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ABSTRACT

We study predictions for dark matter (DM) phase-space structure near the Sun based on high-

resolution simulations of six galaxy haloes taken from the Aquarius project. The local DM

density distribution is predicted to be remarkably smooth; the density at the Sun differs from

the mean over a best-fitting ellipsoidal equidensity contour by less than 15 per cent at the 99.9

per cent confidence level. The local velocity distribution is also very smooth, but it differs

systematically from a (multivariate) Gaussian distribution. This is not due to the presence

of individual clumps or streams, but to broad features in the velocity modulus and energy

distributions that are stable in both space and time and reflect the detailed assembly history

of each halo. These features have a significant impact on the signals predicted for weakly

interacting massive particle and axion searches. For example, weakly interacting massive

particles recoil rates can deviate by ∼10 per cent from those expected from the best-fitting

multivariate Gaussian models. The axion spectra in our simulations typically peak at lower

frequencies than in the case of multivariate Gaussian velocity distributions. Also in this case,

the spectra show significant imprints of the formation of the halo. This implies that once direct

DM detection has become routine, features in the detector signal will allow us to study the

DM assembly history of the Milky Way. A new field, ‘DM astronomy’, will then emerge.

Key words: methods: numerical – dark matter.

1 IN T RO D U C T I O N

In the 75 yr since Zwicky (1933) first pointed out the need for sub-

stantial amounts of unseen material in the Coma cluster, the case for

a gravitationally dominant component of non-baryonic dark matter

(DM) has become overwhelmingly strong. It seemed a long shot

when Peebles (1982) first suggested that the DM might be an en-

tirely new, weakly interacting, neutral particle with very low thermal

velocities in the early universe, but such cold dark matter (CDM) is

now generally regarded as the most plausible and consistent identi-

fication for the DM. Particle physics has suggested many possible

CDM particles beyond the standard model. Two promising candi-

dates are weakly interacting massive particles (WIMPs; see Lee &

Weinberg 1977; Gunn et al. 1978; Ellis et al. 1984) and axions (Pec-

cei & Quinn 1977b,a; Weinberg 1978; Wilczek 1978). Among the

WIMPs, the lightest supersymmetric particle, the neutralino, is cur-

rently favoured as the most likely CDM particle, and the case will be

⋆E-mail: vogelsma@mpa-garching.mpg.de

enormously strengthened if the Large Hadron Collider (LHC) con-

firms supersymmetry. However, ultimate confirmation of the CDM

paradigm can only come through the direct or indirect detection of

the CDM particles themselves. Neutralinos, for example, are their

own antiparticles and can annihilate to produce γ -rays and other

particles. One goal of the recently launched Fermi γ -ray space

telescope is to detect this radiation (Gehrels & Michelson 1999;

Springel et al. 2008b).

Direct detection experiments, on the other hand, search for the in-

teraction of CDM particles with laboratory apparatus. For WIMPs,

detection is based on nuclear recoil events in massive, cryogeni-

cally cooled bolometers in underground laboratories (Jungman,

Kamionkowski & Griest 1996); for axions, resonant microwave

cavities in strong magnetic fields exploit the axion-photon conver-

sion process (Sikivie 1985). Despite intensive searches, the only

experiment which has so far reported a signal is DArk MAtter ex-

periment (DAMA) (Bernabei et al. 2007) which has clear evidence

for an annual modulation of their event rate of the kind expected

from the Earth’s motion around the Sun. The interpretation of this

result is controversial, since it appears to require DM properties
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which are in conflict with upper limits established by other exper-

iments (see Savage, Gondolo & Freese 2004; Gondolo & Gelmini

2005; Gelmini 2006, for a discussion and possible solutions). Re-

gardless of this, recent improvements in detector technology may

enable a detection of ‘standard model’ WIMPs or axions within a

few years.

Event rates in all direct detection experiments are determined

by the local DM phase-space distribution at the Earth’s position.

The relevant scales are those of the apparatus and so are extremely

small from an astronomical point of view. As a result, interpret-

ing null results as excluding specific regions of candidate param-

eter space must rely on (strong) assumptions about the fine-scale

structure of phase space in the inner Galaxy. In most analyses, the

DM has been assumed to be smoothly and spherically distributed

about the Galactic Centre with an isotropic Maxwellian velocity

distribution (e.g. Freese, Frieman & Gould 1988) or a multivari-

ate Gaussian distribution (e.g. Green 2001; Ullio & Kamionkowski

2001; Helmi, White & Springel 2002). The theoretical justification

for these assumptions is weak, and when numerical simulations

of halo formation reached sufficiently high resolution, it became

clear that the phase space of CDM haloes contains considerable

substructure, both gravitationally bound subhaloes and unbound

streams. As numerical resolution has improved, it has become pos-

sible to see structure closer and closer to the centre, and this has led

some investigators to suggest that the CDM distribution near the

Sun could, in fact, be almost fractal, with large density variations

over short length-scales (e.g. Kamionkowski & Koushiappas 2008).

This would have substantial consequences for the ability of direct

detection experiments to constrain particle properties.

Until very recently, simulation studies were unable to resolve any

substructure in regions as close to the Galactic Centre as the Sun

(see Moore et al. 2001; Helmi, White & Springel 2002, 2003, e.g.).

This prevented realistic evaluation of the likelihood that massive

streams, clumps or holes in the DM distribution could affect event

rates in Earth-bound detectors and so weaken the particle physics

conclusions that can be drawn from null detections (see Savage,

Freese & Gondolo 2006; Kamionkowski & Koushiappas 2008, for

recent discussions). As we will show in this paper, a new age has

dawned. As part of its Aquarius project (Springel et al. 2008a), the

Virgo Consortium has carried out a suite of ultrahigh-resolution

simulations of a series of Milky Way sized CDM haloes. Simula-

tions of individual Milky Way haloes of similar scale have been

carried out and analysed by Diemand et al. (2008), Zemp et al.

(2009) and Stadel et al. (2008). Here, we use the Aquarius simula-

tions to provide the first reliable characterizations of the local DM

phase-space distribution and the detector signals which should be

anticipated in WIMP and axion searches.

2 TH E N U M E R I C A L S I M U L AT I O N S

The cosmological parameters for the Aquarius simulation set are

�m = 0.25, �� = 0.75, σ 8 = 0.9, nS = 1 and H0 = 100 h km s−1

Mpc−1 with h = 0.73, where all quantities have their standard defi-

nitions. These parameters are consistent with current cosmological

constraints within their uncertainties, in particular, with the parame-

ters inferred from the Wilkinson Microwave Anisotropy Probe 1- and

5-yr data analyses (Spergel et al. 2003; Komatsu et al. 2009). Milky

Way like haloes were selected for resimulation from a parent cos-

mological simulation which used 9003 particles to follow the DM

distribution in a 100 h−1 Mpc periodic box. Selection was based

primarily on halo mass (∼1012 M⊙) but also required that there

should be no close and massive neighbour at z = 0. The Aquarius

project resimulated six such haloes at a series of higher resolutions.

The naming convention uses the tags Aq-A through Aq-F to refer to

these six haloes. An additional suffix 1 to 5 denotes the resolution

level. Aq-A-1 is the highest resolution calculation, with a particle

mass of 1.712 × 103 M⊙ and a virial mass of 1.839 × 1012 M⊙ it

has more than a billion particles within the virial radius R200 which

we define as the radius containing a mean density 200 times the

critical value. The Plummer equivalent softening length of this run

is 20.5 pc. Level-2 simulations are available for all six haloes with

about 200 million particles within R200. Further details of the haloes

and their characteristics can be found in Springel et al. (2008a).

In the following analysis, we will often compare the six level-2

resolution haloes, Aq-A-2 to Aq-F-2. To facilitate this comparison,

we scale the haloes in mass and radius by the constant required to

give each a maximum circular velocity of Vmax = 208.49 km s−1,

the value for Aq-A-2.

3 SPATI AL DI STRI BU TI ONS

The density of DM particles at the Earth determines the flux of

DM particles passing through laboratory detectors. It is important,

therefore, to determine not only the mean value of the DM density

8 kpc from the Galactic Centre, but also the fluctuations around this

mean which may result from small-scale structure.

Throughout this section, we will refer to a coordinate system that

is aligned with the principal axes of the inner halo, and which labels

particles by an ellipsoidal radius rell defined as the semimajor axis

length of the ellipsoidal equidensity surface on which the particle

sits. We determine the orientation and shape of these ellipsoids as

follows. For each halo, we begin by diagonalizing the moment of

inertia tensor of the DM within the spherical shell 6 kpc < r <

12 kpc (after scaling to a common Vmax). This gives us a first esti-

mate of the orientation and shape of the best-fitting ellipsoid. We

then reselect particles with 6 kpc < rell < 12 kpc, recalculate the

moment of inertia tensor and repeat until convergence. The result-

ing ellipsoids have minor-to-major axis ratios which vary from 0.39

for Aq-B-2 to 0.59 for Aq-D-2. The radius restriction reflects our

desire to probe the DM distribution near the Sun. We note that we

make use of rell only in this section. In the other parts of our paper,

we will always use the standard spherical radius r.

We estimate the local DM distribution at each point in our simu-

lations using a smoothed particle hydrodynamics (SPH) smoothing

kernel adapted to the 64 nearest neighbours. We then fit a power law

to the resulting distribution of ln ρ against ln rell over the ellipsoidal

radius range 6 < rell < 12 kpc. This defines a smooth model density

field ρmodel(rell). We then construct a density probability distribution

function (DPDF) as the histogram of ρ/ρmodel for all particles in

6 < rell < 12 kpc, where each is weighted by ρ−1 so that the result-

ing distribution refers to random points within our ellipsoidal shell

rather than to random mass elements. We normalize the resulting

DPDFs to have unit integral. They then provide a probability dis-

tribution for the local DM density at a random point in units of that

predicted by the best-fitting smooth ellipsoidal model.

We have chosen an ellipsoidal radial range rather than a spherical

one because we wish to characterize the variations in density caused

by small-scale structure. We must therefore remove the strong an-

gular dependence produced by the prolate structure of our haloes;

the large minor-to-major axis ratios mentioned above lead to vari-

ations in density of up to an order of magnitude at fixed distance

from halo centre. Since the stellar component of the Milky Way has

a major effect on the shape of its dark halo at the solar circle, most

likely causing it to be substantially rounder than our baryon-free

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 395, 797–811
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Figure 1. Top panel: DPDF for all resimulations of halo Aq-A measured

within a thick ellipsoidal shell between equidensity surfaces with major

axes of 6 and 12 kpc. The local DM density at the position of each particle,

estimated using a SPH smoothing technique, is divided by the density of the

best fit, ellipsoidally stratified, power-law model. The DPDF gives the dis-

tribution of the local density in units of that predicted by the smooth model

at random points within the ellipsoidal shell. At these radii, only resolution

levels 1 and 2 are sufficient to follow substructure. As a result, the charac-

teristic power-law tail due to subhaloes is not visible at lower resolution.

The fluctuation distribution of the smooth component is dominated by noise

in our 64-particle SPH density estimates. The density distribution measured

for a uniform (Poisson) particle distribution is indicated by the black dashed

line. Bottom panel: as above, but for all level-2 haloes after rescaling to

Vmax = 208.49 km s−1. In all cases, the core of the DPDF is dominated by

measurement noise and the fraction of points in the power-law tail due to

subhaloes is very small. The chance that the Sun lies within a subhalo is

∼10−4. With high probability, the local density is close to the mean value

averaged over the Sun’s ellipsoidal shell.

haloes (e.g. Kazantzidis et al. 2004), only the small-scale structure

of our simulations is directly relevant to DM detection experiments.

The large-scale DM density distribution is more reliably inferred

from dynamical modelling of Milky Way observations than from

simulations of the kind we present here.

In Fig. 1, we show the DPDFs measured in this way for all resim-

ulations of Aq-A (top panel) and for all level-2 haloes after scaling

to a common Vmax (bottom panel). Two distinct components are

evident in both plots. One is smoothly and lognormally distributed

around ρ = ρmodel, the other is a power-law tail to high densities

which contain less than 10−4 of all points. The power-law tail is not

present in the lower resolution haloes (Aq-A-3, Aq-A-4 and Aq-

A-5) because they are unable to resolve subhaloes in these inner

regions. However, Aq-A-2 and Aq-A-1 give quite similar results,

suggesting that resolution level 2 is sufficient to get a reasonable

estimate of the overall level of the tail. A comparison of the six level-

2 simulations then demonstrates that this tail has similar shape in

different haloes, but a normalization which can vary by a factor of

several. In none of our haloes does the fraction of the distribution

in this tail rise above 5 × 10−5. Furthermore, the arguments of

Springel et al. (2008a) suggest that the total mass fraction in the

inner halo (and thus also the total volume fraction) in subhaloes

below the Aq-A-1 resolution limit is at most about equal to that

above this limit. Hence, the chance that the Sun resides in a bound

subhalo of any mass is of the order of 10−4.

The striking similarity of the smooth lognormal component in

all the distributions of Fig. 1 has nothing to do with actual density

variations in the smooth DM distribution. It is, in fact, simply a

reflection of the noise in our local density estimates. We demonstrate

this by setting up a uniform Poisson point distribution within a

periodic box and then using a SPH smoothing kernel adapted to

the 64 nearest neighbours to associate a local density with each

particle in exactly the same way as for our halo simulations. We can

then construct a DPDF for these estimates (relative to their mean)

in exactly the same way as before. The result is shown in the top

panel of Fig. 1 as a dashed black line. It is an almost perfect fit to

the smooth component in the simulations, and it would fit the other

haloes equally well if plotted in the lower panel.

The fit is not perfect, however, and it is possible to disentangle

the true scatter in density about the smooth model from the estima-

tion noise. The latter is expected to be asymptotically lognormal for

large neighbour numbers, and Fig. 1 shows that it is very close to

lognormal for our chosen parameters. If we assume that the scatter

in intrinsic density about the smooth model is also approximately

lognormal, we can estimate its scatter as the square root of the dif-

ference between the variance of the simulation scatter and that of

the noise: symbolically, σintr =
√

σ 2
obs − σ 2

noise. Indeed, it turns out

that the variance in ln (ρ/ρmodel) which we measure for our sim-

ulated haloes (excluding the power-law tail) is consistently higher

than that which we find for our uniform Poisson distribution. Fur-

thermore, tests show that the differences are stable if we change the

number of neighbours used in the SPH estimator to 32 or 128, even

though this changes the noise variance by factors of 2. This proce-

dure gives the following estimates for rms intrinsic scatter around

the smooth model density field in our six level-2 haloes, Aq-A-2

to Aq-F-2: 2.2, 4.4, 3.7, 2.1, 4.9 and 4.0 per cent, respectively. The

very large particle number in the radial range we analyse results

in a standard error on these numbers which is well below 0.01 for

all haloes. Thus, we can say with better than 99.9 per cent confi-

dence that the DM density at the Sun’s position differs by less than

15 per cent from the average over the ellipsoidal shell on which the

Sun sits. This small scatter implies that the density field in the inner

halo is remarkably well described by a smooth, ellipsoidal, power-

law model. This qualitative behaviour was predicted analytically

by Kamionkowski & Koushiappas (2008), although the fluctuation

level we find for the smooth component is much smaller than they

suggested.

We conclude that the local density distribution of DM should

be very smooth. Bound clumps are very unlikely to have any ef-

fect on direct detection experiments. The main reason for this is

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 395, 797–811
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the short dynamical time at the solar radius (about 1 per cent of

the Hubble time). This results in very efficient mixing of unbound

material and the stripping of all initially bound objects to a small

fraction of the maximum mass they may have had in the past (see

Vogelsberger et al. 2008, for a discussion of these processes). Note

that the actual density of DM in the solar neighbourhood and the

shape of the equidensity surfaces of the Milky Way’s DM distri-

bution will depend on how the gravitational effects of the baryonic

components have modified structure during the system’s formation.

Unfortunately, the shape of the inner DM halo of the Milky Way

is poorly constrained observationally (Helmi 2004; Law, Johnston

& Majewski 2005). The dissipative contraction of the visible com-

ponents probably increased the density of the DM component and

made it more axisymmetric (e.g. Gnedin et al. 2004; Kazantzidis

et al. 2004) but these processes are unlikely to affect the level of

small-scale structure. The very smooth behaviour we find in our

pure DM haloes should apply also to the more complex real Milky

Way.

4 V ELOCITY D ISTRIBU TIONS

The velocity distribution of DM particles near the Sun is also an

important factor influencing the signal expected in direct detection

experiments. As mentioned in the Introduction, most previous work

has assumed this distribution to be smooth, and either Maxwellian

or multivariate Gaussian. Very different distributions are possible

in principle. For example, if the local density distribution is a su-

perposition of a relatively small number of DM streams, the local

velocity distribution would be effectively discrete with all particles

in a given stream sharing the same velocity (Sikivie, Tkachev &

Wang 1995; Stiff, Widrow & Frieman 2001; Stiff & Widrow 2003).

Clearly, it is important to understand whether such a distribution

is indeed expected, and whether a significant fraction of the local

mass density could be part of any individual stream.

We address this issue by dividing the inner regions of each of our

haloes into cubic boxes 2 kpc on a side, and focusing on those boxes

centred between 7 < r < 9 kpc from halo centre. In Aq-A-1, each

2 kpc box contains 104 to 105 particles, while in the level-2 haloes

they contain an order of magnitude fewer. For every box, we cal-

culate a velocity dispersion tensor and study the distribution of the

velocity components along its principal axes. In almost all boxes,

these axes are closely aligned with those the ellipsoidal equidensity

contours discussed in the last section. We also study the distribution

of the modulus of the velocity vector within each box. The upper

four panels of Fig. 2 show these distributions of a typical 2 kpc

box at the solar circle in Aq-A-1 (solid red lines). Here, and in the

following plots, we normalize distributions to have unit integral.

The black dashed lines in each panel show a multivariate Gaussian

distribution with the same mean and dispersion along each of the

principal axes. The difference between the two distributions in each

panel is plotted separately just above it. This particular box is quite

typical, in that we almost always find the velocity distribution to

be significantly anisotropic, with a major axis velocity distribution

which is platykurtic, and distributions of the other two components

which are leptokurtic. Thus, the velocity distribution differs signifi-

cantly from Maxwellian, or even from a multivariate Gaussian. The

individual velocity components have very smooth distributions with

no sign of spikes due to individual streams. This also is a feature

which is common to almost all our 2 kpc boxes. It is thus surprising

that the distribution of the velocity modulus shows clear features

in the form of bumps and dips with amplitudes of several tens of

per cent.
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Figure 2. Top four panels: velocity distributions in a 2 kpc box at the

solar circle for halo Aq-A-1. v1, v2 and v3 are the velocity components

parallel to the major, intermediate and minor axes of the velocity ellipsoid;

v is the modulus of the velocity vector. Red lines show the histograms

measured directly from the simulation, while black dashed lines show a

multivariate Gaussian model fit to the individual component distributions.

Residuals from this model are shown in the upper part of each panel. The

major axis velocity distribution is clearly platykurtic, whereas the other

two distributions are leptokurtic. All three are very smooth, showing no

evidence for spikes due to individual streams. In contrast, the distribution

of the velocity modulus, shown in the upper left-hand panel, shows broad

bumps and dips with amplitudes of up to 10 per cent of the distribution

maximum. Lower panel: velocity modulus distributions for all 2 kpc boxes

centred between 7 and 9 kpc from the centre of Aq-A-1. At each velocity,

a thick red line gives the median of all the measured distributions, while a

dashed black line gives the median of all the fitted multivariate Gaussians.

The dark and light blue contours enclose 68 and 95 per cent of all the

measured distributions at each velocity. The bumps seen in the distribution

for a single box are clearly present with similar amplitude in all boxes, and

so also in the median curve. The bin size is 5 km s−1 in all plots.
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Figure 3. Distributions of the velocity modulus in four well separated

2 kpc boxes about 8 kpc from the centre of Aq-A. Results are shown for each

region from each of the three highest resolution simulations. Error bars are

based on Poisson statistics. The different resolutions agree within their error

bars, and show the same bumps in all four boxes. For the purpose of this

plot, we have chosen a larger bin for our histograms, 10 km s−1 as compared

to 5 km s−1 in our other velocity plots. For this bin size, the statistical noise

in Aq-A-1 is barely visible.

To see how these features vary with position, we overlaid the

distributions of the velocity modulus for all 2 kpc boxes centred

between 7 and 9 kpc from the centre of Aq-A-1 (bottom panel of

Fig. 2). We superpose both the directly measured distributions and

the predictions from the best-fitting multivariate Gaussians. At each

velocity, the solid red line shows the median value of all the directly

measured distributions, while the dashed black line is the median of

all the multivariate Gaussian fits. The dark and light regions enclose

68 and 95 per cent of all the individual measured distributions at

each velocity.

It is interesting to note that the bumps in the velocity distribution

occur at approximately the same velocity in all boxes. This suggests

that they do not reflect local structures, but rather some global

property of the inner halo. In Fig. 3, we show velocity modulus

distribution for four different boxes in Aq-A at the three highest

resolutions (levels 1, 2 and 3). The error bars are based on Poisson

statistics in each velocity bin. Clearly, the same bumps are present

in all boxes and at all resolutions. Thus, they are a consequence of

real dynamical structure that converges with increasing numerical

resolution.

In Fig. 4, we make similar plots of the velocity modulus distribu-

tion for all level-2 haloes. These distributions are quite smooth. The

sharp peak in Aq-B-2 is due to a single 2 kpc box where 60 per cent

of the mass is contained in a single subhalo. No other box in this

or any other halo has more than 1.5 per cent of its mass in a single

subhalo. The great majority of boxes contain no resolved subhalo at

all. Although the details of the median distributions vary between

haloes, they share some common features. The low-velocity region

is more strongly populated in all cases than predicted by the multi-

variate Gaussian model. In all cases, the peak of the distribution is

depressed relative to the multivariate Gaussian. At moderately high

velocities, there is typically an excess. Finally, and perhaps most

importantly, all the distributions show bumps and dips of the kind

discussed above. These features appear in different places in differ-

ent haloes, but they appear at similar places for all boxes in a given

halo. The left-hand panel of Fig. 5 superposes the median velocity

modulus distributions of all level-2 haloes and plots their mean as

a black dashed line. The middle panel shows the deviations of the

individual haloes from this mean. The amplitudes of the deviations

are similar in different haloes and at low and high velocities. In per-

centage terms, the deviations are largest at high velocity reaching

values of 50 per cent or more, as can be seen from the right-hand

panel of Fig. 5.

The bumps in the velocity distribution are too broad to be ex-

plained by single streams. Furthermore, single streams are not mas-

sive enough to account for these features. This is shown more clearly

in Fig. 6 where we illustrate some streams in velocity space for a

2 kpc box in halo Aq-A-1. Different colours here indicate particles

that belonged to different FoF groups at redshift 4.2. For clarity,

we only show streams from groups that contribute at least 10 parti-

cles to this volume (0.025 per cent of the total number of particles

present at this location). There are 27 such objects. If we consider

all FoF groups that contribute more than two particles to the volume

shown in Fig. 6, we find that a given FoF group contributes streams

that are typically only populated by two particles (0.005 per cent

of the total mass in the box). This implies that most of the groups

contribute several streams of very low density. The most prominent

streams have ∼40 particles, i.e. ∼0.1 per cent of the mass in this

volume. This clearly shows that streams are expected to be neither

dense nor massive in the solar vicinity.

The most prominent streams typically occupy the tail of the veloc-

ity distribution in these local boxes. The excess of particles moving

with similar velocities and high kinetic energies can be measured

using a velocity correlation function, as shown by Helmi et al.

(2002).

5 EN E R G Y D I S T R I BU T I O N S

We have seen that the distributions of individual velocity compo-

nents in localized regions of space are very smooth, whereas the

velocity modulus distribution shows clear bumps. Taken together

with the fact that these bumps occur at similar velocities in regions

on opposite sides of the halo centre, this indicates that we must be

seeing features in the energy distribution of DM particles.

To investigate this further, we estimate the mean phase-space

density f̄ as a function of energy in each of our haloes using the

properties of the particles at radii r between 6 and 12 kpc. Clearly,

our haloes are not perfectly in equilibrium and far from spheri-

cal. Thus, their phase-space densities will only approximately be

describable as functions of the integrals of motion, and they will de-

pend significantly on integrals other than the energy. Nevertheless,

we can estimate a mean phase-space density as a function of energy

by taking the total mass of particles with 6 < r < 12 kpc and ener-

gies in some small interval and dividing it by the total phase-space

volume corresponding to this radius and energy range, e.g.

f̄ (E) ≡
dM

dE

1

g(E)
, (1)

where f̄ (E) is the energy-dependent mean phase-space density and

g(E) dE ≡ 4π

∫

V,E>�(x)

d3
x

√

2 [E − �(x)] dE, (2)

is the phase-space volume with orbital energy in the range (E, E +

dE) and halocentric radius in the range 6 < r < 12 kpc. We note that

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 395, 797–811
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Figure 4. Velocity modulus distributions in exactly the same format as the bottom panel of Fig. 2 but for all six of our haloes at level-2 resolution. All

distributions are smooth. Only in Aq-B-2 do we see a strong spike which is due to a single box which has 60 per cent of its mass (though a small fraction of

its volume) in a single subhalo. No other box in any of the distributions has a subhalo contributing more than 1.5 per cent of the mass. All distributions show

characteristic broad bumps which are present in all boxes in a given halo, and so in its median distribution. These bumps are in different places in different

haloes.

our definition of f̄ (E) returns the true f(E) for any averaging volume

in any system in which the phase-space distribution function only

depends on energy.

The differential energy distribution is easily calculated by binning

the energies of all particles between 6 and 12 kpc. The phase-space

volume can be calculated by solving for the gravitational potential

at the position of all simulation particles and then using these as

a Monte Carlo sampling of configuration space in the relevant in-

tegrals. Taking the ratio then yields the desired estimate of f̄ (E).

We note that both the mass M and the differential phase-space vol-

ume per unit energy g(E) depend strongly on the geometric region

over which they are evaluated, in the present case, a thick spheri-

cal shell between 6 and 12 kpc. We find, however, that the mean

phase-space density defined by equation (1) depends only very

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 395, 797–811
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Figure 5. Left-hand panel: median velocity modulus distributions for all six level-2 haloes repeated from Fig. 4. The black dashed line is the mean of these

distributions. Middle panel: deviations of the velocity modulus distribution of each of the six haloes from the sample mean. The amplitude of the various

bumps is similar in different haloes and over the whole velocity range. It reaches more than 10 per cent of the amplitude of the mean distribution. Right-hand

panel: relative deviations of the individual velocity modulus distributions from their sample mean. Typical relative deviations are about 30 per cent, but they

can exceed 50 per cent at higher velocities.

weakly on the region chosen, for example on the radii of our

spherical shell. Indeed, as can be inferred from Fig. 2, it is

very similar to that obtained for any 2 kpc cube at R = 8 kpc.

Thus, in practise, the weighting implied by the average over

the other integrals of motion which is implicit in equa-

tion (1) does not depend much on the geometry of the region

chosen.

In Fig. 7, we show f̄ (E) measured in this way for all our sim-

ulations of Aq-A. We express the energy in units of v2
max and we

take the zero-point of the gravitational potential to be its average

value on a sphere of radius 8 kpc. As a result, the measured en-

ergy distribution extends to slightly negative values. Note how well

the distribution converges at the more strongly bound energies. At

higher energies, the convergence between the level-1 and -2 reso-

lutions is still very good. This demonstrates that we can robustly

measure the mean phase-space density distribution. Furthermore,

we see clear wiggles that reproduce quite precisely between the

different resolutions.

Fig. 8 shows similarly estimated mean phase-space density dis-

tributions for Aq-A-2 at five different times separated by about

300 Myr. This is longer than typical orbital periods in the region

we are studying. Despite this, the wiggles at energies below 2.4v2
max

are present over the complete redshift range shown. This demon-

strates that these features are well mixed, and the mean phase-space

density distribution has reached a coarse-grained equilibrium. In

contrast, the variability of the wiggles in the part of the distribution

corresponding to weakly bound particles (where the orbital periods

are much larger) shows that these must be due to individual streams

or to superpositions of small numbers of streams, which have not

yet phase-mixed away.

To estimate what these mean phase-space density distributions

should look like for a ‘smooth’ system, we average the functions

found in our six individual level-2 haloes. In Fig. 9, we superpose

these six functions and their mean 〈f̄ 〉 (the black dashed line).

The similarity of the different distribution functions at high-binding

energies suggests a near-universal shape for f̄ (E). At lower binding

energies, individual haloes deviate quite strongly from 〈f̄ 〉. This

can be seen more clearly in Fig. 10 where we plot log(f̄ /〈f̄ 〉), the

decimal logarithm of the ratio of the mean phase-space density of

an individual halo to the average. The lower axis is orbital energy

in units of v2
max, while the upper axis is the corresponding DM

particle velocity at the solar circle. In this plot, one can clearly see

the wiggles, which are located at different energies for different

haloes. For v8 kpc < 350 km s−1, the mean phase-space densities for

all haloes satisfy 0.7 < f̄ /〈f̄ 〉 < 1.4. For low-binding energies

(velocities of 600 km s−1 or more at the solar circle), this ratio can

exceed by a factor of 10.

These features in the mean phase-space density distribution must

be related to events in the formation of each halo. To demonstrate

this explicitly, we have computed f̄ (E) separately for particles

which were accreted on to two of our haloes (i.e. first entered the

main progenitor FoF group) at different epochs. The upper left-hand

panel of Fig. 11 shows that Aq-A-2 had a very ‘quiet’ merger history.

Material accreted at different times is arranged in a very orderly way

in energy space. All the most strongly bound particles were accreted

before redshift 5, and material accreted at successively later times

forms a series of ‘shells’ in energy space. The most weakly bound

wiggles are due entirely to the most recently accreted material, and

progressively more bound bumps can be identified with material

accreted at earlier and earlier times. In contrast, the top right-hand

panel shows that Aq-F-2 had a very ‘active’ merger history, with

a major merger between z = 0.75 and 0.68. The correspondence

between binding energy and epoch of accretion is much less regular

than for Aq-A-2, and much of the most bound material actually

comes from the object which fell in between z = 0.75 and 0.68. It

is also striking that many of the wiggles in this object are present in

material that accreted at quite different times, suggesting that they

may be non-steady coherent oscillations rather than stable struc-

tures in energy space. Nevertheless, in both haloes one can identify

features in the mean phase-space density distribution with parti-

cles accreted at certain epochs, and in both haloes the most weakly

bound particles were added only very recently. Note that the mean

phase-space density of this material is very low, so it contributes

negligibly to the overall local DM density. In the bottom panels of

Fig. 11, we show the f̄ (E) distributions of particles which were

associated with a single, massive FoF group which was identified

at z = 6.85 in the case of Aq-A-2 and at z = 0.75 in the case of Aq-

F-2. The wiggles in the strongly bound part of Aq-A-2 are clearly

due to this early merger event, while the later merger in Aq-F-2 is

responsible for most of the material accreted in 0.56 < z < 0.81

and for most of the strong features in the mean phase-space density

distribution.
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Figure 6. Streams in velocity space for a 2 kpc box ∼8 kpc from the centre

of Aq-A-1. Different colours stand for particles associated with different FoF

groups at redshift 4.2. Only groups contributing more than 10 particles are

shown. The box contains 27 such objects and has in total 41 143 particles

(shown as small black points) of which 1796 come from these groups.

Clearly, particles originating from the same group cluster in velocity space

and build streams; often many streams per group.
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Figure 7. Mean phase-space density distribution as a function of energy for

Aq-A for particles in a spherical shell between 6 and 12 kpc and for all five

resolution levels. Especially at high-binding energies, the convergence is

very good. Features in the distribution function are visible at all resolutions

for energies below 2.7 v2
max, despite the fact that the mass resolution differs

by more than a factor of 1800 between Aq-A-1 and Aq-A-5. The less bound

parts show more variation from resolution to resolution but still agree well

between Aq-A-1 and Aq-A-2.
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Figure 8. Evolution of the mean phase-space density distribution of Aq-A-2

over four time intervals of about 300 Myr. Below 2.4 v2
max, the mean phase-

space density distribution is time-independent, implying that the system

has reached coarse-grained equilibrium. The small bumps at these energies

are therefore well-mixed features in action space. The variability of the

features in the weakly bound part of the distribution shows that they are due

to individual streams and therefore change on the time-scale of an orbital

period. Note that the mean phase-space density at these energies is almost

three orders of magnitude below that of the most bound particles.

We conclude that these features in the energy distribution should

open the window to ‘DM astronomy’ once experiments reach the

sensitivity needed for routine detection of DM particles. We will

then be able to explore the formation history of the Milky Way using

the DM energy distribution.
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Figure 9. Scaled mean phase-space density distribution for all level-2

haloes. In addition to scaling according to vmax, we have also corrected

for a zero-point offset in the potential energy between different haloes. The

black dashed line shows the average mean phase-space density distribution

for our halo sample. At high-binding energies, the scatter between average

and individual halo mean phase-space density distributions is quite small,

showing that this part of the distribution is near-universal. At low-binding

energies, large amplitude features are visible in all haloes. These features

differ from halo to halo and are related to recent events in their formation

histories.

6 D ETECTO R SIGNA LS

We will now use the spatial and velocity distributions explored

above to calculate expected detector signals. The main question

here is how the non-Gaussian features of the velocity distribution

influence these signals. Our results show that features due to sub-

haloes or massive streams are expected to be unimportant. On the

other hand, deviations of the velocity distributions from a perfect

Gaussians in terms of general shape, bumps and dips can have an

impact on detector signals.

There are currently more than 20 direct detection experiments

searching for Galactic DM, most of them focusing on WIMPs. For

these, the detection scheme is based on nuclear recoil with the

detector material. The differential WIMP elastic scattering rate can

be written as (Jungman et al. 1996)

R = R ρ0 T (E, t), (3)

where R encapsulates the particle physics parameters (mass and

cross-section of the WIMP; form factor and mass of target nucleus),

ρ0 is the local DM density that we assume to be constant based on

the results of Section 3 and

T (E, t) =

∫ ∞

vmin

dv
fv(t)

v
, (4)

where f v is the WIMP speed distribution in the rest frame of the

detector integrated over the angular distribution. vmin here is the

detector-dependent minimum WIMP speed that can cause a recoil

of energy E:

vmin =

(

E(mχ + ma)
2

2m2
χma

)1/2

, (5)
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Figure 10. Deviations of the individual mean phase-space density distribu-

tions from the average over our sample of level-2 haloes. We focus here on

the more bound part. The lower x-axis shows the orbital energy while the

upper one shows the corresponding velocity 8 kpc distance from halo centre.

The amplitude of features increases for v8 kpc > 350 km s−1. At even lower

binding energies, E > 3 vmax deviations can reach an order of magnitude,

see Fig. 9.

where mχ is the WIMP mass and ma is the atomic mass of the target

nucleus. To get detector-independent results, we set R = 1 in the

following. 1

The recoil rate shows a annual modulation over the year (Drukier,

Freese & Spergel 1986). To take this into account, we add the Earth’s

motion to the local box velocities to transform Galactic rest-frame

velocities into the detector frame. We model the motion of the

Earth according to Lewin & Smith (1996) and Binney & Merrifield

(1998). Let vE = ur + uS + uE be the velocity of the Earth relative

to the Galactic rest frame decomposed into Galactic rotation ur, the

Sun’s peculiar motion uS and the Earth’s velocity relative to the Sun

uE. In Galactic coordinates, these velocities can be written as

ur = (0, 222.2, 0) km s−1,

uS = (10.0, 5.2, 7.2) km s−1,

eE,i = uE(λ) cos(βi) sin(λ − λi),

uE(λ) = 〈uE〉[1 − e sin(λ − λi)]

(6)

where i = R, φ, z, λ is the ecliptic longitude (λ0 = (13 ± 1)◦),

〈uE〉 = 29.79 km s−1 is the mean velocity of the Earth around the

Sun and the ellipticity of the Earth orbit is e = 0.016 722. The

ur value is based on a combination of a large number of indepen-

dent determinations of the circular velocity by Kerr & Lynden-Bell

(1986). We note that this value has a standard deviation of 20 km

s−1. For the constant β and λ angles, we take

(βr, βφ, βz) = (−5.◦5303, 59.◦575, 29.◦812)

(λr, λφ, λz) = (266.◦141, −13.◦3485, 179.◦3212).
(7)

1 This also implies that we assume the form factor to be constant. Any other

form factor will change the shape of the recoil spectrum. Since we are not

interested in the exact shape of the spectrum, but in deviations expected

due to different velocity distributions, we neglect form factor effects in the

following.
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Figure 11. Top row: contributions to the present-day mean phase-space density distribution from particles accreted at different epochs (indicated by different

colours). The top left-hand panel shows the build-up of the mean phase-space density distribution for halo Aq-A-2. This halo has a quiescent formation history

with no recent mergers. The top right-hand panel is a similar plot for Aq-F-2, which underwent a major merger between z = 0.75 and 0.68. Bottom row: these

plots isolate the contribution of a single, massive FoF group to the z = 0 mean phase-space density distributions. For Aq-A-2, this group was identified at

z = 6.85 and for Aq-F-2 at z = 0.75. In both cases, it is clear that material from the group is responsible for some of the features seen in the present-day mean

phase-space density distribution.

The ecliptic longitude can be written as

λ(t) = L(t) + 1.◦915 sin g(t) + 0.◦020 sin 2g(t),

L(t) = 280.◦460 + 0.◦985 6474t,

g(t) = 357.◦528 + 0.◦985 6003t,

(8)

where t is the fractional day number relative to noon (UT) on 1999

December 31 (J2000.0). We refer to a day number relative to 2008

December 31 in our plots. In what follows we will assume that the

R-direction is always aligned with the major axis of the principal

axis frame of the velocity ellipsoid in each box and the φ- and

z-directions, with the intermediate and short axes. This is needed to

add the Earth’s motion to the box velocities, and to transform the

velocity vectors in each box to the detector frame.

Clearly, the deviations of the velocity distribution from a perfect

multivariate Gaussian found in the previous sections will also alter

the recoil spectrum, because the velocity integral T(E, t) effectively

measures the 1/v-weighted area under the velocity curve. As in the

previous sections, we compare the results obtained directly from the

simulations to the expectation for a best-fitting multivariate Gaus-

sian distribution. In Fig. 12, we plot recoil spectra ratios for the

three highest resolution simulations of Aq-A (left-hand panel) and

the level-2 (right-hand panel) simulations of the other haloes. For

these plots, we averaged the recoil rate over a year for individual

boxes. The rates are calculated using the simulation velocity dis-

tribution (〈R〉) and the best-fitting Gaussian model for each box

(〈Rgauss〉). The plots show the median of the ratios 〈R〉/〈Rgauss〉 over

all boxes. Since we assume that the density ρ0 is constant in a given

box, it drops out when calculating the ratios. The x-axis measures

the energy in dimensionless β = v/c values. For a given detector,

this can easily be converted to keV, assuming the masses mχ and ma

are given in GeV/c2:

E =
2m2

χma

(mχ + ma)2
c2β2 × 106 keV. (9)

Fig. 12 clearly shows that in all level-2 haloes the expected re-

coil spectrum based on a multivariate Gaussian model can differ

by up to 10 per cent from the directly predicted simulation result.

Furthermore, the behaviour of the deviations seems to be similar

in all cases, especially at low energies, where we already found

that the mean phase-space density distribution is nearly univer-

sal. The similarity in the deviations between the different haloes

is due to the fact that the velocity distributions all differ in a
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Figure 12. Recoil spectra ratio for the three highest resolution simulations of Aq-A (left-hand panel) and the level-2 (right-hand panel) simulations of the

other haloes. For these plots, we averaged the recoil rate over a year for every box and then calculated the median recoil rate ratio 〈R〉/〈Rgauss〉 of the rates

for the simulation and the best-fitting multivariate Gaussian distribution. The x-axis is directly proportional to the energy. In all level-2 haloes, the expected

recoil spectrum based on a multivariate Gaussian can be wrong by about 10 per cent depending on the energy. Furthermore, the behaviour of the deviations

seems quite similar. This is due to the fact that the velocity distributions differ in a characteristic way from a multivariate Gaussian. The deviations in the recoil

spectra are typically highest at high energies.
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Figure 13. Top panels: annual modulation for all 2 kpc boxes with halocentric distance between 7 and 9 kpc in halo Aq-A-1 assuming vmin = 300 km s−1.

The left plot shows how the dimensionless recoil rate [R(t) − 〈R〉]/〈R〉 changes over the year. The right plot shows the corresponding modulation parameter

space defined by the peak day (x-axis) and maximum amplitude (Rmax − 〈R〉)/〈R〉(y-axis). Bottom panels: modulation parameters for the local 2 kpc boxes of

all level-2 resolution haloes. There is no clear trend visible in the day of maximum behaviour over the halo sample. On the other hand, the median amplitude

in all boxes is higher than expected based on the Gaussian sample for vmin = 300 km s−1. The line and contour scheme is the same as in Fig. 2.
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characteristic way from the Gaussian distributions as shown in Sec-

tion 4. The deviations in the recoil spectra are typically highest at

high energies.

10 per cent deviations in the recoil spectra are larger than the

typical deviations expected due to the annual modulation. There-

fore, these deviations from the Gaussian model can also influence

the annual modulation signal. In Fig. 13 (top row), we plot the di-

mensionless recoil rate [R(t) − 〈R〉]/〈R〉 of all local 2 kpc boxes at

∼8 kpc from the centre of Aq-A-1 (left-hand panel), where 〈R〉 is

the annual mean recoil. We have assumed vmin = 300 km s−1 for all

plots in this figure. The maximum can clearly be seen around the

month of June. The plot on the right-hand panel in Fig. 13 shows

the modulation parameter space that we define by the day of max-

imum amplitude (x-axis) and the maximum modulation amplitude

of the recoil rate over the year defined as (Rmax − 〈R〉)/〈R〉 (y-axis).

The bottom row of Fig. 13 shows the maximum amplitude (left-

hand panel) and day of maximum (right-hand panel) for all level-2

haloes (solid red) and the corresponding best-fitting multivariate

Gaussian model (dashed black).

Comparing the Gaussian median values to the box median values

one can see that the day of maximum amplitude does not devi-

ate significantly from that predicted for a multivariate Gaussian;

in particular, there is no clear trend visible over the halo sample.

On the other hand, the median amplitude in all haloes is slightly

higher than expected based on the Gaussian sample for vmin =

300 km s−1.

The amplitude differences for various vmin values are shown in

Fig. 14. Here, we calculated the maximum amplitude and day of

maximum for different vmin values for all level-2 haloes. The am-

plitude plot (top panel) shows the difference between the maximum

relative modulation amplitude observed in the simulation and that

expected for the best-fitting multivariate Gaussian model. The max-

imum amplitude vmin-dependence is similar for the six haloes. Since

only the velocity distribution enters into the recoil calculation, this

similarity is due to the fact that deviations of the halo velocity dis-

tribution from the Gaussian model are also quite similar for all six

haloes. The bottom plot of Fig. 14 shows the day of maximum am-

plitude is well predicted by the multivariate Gaussian for all haloes.

The sharp transition in the day of maximum is due to the well-

known phase-reversal effect (Primack, Seckel & Sadoulet 1988).

We checked that the subhalo-dominated box in Aq-B-2, where by

chance about 60 per cent of the box mass is in a single subhalo,

leads to a very different modulation signal. The day of maximum

in that case shifts about 100 d from the Gaussian distribution. We

note that although the subhalo mass fraction in this particular box

is high, the subhalo volume fraction is tiny, so even within this box,

almost all observers would see the smooth regular signal.

Although most of the direct experiments currently search for

WIMPs, the axion provides another promising candidate for CDM.

It arises from the Peccei–Quinn solution to the strong charge-parity

(CP) problem. One axion detection scheme is based on using the

axion-electromagnetic coupling to induce resonant conversions of

axions to photons in the microwave frequency range. Galactic ax-

ions have non-relativistic velocities (β = v/c ∼ 10−3) and the

axion-to-photon conversion process conserves energy, so that the

frequency of converted photons can be written as

νa = ν0
a + �νa = 241.8

(

ma

1µeV/c2

) (

1 +
1

2
β2

)

MHz, (10)

where ma is the axion mass that lies between 10−6 and 10−3 eV/c2.

5 µeV axions would therefore convert into ν0
a
∼= 1200 MHz photons

with an upward spread of � ∼ ∼= 2 kHz due to their kinetic energy.

An advantage of axion detection compared to WIMP searches is

the fact that it is directly sensitive to the energy rather than to the

integral over the velocity distribution. The power P developed in the

axion search cavity due to resonant axion-photon conversion can be

written as (Sikivie 1983)

P = Pρa(νcavity), (11)

where P encapsulates the experimental properties (cavity volume,

magnetic field and quality factor) and particle physics properties

(model-dependent coupling parameter and axion mass). The only

astrophysical input is the local density ρa(νcavity) of axions with

energies corresponding to the cavity frequency. For simplicity,

we set P = 1. We can produce axion spectra from our simula-

tions by taking a local volume element (a box) and computing the

distribution of kinetic energies K of the particles found in this lo-

cation. The number of particles with a given K is then directly

proportional to ρa at this frequency, and so to the power in the

frequency bin.

To make the results independent of axion mass and other experi-

mental properties, we present histograms of β2 normalized to 1. For

a given axion mass ma (in µeV/c2), the x-axis must be transformed

according to x → 241.8 ma(1 + 1/2x) to get the corresponding

frequencies in MHz.

A long-running axion search experiment is Axion Dark Matter

Experiment (ADMX) at Lawrence Livermore National Laboratory

(LLNL) (Hagmann et al. 1996). It has channels at medium and

high resolution. The latter has a frequency resolution of about 0.02

Hz. For ν0
a = 500 MHz and an axion velocity of v = 200 km s−1,

this translates into a velocity width of only 0.018 km s−1.2 Our

numerical resolution prevents us from predicting the behaviour on

such small scales. For wider bin searches and especially for the

medium-resolution channel (125 Hz corresponding to a typical ve-

locity spread of about 100 km s−1), we can, however, make reliable

predictions by binning particles with respect to β2.

In Fig. 15, we show axion spectra for all level-2 haloes.3 In a broad

sense, the spectra obtained from our simulations look similar to

those of multivariate Gaussian models. However, there are a number

of differences. For example, the peak power is shifted to lower

frequencies. The Gaussian distribution is also a poor description

of the spectrum at low frequencies. In all haloes, the power at low

and high frequencies is higher then expected from a multivariate

Gaussian model. This effect is quite small for high frequencies

but very significant for low frequencies. The higher power at low

frequencies can be understood from the velocity distributions in

Fig. 4. In Aq-B-2, the subhalo-dominated box that was seen in

Fig. 4 is clearly visible as a peak in the power spectrum at high

frequency. The bumps in the velocity distribution also result in quite

significant features in the axion spectra that might be visible in the

medium-resolution channel given enough signal-to-noise ratio.

7 C O N C L U S I O N

We have characterized the local phase-space distribution of DM

using the recently published ultrahigh-resolution simulations of

2 For non-relativistic motion, we can write dv = (c2/v) (dν/ν0
a ).

3 We neglect the effects of the Earth’s motion when constructing the spectra

since here our focus is on the general spectral shape. This motion typically

leads to a shift of about 100 Hz due to annual modulation and a daily shift

of about 1 Hz due to the Earth’s rotation (Duffy et al. 2005).
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Figure 14. Top panel: median recoil rate amplitude for all 2 kpc boxes with

halocentric distance between 7 and 9 kpc for all level-2 haloes. The plot

shows the difference between the relative maximum modulation amplitude

observed in the simulation and that expected for the best-fitting multivariate

Gaussian distribution. Bottom panel: median day of maximum amplitude for

the same haloes (solid red) compared to their Gaussian predictions (dashed

black). The day of maximum amplitude is the same for all boxes and well

reproduced in the Gaussian model. The phase reversal can clearly be seen.

the Aquarius project. Our study provides new insights relevant to

searches for the elusive CDM particles. This results from the un-

precedented resolution and convergence (in a dynamical sense) of

our simulations, as well as from the fact that they provide a sample

of six Milky Way like DM haloes.

We have measured the probability distribution function of the

DM mass density between 6 and 12 kpc from the centre of the halo,

finding it to be made up of two components: a truly smooth distri-

bution which scatters around the mean on ellipsoidal shells by less

than 5 per cent in all the haloes of our sample and a high-density tail

associated with subhaloes. The smooth DM component dominates

the local DM distribution. With 99.9 per cent confidence, we can

say that the Sun lies in a region where the density departs from the

mean on ellipsoidal shells by less than 15 per cent. Experimentalists

can safely adopt smooth models to estimate the DM density near

the Sun.

We find that the local velocity distribution is also expected to be

very smooth, with no sign of massive streams or subhalo contribu-

tions. The standard assumption of a Maxwellian velocity distribu-

tion is not correct for our haloes, because the velocity distribution is

clearly anisotropic. The velocity ellipsoid at each point aligns very

well with the shape of the halo. A better fit to the simulations is given

by a multivariate Gaussian. Even this description does not repro-

duce the exact shape of the distributions perfectly. In particular, the

modulus of the velocity vector shows marked deviations from such

model predictions. Velocity distributions in our six different haloes

share common features with respect to the multivariate Gaussian

model: the low-velocity region is more populated in the simula-

tion; the peak of the simulation distribution is depressed compared

to the Gaussian; at high velocities, there is typically an excess in

the simulation distribution compared to the best-fitting multivari-

ate Gaussian. Furthermore, the velocity distribution shows features

which are stable in time, reproduced from place to place within a

given halo, but differ between different haloes. These are related to

the formation history of each individual halo.

The imprints in the modulus of the velocity vector reflect fea-

tures in the energy distribution. We explicitly show that the mean

phase-space density as a function of energy contains characteristic

wiggles. The amplitude of these wiggles with respect to the average

mean phase-space density distribution of our sample of six haloes

rises from high- to low-binding energies. After appropriate scaling,

the most bound part of the mean phase-space density distribution

looks very similar in all haloes, suggesting a (nearly) universal

shape. The weakly bound part of the distribution, on the other hand,

can deviate in any given halo by an order of magnitude from the

mean.

We have used our simulations to predict detector signals for

WIMP and axion searches. We find that WIMP recoil spectra can

deviate about 10 per cent from the recoil rate expected from the

best-fitting multivariate Gaussian model. The energy dependence

of these deviations looks similar in all six haloes; especially, at

higher binding energies. We find that the annual modulation sig-

nal peaks around the same day as expected from a multivariate

Gaussian model with no clear trend over our halo sample for vary-

ing recoil velocity thresholds. The maximum recoil modulation

amplitude, on the other hand, shows a clear threshold-dependent

difference between the signal expected for a multivariate Gaussian

model and that estimated from the simulation. We have also ex-

plored the expected signal for direct detection of axions. We find

the axion spectra to be smooth without any sign of massive streams.

The spectra show characteristic deviations from those predicted by

a multivariate Gaussian model; the power at low and high frequen-

cies is higher than expected. The most pronounced effect is that the

spectra peak at lower frequencies than predicted. Since the frequen-

cies in the axion detector are directly proportional to the kinetic

energy of the axion particles, the bumps in the DM velocity and

energy distributions are also clearly visible in the axion spectra. All

the effects on the various detector signals are driven by differences

in the velocity distribution. Individual subhaloes or streams do not

influence the detector signals however, since they are subdominant

by a large factor in all six haloes.

Our study shows that, once direct DM detection has become

routine, the characterization of the DM energy distribution will

provide unique insights into the assembly history of the Milky Way

halo. In the next decade, a new field may emerge, that of ‘DM

astronomy’.
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Figure 15. Axion spectra of level-2 haloes for all 2 kpc boxes with halocentric distance between 7 and 9 kpc. Rescaling the x-axis according to x → 241.8

ma(1 + 1/2 x) for an axion mass ma in µeV yields the x-axis in MHz. The y-axis is proportional to the power P developed in the detector cavity. Therefore, the

panels show the predicted frequency spectra expected for an axion search experiment like ADMX. These spectra can be reasonably described by a multivariate

Gaussian but significant differences remain. The maximum in the power is at lower frequencies in the simulation than in the Gaussian model. The bumps

already found in the velocity and energy distribution are clearly visible in these spectra. In all haloes, the power at low frequencies is higher than expected

from the Gaussian model. The line and contour scheme are the same as in Fig. 2.
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