the angular momentum. In the new polar coordinates, the
integral of energy (2:3) takes the form

ṙ2 + r2u̇2 − 2A=r − 2B=r2 = h: (2.9)

To obtain the solution of system (2:7), let us �rst take some initial data (r; u; ṙ; u̇)(t0)=
(r0; u0; ṙ0; u̇0). Using the integrals of the system (see [6]) in the nonrectilinear case
C 6=0, Eqs. (2.7) can be reduced to the Binet-type equation

d2(1=r)=du2 + (1− 2B=C 2)(1=r)=A=C 2: (2.10)

Depending on the sign of the parameter (1 − 2B=C 2), the solution of Eq. (2.10), for
initial conditions (1=r; d(1=r)=du)(u0)= (1=r0;−ṙ0=C), takes the form

r(u)= [(r−10 + A(2B− C 2)−1)C̃(u)− ṙ0(2B− C 2)−1=2S̃(u)− A=(2B− C 2)]−1;
(2.11)

r(u)= [(A=2)C−2(u− u0)2 − ṙ0C−1(u− u0) + r−10 ]−1; (2.12)

r(u)= [(r−10 + A(2B− C 2)−1) �C(u)− ṙ0(C 2 − 2B)−1=2 �S(u)− A=(2B− C 2)]−1;
(2.13)

for C 2¡2B, C 2 = 2B, and C 2¿2B, respectively, where (S̃ ; C̃)= (sinh; cosh)((2BC−2−
1)1=2(u− u0)) and ( �S; �C)= (sin; cos)((1− 2BC−2)1=2(u− u0)).
Eqs. (2.11)–(2.13), which can also be obtained using a classical perturbative ap-

proach (see [6]), o�er the general solution of the nonrectilinear Manev-type problem
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in closed form, assuming that r0 and ṙ0 take all admissible real values. Unfortunately,
this precise but tangled formula is of little help in understanding the motion for di�er-
ent values of the initial conditions. Therefore, we will now proceed with a qualitative
approach, which will put into the evidence the dynamical elegance and simplicity of
the class of di�erential equations we study here.

3. Blow-up and reduction

Let us now start our qualitative endeavors of the equations of motion (2:7). The
collision singularity, which occurs if and only if r = 0, will be blown up by using
McGehee-type transformations (for more details see [6, 11]). By formally multiplying
the energy integral (2:9) by r2 (a rigorous justi�cation of this step is given in [11]),
we obtain the relation

(rṙ)2 + (r2u̇)2 = hr2 + 2Ar + 2B: (3.1)

Then we consider the transformations x= rṙ; y= r2u̇, rescale the time through the
independent-variable transformation dt= r2 ds, and obtain, after a straightforward com-
putation, the new equations of motion:

r′= rx; x′= r(hr + A); u′=y; y′=0; (3.2)

where the prime denotes di�erentiation with respect to the new (�ctitious) time vari-
able s. The energy relation (3:1) and the angular-momentum integral are now given
by the equations:

x2 + y2 = hr2 + 2Ar + 2B; (3.3)

y=C =constant: (3.4)

Notice that Eqs. (3.2) and the relations (3:3)–(3:4) are well de�ned if r=0. This means
that we can extend the phase space to contain the invariant manifold {(r; x; u; y) | r=0}.
Though having no real physical signi�cance, the 
ow on this invariant manifold will
let us understand the behavior of the 
ow near collision. This is possible due to the
continuity of the 
ow with respect to initial data.
Let us now de�ne the collision manifold CM by intersecting the sets {(r; x; u; y) |

r=0} and {(r; x; u; y) | x2 + y2 = hr2 + 2Ar + 2B}; we thus obtain the subspace
CM = {(r; x; u; y) | x2 + y2 = 2B};

which, if B¿0, is a 2-torus in the three-dimensional space of the coordinates (x; u; y)∈
R× [0; 2�]×R, because it forms a cylinder whose caps, at u=0 and u=2�, are
identi�ed.
The 
ow on CM is simple: it consists of periodic orbits if y 6=0, and of circles

formed by degenerate equilibria if y=0, case in which x=±√
2B. We can, in fact,

determine the 
ow near the collision manifold, as it was done in [11] for A; B¿0.
However, that approach is restricted to a local description. In order to �nd the global

ow, we will use the following observation.
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Fig. 1. The collision-manifold as (a) a torus in (x; y; u)-coordinates and as (b) a circle in the reduced phase
space, both for B¿0.

Since the variable u does not appear explicitly in the vector �eld (3:2) and in
the relations (3:3) and (3:4); it means that the 
ow is invariant to rotations, so we
can factorize it by S1. In this case the collision manifold CM becomes a circle in the
three-dimensional space of the coordinates (r; x; y)∈R+×R2, where R+ = {r≥ 0} (see
Fig. 1), which we will from now on call reduced phase space. The points M and N
on this circle represent the circles of equilibria on the torus; the other points on the
collision-manifold circle correspond to the periodic orbits on the torus.
If B=0, CM is a point in the reduced phase space, and if B¡0 the collision

manifold is the empty set (i.e. collisions do not occur). This last result has already
been established by Saari [29] in a di�erent context and with a di�erent method.
In the following sections we will describe the 
ow of Eqs. (3.2)–(3.4) in the reduced

phase space and give the physical interpretation of the solutions.
Note. We will abuse the terminology by further calling equilibria, periodic orbits,

etc., what appear to be such orbits in the reduced phase space. Of course, in full
phase space these must be regarded ×S1, i.e. as manifolds of solutions. For example,
an equilibrium in the reduced phase space is a periodic orbit or a circle formed by
full-phase-space equilibria; a periodic orbit in the reduced phase space is an invariant
torus of solutions, etc.

4. The 
ow for B¿0

4.1. The case A¿0

The dynamics of this case was considered in [6]. We will revisit it here.

4.1.1. Negative energy
Eq. (3.3) shows that in the reduced phase space, every negative energy level (h¡0)

is an ellipsoid with the lower cap removed, since r≥ 0 implies that the collision circle
intersects this ellipsoid below the “equator” (see Fig. 2).
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Fig. 2. The 
ow in reduced phase space for B¿0, A¿0, h¡0.

There are two equilibria, E and E′, outside the collision circle, whose coordinates are
given by r=−A=h, x=0, y=±

√
2B− A2=h. For √2B¡|y|¡

√
2B− A2=h, the orbits

are periodic, for |y|=√
2B, they are homoclinic, while for |y|¡√

2B they are hetero-
clinic. The heteroclinic orbit connecting M and N (see Fig. 2) corresponds physically
to orbits ejecting radially and then ending radially in a collision. The other hetero-
clinic orbits in Fig. 2 (as well as the two homoclinic orbits) correspond to spiraling
ejection-collision trajectories.
The cycles of Fig. 2 correspond to orbits on tori S1× S1 in full phase space. The 
ow

on each torus is linear. An orbit of this kind is either periodic (when the frequency ratio
is rational) or quasiperiodic (in case the frequency ratio is irrational). The frequency
ratio T=y, where T represents the period, can be obtained using the same method as
in [6], and is given by the formula

T
y
=
2�− 4 arctan

√
A2=h(2B− y2)− 1

y
√
y2 − 2B : (4.1)

This means that, for a �xed y, except for a set of values of measure zero, all orbits
are quasiperiodic. This allows one to apply the classical results of KAM theory, as it
has been done in [16].
Finally, the two equilibria in the reduced phase space lying outside the collision-

manifold circle correspond physically to stable circular orbits.

4.1.2. Zero energy
In this case the energy relation (3:3) becomes

x2 + y2 − 2Ar=2B; (4.2)

which shows that in the reduced phase space the zero energy level is a paraboloid with
the cap removed (see Fig. 3). Notice that the cap is removed because of the condition
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Fig. 3. The 
ow in the reduced phase space for B¿0, A¿0 and h=0.

r≥ 0. There are no equilibria outside the collision-manifold circle and the orbits are
parabolas if |y| ≥√

2B or arcs of parabolas if |y|¡√
2B.

Each parabola of the case |y|¿√
2B corresponds physically to collision free preces-

sional parabolic orbits with asymptotic velocity zero at in�nity, whereas each curve
of the case |y| ≤ √

2B, y 6= 0, corresponds to either collision or ejection precessional
parabolic orbits with asymptotic velocity zero at in�nity. The arcs of parabola for
which y=0 represent radial ejection or collision orbits with asymptotic velocity zero
at in�nity.

4.1.3. Positive energy
In this case it is more convenient to write the energy relation (3:3) as

x2 + y2 − h(r + A=h)2 = 2B− A2=h; (4.3)

a formula which shows that we have three distinct situations to analyze, depending on
the sign of the quantity h− A2=(2B).
If h¡A2=(2B), from Eq. (4.3) we see that every energy level in the reduced phase

space is a hyperboloid of two sheets intersected with the half-space r≥ 0; this last
condition removes the lower sheet and the cap of the upper sheet (see Fig. 4a). Since
y=C, this surface is foliated by branches of hyperbola for y≥√

2B or y≤−√
2B,

and by arcs of branches of hyperbola for |y|¡√
2B. The physical interpretation of the

orbits represented in this case is similar to the one described in Section 4.1.2, with the
di�erences that precessional parabolas are replaced with precessional hyperbolas and
that the asymptotic velocity at in�nity is now positive, namely

√
h.

In case h=A2=(2B), every energy level in the reduced phase space is a cone of two
sheets intersected with the half-space r≥ 0; this intersection removes the lower sheet
and the cap of the upper sheet (see Fig. 4b). The orbits are the same as in the previous
case h¡A2=(2B), except for those going through M and N , which are half-lines. The
physical interpretation is the same as for h¡A2=(2B).
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Fig. 4. The 
ow in the reduced phase space for B¿0, A¿0 and (a) h¡A2=(2B), (b) h=A2=(2B), and (c)
h¿A2=(2B), respectively.

In case h¿A2=(2B), every energy level in the reduced phase space is a hyperboloid
of one sheet intersected with the half space r≥ 0 above the “equator”; this intersection
removes the lower part of the hyperboloid. The orbits are branches of hyperbola for
y≥√

2B or y≤−√
2B, arcs of branches of hyperbola for

√
2B− A2=h¡|y|¡2B, two

pairs of half-lines (ejecting from F; F ′ and tending to G;G′) for y=
√
2B− A2=h, and

arcs of branches of hyperbolas (conjugate to those corresponding to y¿
√
2B− A2=h

or y¡−
√
2B− A2=h) for |y|¡

√
2B− A2=h. The physical interpretation is the same

as for h¡A2=(2B).
Also note that, as in the zero-energy case 4.1.2, if h¿0 there are no equilibria

outside the collision manifold.

4.2. The case A=0

This is the case of the inverse cubic attractive force, which was studied starting
with Newton; in fact it seems to have been the �rst case for which the occurrence of
collisions for nonzero angular momenta was noticed (see [36]). The energy relation
(3:3) reduces here to

x2 + y2 − hr2 = 2B: (4.4)

Again, the topology of each energy level depends on the sign of the energy constant h.

4.2.1. Negative energy
Eq. (4.4) shows that in the reduced phase space every negative energy level is the

upper half of an ellipsoid, since the collision-manifold circle coincides with the “equa-
tor” of the ellipsoid (see Fig. 5a). Consequently, there are no equilibria outside the
collision-manifold circle. All orbits ful�ll the condition |y|¡√

2B and are heteroclinic.
They correspond physically to spiral or radial ejection-collision orbits. The points x=0,
y=±√

2B on the collision-manifold circle represent degenerate orbits which start at
collision and remain at collision for all time. We shall meet again such degenerate
solutions in the Sections 4.2.2, 4.3.1–4.3.3 below.
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Fig. 5. The 
ow in the reduced phase space for B¿0, A=0 and (a) h¡0, (b) h=0, and (c) h¿0,
respectively.

4.2.2. Zero energy
The energy relation (4:4) is

x2 + y2 = 2B;

so the zero energy level in the reduced phase space is a cylinder intersected with the
half-space r≥ 0. All orbits are generatrices of the cylinder (see Fig. 5b), except for
those corresponding to |y|=√

2B, which are lines consisting of equilibria (the lines
through F and F ′ in Fig. 5b). These equilibria physically represent stable circular orbits
around the center. (In particular, F and F ′ are degenerate solutions which remain in
collision for all time.) The other generatrices of Fig. 5b physically represent spiral
ejection-escape or in�nity-collision orbits, except for the two generatrices through M
and N , which represent radial orbits of the same type. In each case the asymptotic
velocity at in�nity is zero.

4.2.3. Positive energy
In this case, relation (4:4) shows that in the reduced phase space every positive

energy level is a hyperboloid of one sheet intersected with the half-space r≥ 0 follow-
ing its “equator” (see Fig. 5c). There are no equilibria outside the collision-manifold
circle. The orbits are branches of hyperbolas for y¡−√

2B or y¿
√
2B, two pairs of

lines (ejecting from and tending to F and F ′) for |y|=√
2B, and arcs of branches

of hyperbolas (conjugate with respect to those for which y¡−√
2B or y¿

√
2B) for

|y|¡√
2B. The physical interpretation of these orbits is similar to the ones discussed

in Section 4.1.3 for h¿A2=(2B).

4.3. The case A¡0

This case exhibits several interesting dynamical aspects, especially for positive energy
levels.
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Fig. 6. The 
ow in the reduced phase space for B¿0, A¡0 and (a) h¡0 and (b) h=0, respectively.

4.3.1. Negative energy
According to Eq. (4.3), every negative energy level in the reduced phase space

is the upper cap of an ellipsoid: the collision-manifold circle intersects the surface
above the “equator” (see Fig. 6a), hence there are no equilibria outside the collision-
manifold circle. All the orbits are heteroclinic arcs of ellipse that connect equilibria
of the collision-manifold circle. The physical interpretation is as the one described in
Section 4.2.1.

4.3.2. Zero energy
The energy relation (3:3) reduces to Eq. (4.2) with A¡0, which shows that in the

reduced phase space the zero energy level is the cap of a paraboloid (see Fig. 6b). The
integral y=C foliates the surface in arcs of parabola, so all orbits are heteroclinic, and
there are no equilibria outside the collision-manifold circle. The physical interpretation
is the same as in Section 4.3.1.

4.3.3. Positive energy
These manifolds present dynamical aspects that did not occur in the previous cases.

Our discussion will follow three subcases according to the sign of h− A2=(2B).
(a) If h¡A2=(2B), Eq. (4.3) shows that every energy level in the reduced phase space

is a hyperboloid of two sheets intersected with the half-space r≥ 0 (see
Fig. 7a). There are no equilibria outside the collision-manifold circle. The orbits
are upper branches of hyperbola if y≤−√

2B or y ≥ √
2B, and upper branches of

hyperbola or arcs of lower branches if |y|¡√
2B. All lower-branch arcs correspond to

heteroclinic orbits between equilibria of the collision-manifold circle. Physically, these
orbits are spiral or radial ejection–collision orbits. Each upper branch of hyperbola
represents solutions that come from in�nity and tend to in�nity, without encountering
collisions. The asymptotic velocity at in�nity is positive.
Let us take a closer look at the physical motion in this case. Since B¿0 and A¡0,

the acting force is the sum of a repulsive inverse-square force and an attracting inverse-
cubic force. For small distances, the attractive force is dominant, whereas for large
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Fig. 7. The 
ow in the reduced phase space for B¿0, A¡0 and h¿0, with (a) h¡A2=(2B), (b) h=A2=(2B),
and (c) h¿A2=(2B), respectively.

distances, the repulsive one prevails. We have seen in Sections 4.3.1 and 4.3.2, that
a particle with nonnegative energy is bounded and always ends in a collision. If the
energy is positive, there occurs a new situation: for initial data far enough from the
center, the dominant repulsive force gives rise to a capture–escape orbit. Fig. 7a shows
that for h¡A2=(2B) the physical plane of motion contains an annulus-shaped “forbidden
zone”, which – due to insu�cient energy – the particle cannot cross. The radii of the
small and big circle de�ning this annulus are r1 =−(A+√

A2 − 2Bh)=h and r2 =−(A−√
A2 − 2Bh)=h; respectively. If the particle ejects from collision (spiralling or radially),

it reaches the circle of radius r1 from the inside, then returns and collides with the
center. If the particle comes from in�nity (spiralling or radially), it reaches the circle
of radius r2 from the outside, then tends back to in�nity. Moreover, if the angular
momentum is such that y¡−√

2B or y¿
√
2B, then collisions do not occur (as in the

corresponding situations occurring in Sections 4.1.2, 4.1.3, and 4.2.3 above).
(b) If h=A2=(2B), Eq. (4.3) shows that in the reduced phase space the energy

level is a cone of two sheets intersected with the half-space r≥ 0, i.e. the upper sheet
of the cone and the cap of the lower sheet. This surface is foliated by y=C as in
case (a) discussed before: the same curves for the same values of y, with the same
corresponding solutions in full phase space. There is, however, a new situation, which
occurs for y=0: a pair of half-lines ending in M and N, which intersect each other
in E (see Fig. 7b). E is an unstable equilibrium located outside the collision-manifold
circle, namely at r=−A=h=−2B=A, x=0; y=0. In full phase space it corresponds to
a circle in the plane x=0 formed by unstable equilibria. Physically, these equilibria
are unstable rest points located at a distance r=−2B=A from the center.
The heteroclinic orbits ME and EN correspond physically to radial orbits which

either eject from a collision and tend to rest at distance r=−2B=A from the center or
are initially at that distance and tend to collision. The half-lines above E in Fig. 7b
represent physically orbits that either come radially from in�nity and tend to rest at a
distance r=−2B=A from the center, or move in the opposite direction.
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(c) If h¿A2=(2B), Eq. (4.3) shows that every energy level in the reduced phase
space is a hyperboloid of one sheet intersected with the half-space r≥ 0 below the
“equator” (see Fig. 7c). Again, the �rst integral y=C foliates this surface in invari-
ant sets. For y≤−√

2B or y≥√
2B, the orbits are upper branches of hyperbola. For√

2B− A2=h¡|y|¡√
2B, the orbits are upper branches of hyperbola or arcs of lower

branches of hyperbola. For |y|=
√
2B− A2=h, the orbits are two pairs of half-lines (one

pair ending in F and G with reciprocal intersection in E, the other pair ending in F ′ and
G′ with reciprocal intersection in E′. The two equilibria E and E′ that lie outside
the collision-manifold circle have coordinates r=−A=h, x=0, y=±

√
2B− A2=h. Both

are saddles. For |y|¡
√
2B− A2=h, the orbits are arcs of branches of hyperbola con-

jugate to the above hyperbolas.
The two arcs of branches of hyperbola through M and N in Fig. 7c (for which y=0)

as well as the other arcs of branches of hyperbola (for which 0¡|y|¡
√
2B− A2=h)

have the same physical interpretation as the corresponding arcs in Fig. 5c. In each
case the asymptotic velocity at in�nity is positive. The equilibria E and E′ correspond
physically to unstable circular orbits at distance r=−A=h from the center. The orbits
FE; F ′E′; EG, and E′G′ correspond physically to spiraling orbits that eject from colli-
sion and tend to the unstable circular motion of radius −A=h, or conversely. The half-
lines above E and E′ correspond physically to orbits that spiral inward from in�nity
toward the unstable circular motion at distance −A=h from the center, or conversely,
with positive asymptotic velocity at in�nity. The arcs of lower branches of hyperbola
(for

√
2B− A2=h¡|y|¡√

2B) and upper branches of hyperbola (for |y|¿
√
2B− A2=h)

have the same physical interpretation as those in case (b) above.

5. The 
ow for B=0

This case contains the well-known 
ow of the Newtonian and Coulomb equations as
well as the trivial case of a force-free �eld; it is however worthwhile looking at them
from the perspective of the reduced phase space within the framework of this unifying
representation.

5.1. The case A¿0

This is the Newtonian central-force problem. Eq. (3.3) takes the form

x2 + y2 − 2Ar − hr2 = 0; (5.1)

and the corresponding reduced phase space pictures appear as in Fig. 8, in which the
collision manifold is reduced to a point, the case h¡0 gives rise to ellipses, the case
h=0 to parabolas, and the case h¿0 to hyperbolas. In full phase space the collision-
manifold is a circle and all the well-known solutions of the Newtonian central-force
problem are recovered.
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Fig. 8. The 
ow in the reduced phase space for the Newtonian case B=0, A¿0, and (a) h¡0, (b) h=0,
and (c) h¿0, respectively.

Fig. 9. The 
ow in the reduced phase space for B=0, A=0, and (a) h=0 and (b) h¿0, respectively.

5.2. The case A=0

In this degenerate case the force �eld vanishes and the energy relation (3:3) takes
the form

x2 + y2 − hr2 = 0:

If h¡0 this relation represents an imaginary cone, so real motion is impossible. If
h=0, the reduced phase space is the half-line r≥ 0, x=y=0, formed by equilibria as
Fig. 9a shows. Physically, the particle is at all time at rest with respect to the center.
In particular an orbit starting at collision remains at collision for all time. If h¿0,
every energy level in the reduced phase space is the upper sheet of a cone with the
vertex at the collision-manifold point (see Fig. 9b). Physically, the motion is rectilinear
and uniform (radial for y=0, nonradial otherwise).
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Fig. 10. The 
ow in the reduced phase space for B=0, A¡0, and h¿0.

5.3. The case A¡0

This is the case of the repulsive inverse-square force (also known as the Coulomb
force). If h≤ 0, relation (5:1) shows that every negative energy level in the reduced
phase space is the collision-manifold point. Physically, the only solutions are those that
rest at collision for all time. If h¿0, every energy level in the reduced phase space is
formed by a point (the collision-manifold point) and the upper sheet of a hyperboloid
of two sheets (see Fig. 10). The integral y=C foliates the surface in upper branches
of hyperbola. There are no collision orbits except for those degenerate ones describing
“motions” that start at collision, the particles sticking together for all time.

6. The 
ow for B¡0

This is the case of a Manev-type force, in which collisions do not occur. The analysis
depends on the sign of A.

6.1. The case A¿0

In this case we distinguish three cases, depending on the sign of the energy
constant h.

6.1.1. Negative energy
For h¡0 we need to discuss three cases, depending on the sign of h − A2=(2B).

If h¡A2=(2B) the energy levels in the reduced phase space are imaginary ellipsoids,
so real motion is impossible. If h=A2=(2B) the energy level in the reduced phase
space is an equilibrium point E (see Fig. 11a), located at r=−2B=A, x=y=0. Phys-
ically, each equilibrium represents the body at rest at a distance r=−2B=A from the
center. If h¿A2=(2B), every energy level in the reduced phase space is an ellipsoid
(see Fig. 11b). The orbits are ellipses for |y|¡

√
2B−A2=h, which degenerate into the
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Fig. 11. The 
ow in the reduced phase space for B¡0, A¿0, and (a) h=A2=(2B) and (b) A2=(2B)¡h¡0,
respectively.

Fig. 12. The 
ow in the reduced phase space for B¡0, A¿0, and (a) h=0 and (b) h¿0, respectively.

equilibria E and E′, of coordinates r=−A=h, x=0, y=±
√
2B−A2=h, if |y|=√

2B−A2=h. The equilibria correspond physically to stable orbits. The ellipses with
|y|¿0 correspond to the same periodic or quasiperiodic orbits on the torus as in Sec-
tion 4.1.1, just that the precessional motion takes place in the opposite direction. The
ellipse with y=0 corresponds physically to rectilinear periodic solutions: the body li-
brates radially, i.e. moves back and forth along a line without escaping and without
colliding with the center.

6.1.2. Zero energy
In this case the energy level in the reduced phase space is a paraboloid embedded in

the half-space r¿0 (see Fig. 12a). The orbits are parabolas. Physically, they represent
precessional parabolas with zero asymptotic velocity at in�nity. Note that the preces-
sional motion has the opposite direction if compared to the one encountered in the
case B¿0, A¿0, h=0. The parabola in the plane y=0 of the reduced phase space
corresponds physically to rectilinear orbits; the body comes from in�nity, stops at a
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distance r=−B=A from the center and then heads back to in�nity with zero asymptotic
velocity.

6.1.3. Positive energy
In this case every energy level in the reduced phase space is the upper sheet of a

hyperboloid of two sheets (see Fig. 12b). The orbits are upper branches of hyperbola.
Physically, the precessional orbits are hyperbolas and the asymptotic velocity at in�nity
is positive.

6.2. The case A=0

This is the case of an inverse-cubic repulsive force. If h ≤ 0, every energy level in
the reduced phase space is either an imaginary ellipsoid or an imaginary cylinder, so
no real motion is possible. If h¿0, every energy level in the reduced phase space has
the similar physical interpretation as the orbits of the Section 6.1.3.

6.3. The case A¡0

This is a repulsive Manev force given by the sum of inverse-square and inverse-
cubic forces. If h≤ 0, real motion is impossible. If h¿0, the situation is similar to the
one of Section 6:2:3 above.
This completes the dynamical description of the generalized Manev problem in terms

of the reduced phase space. However, the understanding of all dynamical aspects is
far from over. Therefore, in the last section we will tackle the problem of block
regularization, which will shed some light on the dynamics at and near collision.

7. Regularization of collisions

The notion of block-regularization was developed by Conley, Easton, and McGehee
in the early 1970’s [4, 12, 13, 22]. It occurred as a natural response to the old question
about regularization of collision-solutions in the classical n-body problem, i.e. of the
possible analytic continuation of the solution beyond the collision singularity (not to
be mixed up with the regularization of the equations of motion, see [7]). Sundman
[34] has shown �rst that this can be done for binary collisions; Siegel [32] has proved
that, in general, triple collisions are not regularizable; and �nally Saari [32] and Sper-
ling [33] have shown that simultaneous binary collisions are regularizable. The idea
of block-regularization occurred under the growing in
uence of the qualitative theory
of dynamical systems in celestial mechanics. Its promoters asked whether the exten-
sion of the solution beyond collisions can be made with respect to nearby orbits in
a meaningful way, i.e. if a natural property like continuity of solutions with respect
to initial data is preserved after collision. This question is justi�ed by physical ap-
plications, since we can never obtain 100%-accurate measurements: if continuity with
respect to initial data is violated, physical measurements become meaningless. We will
formally present the notion and then state and prove our results.
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Let M be a smooth manifold, let S be a compact subset of M, and let F be a vector
�eld on M\S. We call S the singularity set of the vector �eld F. We denote by � the

ow of F on M\S. The notion of 
ow is used loosely here since we do not require
it to be de�ned for all values of the time variable t. Let B be a compact subset of M
with nonempty interior and suppose that the boundary b of B is a smooth manifold
such that b∩S= ∅. De�ne the sets of ingress, egress, and tangent points with respect
to the set B:

b+ = {x∈ b |�(x; (−�; 0))∩B= ∅ for some �¿0};

b−= {x∈ b |�(x; (0; �))∩B= ∅ for some �¿0};

t= {x∈ b | (d=dt)�(x; 0) is tangent to b}:

We call B an isolating block if t= b+ ∩ b−. Denote by O(x) the orbits through x:

O(x)= {�(x; t) |�(x; t) is de�ned}:

We say that an isolating block B isolates the singularity set S if S is contained in the
interior of B and if O(x) is not fully contained in B for all x∈B\S. Let us further
de�ne the sets asymptotic to B:

a+ = {x∈ b+ |�(x; t)∈B for all t≥ 0 for which �(x; t) is de�ned};

a−= {x∈ b− |�(x; t)∈B for all t≤ 0 for which �(x; t) is de�ned}:

By de�nition, if x∈ b+\a+, then there exists a t¿0 such that �(x; t) does not belong
to B. Thus the time spent by the point x in the block can be de�ned by

T (x)= inf
t¿0

{�(x; t) =∈B}:

Let us remark that �(x; [0; T (x)])∈B and that �(x; T (x))∈ b−. We can now de�ne
the map across the block:

� : b+\a+ → b−\a−;

�(x)=�(x; T (x)):

Note that � is a di�eomorphism, as Conley and Easton [4] have proved.

De�nition 7.1. We will say that the singularity set S is block-regularizable if there ex-
ists an isolating block B such that for the corresponding di�eomorphism � : b+\a+ →
b−\a− there is a unique homeomorphism �̃ : b+ → b−, with �̃ ≡ � on b+\a+.
It was McGehee in 1981 [23] who, while studying the two-body problem given by

the inverse-� force law (�≥ 1), recognized the importance of imposing the uniqueness
condition on the extension function �̃. This condition is indeed necessary since loss
of uniqueness implies loss of continuity with respect to initial data.
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Fig. 13. The homeomorphism of [a; b] into itself.

We can now prove the following general result:

Lemma 7.2. Assume that for any isolating block B the corresponding di�eomorphism
� : b+\a+ → b−\a− is such that a+ and a− contain a connected component of
positive measure. Then the singularity S is not block-regularizable.

Proof. Let B be an isolating block for which the corresponding di�eomorphism � can
be extended to a homeomorphism �̃ from b+ to b−, and let 	 be the restriction of �̃ to
a+. It follows that 	 is a homeomorphism from a+ to a−. Observe now that a+ and a−

are closed sets in the compact set B, so they are themselves compact. We would like
to show that since a+ and a− contain a connected set of positive measure, there exist
in�nitely many homeomorphisms from a+ and a− that are identical to 	 if restricted
(and corestricted) to the boundaries of a+ and a−. This will imply that there exist
in�nitely many extensions �̃, so the collision-singularity set is not block-regularizable.
We �rst consider the case when a+ and a− are one-dimensional. Since a+ and a−

have a connected component of positive measure, they are both homeomorphic to some
interval [a; b] and the boundaries of a+ and a− correspond to a and b. So the problem
of showing that there are in�nitely many homeomorphisms from a+ to a− that keep
the boundaries of a+ and a− �xed, reduces to showing that there are in�nitely many
homeomorphisms from [a; b] to [a; b] that send a to a and b to b. But this is obvious
from Fig. 13, in which the correspondence is shown by arrows and each choice of
the positions of � and � de�nes a di�erent homeomorphism.
If a+ and a− are two-dimensional, the problem reduces to squares instead of in-

tervals, and the existence of in�nitely many homeomorphisms is proved similarly. For
n-dimensional sets a+ and a−, the problem reduces to n-dimensional hypercubes. This
completes the proof.

Remark. Things become more complicated in case the connectedness condition for
a+ and a− is removed, retaining only the positive-measure requirement. However, in
the following application of Lemma 7:2 the connectedness condition will be ful�lled.
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Fig. 14. The collision-manifold torus for B¿0.

Theorem 7.3. The singularity set of Manev-type problems given by potentials A=r +
B=r2 with A; B constants and B¿0, is not block-regularizable.

Proof. We will now represent the 
ow of system (3:2) in (x; y; u)-Coordinates. In
Fig. 1a we saw that the collision manifold (for r=0) is a cylinder with the caps iden-
ti�ed, i.e. a torus in some suitable (x; y∗; u∗)-coordinates (see Fig. 14). (By abuse, we
will continue to work with (x; y; u)-coordinates, but imagine the torus representation.)
Because of the integral (3:4), the solutions of system (3:2) (for r 6=0) lie on cylinders,
as Fig. 14 shows. The cylinders intersecting the torus contain only collision or ejection
orbits, whereas the other cylinders contain only collisionless orbits.
The collision-manifold torus is in this case the singularity set, denoted by S at the

beginning of this section. Any sphere around this torus is an isolating block B, so
isolating blocks do exist. But independently on its shape, an isolating block would
be partitioned by b+; b−, and �; moreover, the intersection between the set B and the
cylinders that intersect the collision-manifold torus is homeomorphic to two annuli,
one annulus for a+ and the other for a−. Consequently, a+ and a− are connected and
have positive measure. By Lemma 7.2, the singularity set is not block-regularizable.
This completes the proof.
As it was shown by Easton [12], in the Newtonian case A¿0, B=0 the singularity

set, which has measure zero, is block-regularizable. However, this property gets lost in
n-body problems (n≥ 3) for singularities involving a collision of at least three bodies.
As we have seen above, in the generic Manev-type case the singularity set is not

block-regularizable even for binary collisions. This means that after an elastic bounce
the future motion cannot be predicted, which is in fact the case in the astronomical
reality (even if it mainly happens for other reasons: the bodies are not point-masses,
collisions are not purely elastic, energy is not preserved after collision, etc.). So, beyond



1054 F. Diacu et al. / Nonlinear Analysis 41 (2000) 1029–1055

the argument given in Section 1, this seems to be another point favoring a better
suitability of the original Manev model to the realities of the solar system, if compared
to what the classical Newtonian model o�ers.
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