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Phase Space Topography and the Lyapunov Exponent 
of ElectrocorlJcograms in Partial Seizures 

Leonidas D. lasemidis*, J. Chris SackeUares**, Hitten P. Zaveri*, and William J. Williams* 

Summary: Electrocorticograms (ECoG's) from 16 of 68 chronically implanted subdural electrodes, placed over the right temporal cortex in a patient 
with a right medial temporal focus, were analyzed using methods from nonlinear dynamics. A time series provides information about a large number 
of pertinent variables, which may be used to explore and characterize the system's dynamics. These variables and their evolution in time produce 
the phase portrait of the system. The phase spaces for each of 16 electrodes were constructed and from these the largest average Lyapunov exponents 
(L's), measures of chaoticity of the system (the larger the L, the more chaotic the system is), were estimated over time for every electrode before, in 
and after the epileptic seizure for three seizures of the same patient. The start of the seizure corresponds to a simultaneous drop in L values obtained 
at the electrodes nearest the focus. L values for the rest of the electrodes follow. The mean values of L for all electrodes in the postictal state are larger 
than the ones in the preictal state, denoting a more chaotic state postictally. The lowest values of L occur during the seizure but they are still positive 
denoting the presence of a chaotic attractor. Based on the procedure for the estimation of L we were able to develop a methodology for detecting 
prominent spikes in the ECoG. These measures (L*) calculated over a period of time (10 minutes before to 10 minutes after the seizure outburst) 
revealed a remarkable coherence of the abrupt transient drops of L* for the electrodes that showed the inital ictal onset. The L* values for the electrodes 
away from the focus exhibited less abrupt transient drops. These results indicate that the largest average Lyapunov exponent L can be useful in 
seizure detection as well as a discriminatory factor for focus localization in multielectrode analysis. 

Key words: phase space; chaos; Lyapunov exponents; ECoG; partial epileptic seizures; epileptogenic focus localization. 

Introduction 

L o n g - t e r m  r e c o r d i n g s  of b ra in  electr ical  ac t iv i ty  

recorded  f rom scalp and  sphenoida l  electrodes,  dep th  

electrodes or subdura l  electrodes are emp loyed  in our  

clinical laboratories to localize the origin of seizure dis- 

charges in pat ients  wi th  part ial  (focal) seizures w h o  are 

candidates  for surgical r emova l  of the seizure focus. Cur- 

rently, in clinical practice, the recordings are ana lyzed  

visual ly  to ident ify and  localize interictal and ictal epilep- 

togenic  discharges .  C o m p u t e r i z e d  sys t ems  m a y  be 

e m p l o y e d  to detect  epochs  of the signal that  m a y  contain 

interictal spikes or ictal discharges.  The epochs  of inter- 

est are then subjected to visual  interpretation. Most  com- 

puter ized  sys tems  are des igned to detect signal transients 
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such as spikes, spike and  slow w a v e  complexes  or rhyth-  

mic s low w a v e  burs ts  that mee t  certain w a v e f o r m  criteria 

such as frequency,  ampl i tude  and  m o r p h o l o g y  (Gotman  

et al. 1985). Recently, we  have  approached  the p rob lem 

of computer -ass is ted  localization of the seizure focus in 

e lectrocort icograms using phase-space  topography .  

In this approach ,  the vol tages  of the recorded signal 

x(t) at severa l  points  in t ime  It, t+ "~ . . . . .  t+(p-1) ~], 

separa ted  by  a given t ime lag z, are conver ted  to a p- 

d imensional  vector  X(t). The process is repeated  b y  in- 

creasing t to give successive points  in the phase  space, 

thus creating a p-d imens iona l  structure. This portrai t  

can p rov ide  a visual  image  of the behav io r  of the signal 

over  t ime (especially w h e n  p=2 or 3). The phase  space 

portrai t  can be ana lyzed  mathemat ica l ly  to demons t ra t e  

the presence of an at tractor  (region of the phase  space of 

lower  d imension,  wi thin  which  the signal is confined in 

its future evolution) and  its dimension.  The presence of 

an attractor,  for a part icular  t ime period,  of a low d imen-  

sion means  that  of the m a n y  (possibly infinite) modes  of 

the sys tem only  a por t ion  of them are active dur ing  this 

period. Then the effective phase  space d imens ion  is 

m u c h  smaller  than  the full d imens ion  of the equat ions 

describing the system. This assumes  a change either in 

the pa rame te r s  ( au tonomous  sys tem - s tructural  Change) 
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Figure 1 (a) Computer generated 1 Hz sine wave in time domain. (b) Phase space plot (projection on the X-Y plane; p=3, 
~=100msec). (c) As in (b) with ~=250msec. 

or in its inputs, too (nonautonomous system). 

Some physiologic systems have been found to behave 

in a non-linear chaotic fashion (Glass et al. 1988). 

Non- l inear  systems exhibit  certain mathemat ica l  

characteristics such as strong dependence on initial 

conditions and the presence of attractors of fractal 

dimension (strange attractors) (Ott 1981; Swinney 1983). 

The strong dependence on initial conditions is reflected 

in the phase space portrait by the rapid divergence of 

nearby trajectories. This rapid divergence can be ex- 

pressed mathematically in terms of the average largest 

Lyapunov exponent L. For systems in which nearby 

trajectories in the phase space diverge exponentially, L 

is positive (for chaotic systems at least one positive 

Lyapunov exponent is present). When trajectories are 

parallel, L is 0. Converging trajectories yield negative 

values for L. (For concepts and definitions see Appen- 

dix A). 
Methods have been developed to determine the 

presence of an attractor, its dimension (Holzfus et al. 1986 

and Layne et al. 1986) and values for the Lyapunov 

exponent. Babloyantz and co-workers have applied 

similar methods 4o show the existence of an attractor in 

an instance of petit mal epilepsy (Babloyantz et al. 1986) 

and at different stages of the sleep cycle in normal per- 

sons (Babloyantz et al. 1985). They demonstrated the 

presence of attractors of low and fractal dimension and 

positive values for L within the attractor. All of these 

findings are consistent with the behavior of a non-linear 

chaotic system (Mayer-Kress et al. 1987). 

Our initial findings in the ECoG of partial (focal) 

epilepsy of temporal lobe origin indicate that the epilep- 

togenic focus also generates signals characteristic of a 

non-linear dynamic system (Iasemidis et al. 1988a). 

Analysis of signals from a single subdural electrode near 

the center of the epileptogenic focus demonstrated 

strange attractors of low dimension and positive values 

for L during the immediate preictal period, during the 

seizure (ictal), and following the seizure (postictal); 

(Iasemidis et al. 1988b). We found different phase 

portraits for each stage of the seizure. In addition, as the 

signal evolves from preictal to ictal to postictal phases, 

there are characteristic changes in the values for the 

Lyapunov exponent. These findings suggested that 

phase space analysis might provide a means for detecting 

and localizing the onset of a seizure. In the following 

examples, the application of phase space topography to 

signal analysis will be illustrated. 
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Phase Space Topography of Sine Waves 

The phase space portrait of a signal provides a visual 

image of the evolution over time. Its characteristics 

reflect the characteristics of the original signal. The 

theoretical basis for this relationship has been given by 

Packard and coworkers (1980) and Takens (1981) and 

developed from the Whitney embedding theorem (Whit- 

ney 1936). 

An intuitive understanding of how the original signal 

characteristics are reflected in the phase space can be 

gained by constructing phase space portraits of elemen- 

tary signals. For example, a 1 Hz (T=I sec) sine wave is 

shown in Figure la. The phase space plot was con- 

structed with p=3 and a time lag ~=0.1sec, which cor- 

responds to a phase difference q0 =(2rc*0.1) radians 

between the components of each vector of the phase 

space. The resulting curve is an ellipse whose shape 

depends on q0. The projection of the phase space on the 

X-Y plane is shown in Figure lb. By changing the value 

of q0 to ~/2, that is'c=0.25sec, we have a circle in the phase 

space (Figure lc). 

Figure 2a shows a signal generated by the addition of 

1 Hz and 5 Hz equal amplitude sine waves (the ratio of 

the frequencies is a rational real number), which is a 

periodic signal with the largest period T=I sec. The 

resultant phase space plot is a closed curve, since the time 

series is periodic, but not elliptic because the sine waves 

are of different frequencies (one dimensional attractor; 

not strange). The phase space is constructed with p=3 

and "c=10msec (Figure 2b). The phase space with p=3, 

z=100msec is shown in Figure 2c. Comparison of Figure 

2c with Figure 2b illustrates the effects of the time lag "c 

on the construction of the phase space plot (in Figure 2c 

we have (p-l) ""c=200 msec=period of the 5 Hz sine wave; 

the 5 Hz sine wave now is seen clearly by counting the 

"closed" curves; the 1 Hz sine wave is represented by the 

surrounding closed loop). Figure 3a shows a signal com- 

posed of the same I Hz and 5 Hz sine waves but with the 

two frequency components 90 degrees out of phase. 

Comparison of Figure 3b with Figure 2b shows the effect 

on the phase space plot of the phase delay between 

different components present in the signal. All of the 

above composed signals are periodic. Since they are 

periodic, irrespective of their complexity, they have a 

topological dimension D=I. In the phase space this 

results in a complex but closed curve (a trajectory that 
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Figure 2 Computer generated signal composed of the sum of 1 Hz and 5 Hz in phase sine waves (a) in time domain, (b) 
Phase space plot (projection on the X-Y plane; p:3, ~= 10msec). (c) As in (b) but with ~=100msec. 
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Figure 3 (a) The compound sine wave signal depicted in 

figure 2a with the two frequency components 90 degrees 

out of phase. (b) Phase space plot - projection on the X-Y 

plane (p=3, ~= 10msec). 

12 

does not fill space). 

In Figure 4a the signal is composed of two sines, one 

with frequency 1 Hz and the other with frequency x]2 Hz. 

The ratio of the frequencies q2 is a real irrational number 

and the signal is aperiodic (quasiperiodic). In the phase 

space it fills a surface (a 2 dimensional attractor, D=2; not 

strange). The phase space plot of this signal is a torus. 

One can imagine the situation by considering the two 

sine waves as two independent circular motions (closed 

curves in the phase space) transverse to each other at each 

of their intersection points. The composed motion will 

result in a complete filling of a doughnut shape surface 

(moving along the longitudinal direction with the low 

frequency sine wave and along the transverse direction 

with the high frequency one). In Figure 4b the phase 

space is constructed with p=3, "¢=10msec and an or- 

thogonal projection on the X-Y plane of 12 sec of the data 

is given. In Figure 4c a perspective projection onto the 

X-Y plane is illustrated for 50 sec of the data (the view 

lasemidis et al. 

point is on the Z axis). Adjacent orbits on the torus 

remain near one another on the long-term and predict- 

ability is guaranteed (not chaotic attractor). 

Strange and Chaotic Attractors in the 
ECoG 

The presence of an attractor can be confirmed mathe- 

matically (Grassberger et al. 1983 and Rapp et al. 1986). 

Since the dimension of the attractor observed in the ictal 

ECoG signal is l o w  and non-integer (thin fractal) 

(Iasemidis et al. 1988b), it is a strange attractor. Such 

strange attractors are characteristic of deterministic non- 

linear dissipative systems (Campbell 1987). To deter- 

mine whether  the attractor is behaving chaotically, 

without knowing the exact equations of the system under 

consideration, one can compute the value of the largest 

Lyapunov exponent (Wolf et al. 1986). In our analysis of 

the ECoG the Lyapunov exponent L was computed by a 

modified version of the program proposed by Wolf et al. 

1985 (see Appendix A for definitions and Appendix B for 

methodology and details on the modifications we intro- 

duced because of the nature of the transients inherent in 

the epileptic data). The other method of estimation of L 

is the one proposed by Eckmann et al. (1985) and permits 

an approximation of all L's. Vastano et al. (1986) com- 

pared both of the above methods and showed that the 

latter yields L estimates that vary considerably with the 

embedding dimension p while the former is more robust 

for the estimation of the largest L. Since it is difficult to 

know the exact value of p and its changes, especially over 

a period of 20 minutes, we decided to use the former 

method for a consistent estimation of L. (L values of 

known signals, for comparison reasons; are given in 

Appendix C; see also Figure 14). 

In Figure 5a a 6 second segment of ECoG is illustrated. 

This ictal signal was recorded 15 seconds after the onset 

of a seizure from an electrode located over a right tem- 

poral lobe epileptogenic focus in a patient with medically 

refractory partial seizures. The sampling frequency is 

500 Hz (sampling period Dt=2msec), the maximum 

prominent frequency present is less than 25 Hz, and the 

digital filter cut off is 50 Hz. [The optimal low pass 

(symmetric impulse response) filter used was a linear 

phase  100 points  FIR us ing  the w e i g h t e d  100:1 

Chebyshev approximation-Remez algorithm]. From this 

ECoG signal, the phase space plot was constructed. The 

time lag used is "¢=14msec (Appendix B-Step 2). Or- 

thogonal projections on X-Y and X-Z planes are given in 

Figure 5b. For the attractor illustrated in Figure 5b, the 

largest Lyapunov exponent L is 0.98 bits/sec. Since L is 

positive the attractor is chaotic. 
Figure 6a shows a 6 second segment recorded 108 
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Figure 4 (a) Computer generated signal composed of the sum of 1 Hz and ,/2 Hz in phase sine waves, in time domain. (b) 
Phase space plot (torus) with p=3, ~=10msec (projection on X-Y plane). (c) Phase space plot, with p=3, ~=500msec 
(perspective projection). 

seconds before the onset of the seizure. Figure 6b il- 

lustrates the phase space construction of the preictal 

signal in Figure 6a. Visual inspection of Figure 6b reveals 

that the signal tends to be attracted to a particular region 

of the phase space (the one with the highest point den- 

sity). The largest Lyapunov exponent is 7.56 bits/sec. 

Thus, the preictal signal is more chaotic than the ictal one. 

Figure 7a is a 6 second segment recorded 15 seconds 

after the end of the seizure. Figure 7b is its phase space 

plot. 

Since the phase portraits observed in the preictal and 

ictal signals are quite different, it is interesting to follow 

the change in chaoticity during the transition from the 

preictal to the ictal state by calculating the value of the 

Lyapunov exponent as a function of time. Figure 8 il- 

lustrates the change in the value of the Lyapunov ex- 

ponent over a period of 20 minutes, beginning 10 minutes 

before the seizure, continuing through the seizure to the 

postictal state. This plot shows that prior to the seizure, 

the value of L is high. However, there are several abrupt 

drops in the value of L during the preictal period. At the 

onset of the seizure, there is a sudden drop in L, but as 

the seizure progresses, L starts increasing. In the postic- 

tal state, L returns to an average level higher than its 

preictal one. Analysis of two other seizures of the same 

patient revealed the same behavior. From Figure 8 it is 

clear that the plot of L versus time provides a means for 

detecting the seizure discharge. 

These observations suggest that monitoring ~the 

Lyapunov exponent may be useful in automatic seizure 

detection. The effect on L of artifacts of smaller duration 

than the duration of the segment used to estimate L (here 

12 sec), is small. However, the effect of longer duration 

artifacts could be severe. Thus, the utility of this techni- 

que for monitoring scalp recorded EEG signals is yet to 

be determined. 

Multielectrode Analysis of the Preictal 
ECoG 

We hypothesized that analysis of the ECoG using 

phase space functions from multiple electrodes would 

distinguish between electrodes overlying interictal spike 
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F igure  5 (a) Ictal ECoG signal from electrode A3 overlying 
a spike focus (15 sec after the seizure onset) . (b) Or- 
thogonal projections of the phase space of the ictal 
discharge depicted in (a) with p=7, ~=14msec. 

foci and provide a means for localizing the seizure onset. 

To test these hypotheses, we analyzed signals of several 

electrodes from the subdural array. The schematic 

diagram of the 68 electrodes employed in our recording 

is shown in Figure 9. Visual analysis of the ECoG begin- 

ning 10 minutes prior to each seizure revealed two inter- 

ictal spike foci. One focus involved electrodes I1 and I2. 

The second focus involved electrodes B1, A1 and A3. 

Figure 10 is a plot of the Lyapunov exponent versus time 

calculated from phase space plots of signals from 

electrodes B1, A1 and A3. This plot represents sequential 

values obtained from 12 second non-overlapping epochs 

for a period of time beginning 100 seconds prior to a 

seizure until only 80 seconds after the seizure onset. 

(This seizure is different from the one analyzed to obtain 

L in Figure 8; only the transition period is shown for 

enhancement of details). 

During the preictal period, signals from each electrode 

exhibit positive values of L with multiple transient drops. 

At the onset of the seizure, signals from all three 

electrodes exhibit a simultaneous drop in L. Visual in- 

spection of the ECoG tracing shows that the earliest 

detectable ictal discharge occurs in these three electrodes. 

It is also interesting to note that in this seizure the mini- 
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Figure  6 (a) Preictal ECoG signal from electrode A3 over- 
lying a seizure focus (108 sec before the seizure onset). (b) 
Orthogonal projections of the phase space of the preictal 
ECoG signal shown in (a) with p=7, ~=14msec. 

mum value of L for electrode B1 is slightly negative (at 

the seizure's onset). In contrast, L versus time (L(t)) plots 

for electrodes outside the focus, (electrodes D1,D3 in 

Figure 10), show an abrupt drop in L later than that 

observed in the electrodes overlying the ictal focus. 

These findings were replicated for each of the three focal 

seizures analyzed in this patient. 

In order to capture the most prominent spikes that 

occur in each segment we estimated values of L modify- 

ing the range of tl over the duration T of the whole 

segment under consideration (thus equating the bound 

IMAX of tl in formula (B2) of Appendix B to T). Then 

Xma x corresponds to the largest amplitude spike present 

in the segment. The behavior of L(t) now changes 

dramatically under this modified analysis, emphasizing 

the presence of prominent spikes and deemphasizing 

details about the structure of the underlying process. 

This modified form of L(t) turns out to be very useful. We 

denote this measure L*(t). To illustrate this point, in 

Figure 11 we plot the L*(t) for electrode pairs B1, A1, and 

B1, D1. Low values of L* correspond to the presence of 

prominent spikes in the data segments. Detection of the 

seizure using L* is not possible. 

Two observations are of note here. First, from Figure 
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Figure 7 (a) Postictal ECoG signal from electrode A3 overlying a seizure focus (15 sec after the end of the seizure) (b) 
Orthogonal projections of the phase space of the postictal ECoG signal shown in Figure 5a (p=7, ~=14msec). 
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Figure 8 Plot of the Lyapunov exponent L over time of a 
signal derived from electrode A1 overlying the focus. The 
value of L is positive. At the onset of the seizure, L drops 
abruptly to its lowest value. Transition to the postictal state 
is associated with a gradual increase in L (p=7, ~=14msec, 
T= 12sec, At= 100msec, Cqinit=0,2 rad, I MAX=84msec b=0.05, 
c=0.1) 

11a we notice many drops of L* and an almost complete 

alignment of Elec. B1 and Elec. A1, both close to the focus, 

with respect to the drops of L*. Secondly, from Figure 

11b we notice a small number of drops in the values of L* 

estimated from Elec. D1, which is away from the focus, 

as well as a substantial difference in the values of L* in 

the preictal state from the ones estimated from Elec. B1. 

This pattern was present for all seizures analyzed among 

the electrodes over and far away from the focus. This 

finding, even 10 minutes before the actual outburst, sug- 

gests a close relationship between the background spik- 

ing process and the recruitment of cortical regions during 

the unfolding of a seizure. 

Discussion 

Based on our inital studies of the ECoG in patients 

with partial seizures, we have found that construction of 

phase space plots from the original signal provides a 

useful method for visual and mathematical analysis of 

the signal. This approach to signal analysis is particular- 

ly useful for analyzing non-linear chaotic signals since it 

does not require complete understanding of the system 

producing the signal. Nor does this approach require 
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Figure 9 Schematic diagram showing the placement of 
the subdural electrodes used for recording the ECoG. 

mathematical modelling of the system, although it may 

provide essential information required to develop such a 

model. 

Our studies of the ECoG recorded in human temporal 

lobe epilepsy indicate that the behavior of the ECoG 

signal over time is characteristic of a non-linear chaotic 

system (Iasemidis et al. 1988a). The preictal signal is less 

chaotic than the postictal one. The onset of the seizure is 

characterized by, at least in the cases studied, simul- 

taneous transitions to a more ordered state in signals 

derived from electrodes over the focus. Subsequent 

spread of the seizure discharge to cortical regions outside 

the focus is associated with similar transitions toward a 

more ordered state as well. 

In addition to potential for practical application of 

these methods of seizure detection and localization, our 

initial findings are of theoretical interest. A number of 

non-linear mathematical models have been shown to 

exhibit chaotic behavior for certain values of the model 

parameters. Such mathematical models include models 

for excitatory feedback systems, inhibitory feedback sys- 

tems and mixed (excitatory and inhibitory) feedback sys- 

tems. Of particular interest with respect to epilepsy, 

some of these non-linear models have been shown to 

produce abrupt transitions to rhythmic oscillations, 

reminiscent of the epileptic discharge (Freeman, 1987). 

The behavior of L over the preictal, ictal and postictal 

periods indicates that the system enters a less chaotic 

state after several transient decreases in chaoticity in the 
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Figure 10 Transition from the preictal state to the ictal one: 
L vs. time for electrodes B1, A1, A3 overlying the ictal focus 
(p=7, ~=14msec, T=12sec, At=100msec, o~init=0.1 rad, 
IMAX=84msec b=0.05, c=0.1) and for electrodes D1 and 
D3 outside the ictal focus. 

preictal period. The attractor in the ictal state remains 

chaotic, although much less so than the preictal state. 

Several routes to chaos have been proposed (Grebogi et 

al. 1983; Martin et al. 1986). In the case of epilepsy the 

reverse route is to be considered, that is from chaos to 

order. Open questions about the seizure itself as a com- 

pensating mechanism (Rapp et al. 1986) and how it re- 

lates to the spiking process observed in the data still exist. 

We feel that an unambiguous answer to the above ques- 

tions will be given only when the route of the system 

from the chaotic preictal state to the chaotic attractor state 

is thoroughly investigated. 

The approach employed in our studies appears to be 

useful for identifying foci of interictal spike generation, 

for detecting and localizing ictal onset and for studying 

the spatial spread of ictal discharges. This approach 

could also provide an objective and quantitative method, 

based on the values of L and L*, for detecting segments 

of ECoG containing spikes and ictal discharges and for 

verifying spike and seizure localization. Application of 

these procedures to long-term monitoring in epilepsy 

appears to be feasible and promises to be useful. Further 

clinical studies will be required to determine the 

specificity and sensitivity of the methods. It remains to 

be seen whether or not the methods we have employed 

for analysis of the ECoG will be useful for analysis of EEG 

signals recorded form the scalp. The problems of muscle 

and movement artifacts encountered in scalp recordings 

of the EEG are not encountered in the ECoG. 

A question that must be addressed is the time resolu- 
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tion of the current method for the estimation of L. The 

EcoG is a highly nonstationary signal. However, estima- 

tion of L requires a large number of voltage values for a 

faithful reconstruction of the phase space and the es- 

timates of L to converge. (In our current studies, each 

value of L was estimated from a T=12 second epoch of 

the signal--see Figure 19 for the effect of the duration T 

of the segment on L). There are really two questions of 

nonstationarity involved in the procedure. First within 

the segment under analysis, and secondly between seg- 

ments (the second nonstat ionari ty is not a serious 

theoretical problem since one can always use overlap- 

ping segments to follow more closely the change of L 

over time, which is more costly though). The first non- 

stationarity raises the question of how accurate is the 

estimated value of L over a long segment. Problems of 

this nature occur especially when Wolf's algorithm for L 

is used without the proper modification (Wolf et al. 1986). 

We managed to take this into consideration by using the 

concept of local Xi,max(t) (Appendix B - formula B2) for 

every point i of the fiducial trajectory in the phase space 

(results from signals of known models, for comparison 

reasons, with and without inserted nonstationarities are 

given in Appendix C). 

The algorithm for the estimation of L is computer 

intensive in its present form. It takes about one minute 

CPU time on a mainframe IBM 3090-600E/VM computer 

for one estimate of L of 12 seconds of real time data 

embedded in a p=7 phase space. Improvements in the 

searching procedure and other parts of the algorithm can 

be made without a considerable trade off in the accuracy. 

We feel that dedicated work stations with custom digital 

signal processing hardware can accomplish this task in 

real time. 

Appendix A 

Concepts of Phase Space, Attractor, Lyapunov 
Exponents, Chaos 

A dynamical system consists of two parts: the state 

(the essential information about the system at a time 

point) and a dynamic (the rule that describes how the 

state evolves with time). 

A phase space is an abstract construct whose coor- 

dinates are the components of the state. The usefulness 

of the phase space picture lies in the ability to represent 

the state in geometric form. The temporal evolution of 

the system is visualized in the phase space as an orbit. 

Dissipative systems (e.g. systems with losses of energy 

due to friction or viscosity) are characterized by the con- 

vergence of the orbits towards a smaller region of the 

phase space of lower dimension, which is called attractor. 

A system may have several attractors and different in{dal 
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conditions (set of points in the phase space) may evolve 

to each of these attractors. Each set of these points con- 

stitute the basin of attraction for the corresponding at- 

tractor. If the attractor exhibits, under magnification, 

self-similar structure on all of the smaller scales or setf- 

affine behavior (structures on different scales are related 

by linear transformations) then it is a fractal (thin fractal 

if its dimension is a non integer, fat fractal if its dimension 

is an integer). An attractor that is a fractal is called 

strange. A chaotic attractor is an attractor in which two 

orbits w~th nearby initial conditions diverge exponential- 

ly fast, so they stay close together only for a short time At 

(stretching process). Since they belong to the attractor 

and the attractor is of finite size, they have to come back 

into it as time evolves (folding process). The result is a 

layered structure (not always a fractal). Hence chaotic 

attractors are not in general strange (Jakobson 1981 and 

Li et al. 1978). Strange attractors may also exist that are 

not chaotic (Grebogi et al. 1984, Romeiras et al. 1987). 

If the system is conservative (no dissipation of energy), 

it is always located on a surface of constant energy in the 

phase space. This system might be chaotic or nonchaotic 

(Eckmann et al. 1985). 

A measure that quantifies the observed chaoticity is 

the average largest Lyapunov exponent. This measure is 

closely related to the average rate at which information 

is produced (Mayer-Kress 1986). It is defined as the 

average of Lij: 

L _ 1 ~ Lij (A1) 
a G 

where Lij are the partial Lyapunov exponents, estimated 

from the evolution of the adjacent points Xi, Xj in the 

phase space, defined by 

1 IX i ( t + A t ) -  Xj (t '+At)l  
Lij - A t .log2 I X i  (t ) - X j  ( t ' ) l  

(A2) 

N~ is the number of the partial Lyapunov exponents 

estimated in the segment of duration T under considera- 

tion (T=N*Dt=N~*At); Xj are points in the phase space 

adjacent to each Xi; At is the evolution time in sec, Dt the 

sampling period, and L in bits/sec (see Figure 12). The 

convergence of L in (A1) with N~ is shown in Figure 13. 

The estimation of L is also discussed in Wolf et al. 1985. 

If the phase space is of p dimensions we can theoretically 

estimate up  to p Lyapunov  exponents  (Lyapunov 

spectrum). To estimate the second largest Lyapunov 

exponent L' we follow the expansion or the contraction 

of an area element in the phase space (this gives an 

estimate of L + L'). For the third exponent L" we measure 

the expansion or the contraction of volume elements and 

so on. If an attractor is a stable fixed point the spectrum 

of the Lyapunov exponents are the real parts of the 

eigenvalues of the linearized problem. For a chaotic 

attractor, there is no such simple correspondence. 

Appendix B 

Comments  on the Estimation of L for ECoG 

The definition of Lij indicates that several parameters 

enter the estimation procedure. These are the evolution 

time At, the embedding dimension p, the time lag "¢ for 

the construction of the phase space, and finally the neces- 

sary parameters for the selection of Xi(t) and Xj(t') vectors 

in the phase space (Figure 12). 

The steps to be followed in the estimation of L are: 

Step 1: Select p such that the dimension D of the 

epileptic attractor in the ictal state is clearly defined. This 

is so if p>6 (Iasemidis et al. 1988b; Rapp et al. 1986; 

Babloyantz et al. 1986). We used p=7 for all the L's plots. 

The variation of L with p in the preictal and ictal state is 

shown in Figure 14. 

Step 2: Select "¢ such that (p-l) "~ is approximately equal 

to the minimum period of any prominent sine wave 

component present in the data. After frequency analysis 

we found that the maximum dominant frequency in the 

seizure is about 11 Hz (Zaveri et al. 1988), so (p-l) ~ 

90msec. With p=7 the value for ~ is about 15msec. Alter- 

native procedures for estimation of ~ are based on the first 

zero of the autocorrelation or the time constant (Rapp et 

al. 1988); in our data it was very difficult to decide on the 

basis of these criteria. 

Step 3: Follow the evolution of Xi(t) for t=t0, to+ At, 

t0+2*At .... with 0 <to <At. This is the fiducial orbit. For 

different departure values to, we have different fiducial 

orbits. For each one, a final L value is produced. The 

mean and standard deviation of these L's are given in 

Figure 15 as an uncertainty of the L measures with respect 

to t o . 

Select Xj(t') on the basis of how close in magnitude to 

Xi(t) should be and on the basis of its angle deviation 3 

where 
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F i g u r e  12 Diagram of the evolution and replacement 
procedure used to estimate the Lyapunov exponent L for 
one segment of data. 

3 ( t )  = < [ X i ( t )  - X j ( t ) ] ,  [X i  ( t )  - X j ( t ' ) ] >  

so that the direction of the flow in the phase space to be 

preserved. 

Accurate construction (more computationally expen- 

sive though) requires small angle deviations 3. We used 

initial minimum angle deviations of 0init=0.1 radians or 

0.2 radians, doubling its value in case of not finding a 

replacement point. Results for different 0init are given in 

Figure 16. The convergence of L for 3init --~ 0.1 radians is 

verified. 

In the estimation of L only ratios of vector differences 

take part so any DC present or the scaling of the data in 

the segment of interest do not influence the final result 

(as far as the pertinent parameters involved in the com- 

puting process are not given absolute values but relative 

ones to the scale of the data). The selection of Xj(t') on the 

basis of its distance from Xi(t) is a critical step. By using 

the maximum vector distance Xmax=max I Xi-Xj I, with j 

not equal to i for all i's, as a bound for this distance (as in 

Wolf et al. 1985), the effect of spikes in the ECoG obscures 

the structure of the attractor. For spatial closeness, the 

solution is to choose Xj(t') such that: 

16. 

03 

_ J  

12 

\ f \  ICTAL ~ -  

4b go 
Number of partial exponents Na 

120 

F i g u r e  13 L vs. Na for preictal and ictal data segments 
(parameters as in figure 10). 

where Xi,max(t) is the maximum distance from Xi(t) of 

points in the phase space that are close in time to the Xi(t), 

that is: 

Xi, m a x ( t  ) = max I X i ( t )  - X j ( t l )  I for 

IDIST] < I t - t  I I < I M A X  (B2) 

By this estimation of Xi,max(t) at every point X i in the 

phase space and within the time window of (B2), using 

IDIST 1 ---'¢=14msec the minimum acceptable distance, and 

IMAX_~=(p-1)"¢=84 msec we try to compensate for any 

nonstationarites present within the segment (state de- 

pendent estimation of Xi,max - see Figure 17 for the 

change of L with IMAX). 

Also, c changes from 0.1 to 0.5 by step 0.1 in case no 

replacement vector is found. 

Parameter b (must be smaller than c) was selected 

equal to 0.05 to take care of the noise level possibly 

present (see Figure 18 for dependence of L on b). 

In addition, the replacement point Xj(t') should not be 

too close in time to Xi(t) so that they do not belong to the 

same state; this means that 

b " X i ,  m a x ( t  ) < I X  i ( t )  - X j ( t ' ) l  < c X i ,  m a x ( t )  

(B1) 

I t ' -  t I > IDIST2 (B3) 

and IDIST2 ~ (p-1)'t is the minimum reasonable value 

according to the above argument. 
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Figure 14 L vs. p for one preictal and ictal segment (rest of 
parameters as in figure 10). 
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Figure 15 L vs. to for one preictal [L=7.50+0.43 bits/sec] and 
ictal [L=2. 21+0.42 bits/sec] segment (rest of parameters 
as in figure 10). 

Step 4: The evolution time At is highly dependent on the 

particular problem at hand. It is related to the folding 

process that takes place inside the attractor. Its value was 

calculated on the basis of convergence of L for different 

values of At (Figure 19). The value At=80msec was 

selected. 

2m 2m 
x(n)=sin(~'n'l) + sin(~'n'5) for n=0 ..... N-1 where 

N=2,000 points and N0=100 points, the estimated 

L=0.00164 bits/iteration with p=3, ~=10 points, At=100 

points, IMAX=100 points, ~init=0.1 rad. The theoretical 

value of L here is 0 bits/iteration. The dosest L to zero 

we found was with p=6, z=20 points [(p-l)" "¢=N0], At=40 

points, IMAX=100 points, Oinit=0.1 rad, N=6,000 points 

and its value was L=0.0004563 bits/iteration. 

Step 5: The time duration T of the segment for estimation 

of L was 12 sec (N=6,000 points). The heuristic value is 

10D-30 D where D is the dimension of the attractor (Wolf 

et al. 1985). Here D is between 2 and 3 for the ictal case 

(Iasemidis et al. 1988b). So 1,000 <N< 27,000. The be- 

havior of L with N is given in Figure 20. 

Appendix C 

Estimation of L for standardized examples from the 

literature 

1. Limit cycle attractor (D=I) 

2. Torus attractor (D=2) 

We consider the signal depicted in Figure 4a generated 

by 

x (n )  = s i n ( ~ 0 n ' l ) +  sin(~0"n'q2-) for n=0 . . . .  N-1  

where N=6,000 points and N0=100 points. The estima- 

tion of L with: p=5 (since D=2, p=2*D+l), "¢=25 points [so 

(p-1)*z=N0], At=40 points, IMAX=6,000 points, 3init=0.1 

rad, gives L=0.0027 bits/iteration. The theoretical L 

value of this signal is 0 bits/iteration. 

Using the signal in Figure 2a, which is generated by 3. Henon attractor (D=1.26) 
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Figure 16 L vs. time for electrode B1 with: (a)cq~nit=0,1 rad, 

(b) oqinit=0.2 rad, (c)oninit=0.3 tad (rest of parameters as in 

figure 10), (d) oqinit=0.7 rad. 
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Figure 17 L vs. IMAX for the preictal and ictal segments (rest 
of parameters as in figure 10). 
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Figure 20 L for different durations T of preictal and one ictal 
data segment (rest of parameters as in figure ] 0). 

The data were produced by the following set of the 

difference equations: 

x (n+ l )  -- 1 - c . x  2(n) + ~(n) 

~ ( n + l )  -- b.x(n) 

with c=1.4, b=0.3, x(0)=0.631, ~(0)=0.189 and n=0 ..... N-1. 

We select N=2,000, p=2, "¢=1 point (infinite frequencies 

present), At=l point, IMAX=2,000 points, 0init=0.1 rad. 

The estimated value of L was 0.577 bits/iteration. The 

theoretical value is 0.6 bits/iteration (Wolf et al. 1985). 

4. Henon attractor with one transient 

The signal used is z(n)=x(n) + w(n) where x(n) is 

produced from the previous Henon system and w(n) a 

set of six consecutive impulses with amplitude four times 

the maximum amplitude of x(n), inserted in the middle 

of the x(n) record. Using the same parameters as in (3) 

we f ind L=0.420 b i t s / i t e r a t i o n .  N o w  select ing 

IMAX=100 points, to reduce the effect of the w(n) in the 

estimation of L, we find L=0.556 bits/iteration, which 

was the closest value to the theoretical L=0.6 bits/itera- 

tion of the pure Henon attractor. 

5. Simple quadratic map 

It is produced by the simple nonlinear difference equa- 

tion x(n+l)=a-x2(n). With a=2 we are in the chaotic 

regime. Using x(0)=0.1 for n=0 ..... N-l, with N=2,000 

points ,  p=l ,  ~=1 point ,  At=l point ,  3init=0.1 rad, 

IMAX=2,000 points, the estimated L=1.097 bits/iteration. 

The theoretical value of L is ln2/iteration or log22=1 in 

bits/iteration (Grassberger, 1985). 
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