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Phase-stabilized two-dimensional electronic spectroscopy
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Department of Chemistry, University of California, Berkeley and Physical Biosciences Division,
Lawrence Berkeley National Laboratory, Berkeley, California 94720

~Received 15 April 2004; accepted 4 June 2004!

Two-dimensional ~2D! spectroscopy is a powerful technique to study nuclear and electronic

correlations between different transitions or initial and final states. Here we describe in detail our

development of inherently phase-stabilized 2D Fourier-transform spectroscopy for electronic

transitions. A diffractive-optic setup is used to realize heterodyne-detected femtosecond four-wave

mixing in a phase-matched box geometry. Wavelength tunability in the visible range is

accomplished by means of a 3 kHz repetition-rate laser system and optical parametric amplification.

Nonlinear signals are fully characterized by spectral interferometry. Starting from fundamental

principles, we discuss the origin of phase stability and the precise calibration of excitation-pulse

time delays using movable glass wedges. Automated subtraction of undesired scattering terms

removes experimental artifacts. On the theoretical side, the response-function formalism is extended

to describe molecules with three electronic levels, and the shape of 2D spectral features is discussed.

As an example for this technique, experimental 2D spectra are shown for the dye molecule Nile

Blue in acetonitrile at 595 nm, recorded for a series of population times. Simulations explore the

influence of different model parameters and qualitatively reproduce the experimental results. We

show that correlations between different electronically excited states can be determined from the

spectra. The technique described here can be used to measure the third-order response function of

complex systems covering several electronic transitions. © 2004 American Institute of Physics.

@DOI: 10.1063/1.1776112#

I. INTRODUCTION

Ultrafast spectroscopy is increasingly employed for the

study of condensed-phase systems which cannot be charac-

terized by a single two-level electronic or vibrational system

coupled to a bath. Sophisticated methods have been devel-

oped to explore the underlying microscopic dynamics and to

disentangle the interaction of multiple chromophores. Espe-

cially the techniques of multidimensional femtosecond spec-

troscopy are suitable to investigate electronic and vibrational

couplings. Theoretical discussions have been given by

Mukamel et al.1–3 and Cho.4 Pioneering experiments as well

as simulations have been reported for vibrational transitions

by Hamm et al. using dynamic hole burning,5,6 and from the

groups of Hochstrasser7–9 and Tokmakoff10–12 using

heterodyne-detected photon echoes. Heterodyne detection of

nonlinear signals was furthermore discussed by Joffre

et al.13–15 and Wiersma et al.,16 and two-dimensional spec-

troscopy of electronic transitions was introduced and de-

scribed in great detail by Jonas and co-workers17–21 who also

reviewed the subject recently.22 In these experiments, phase-

matched four-wave mixing ~FWM! signals are analyzed by

some version of heterodyne detection in order to obtain in-

formation about both amplitude and phase of the nonlinear

third-order signal. Fourier evaluation then leads to two-

dimensional ~2D! spectra which can be intuitively interpreted

and can be seen as an extension of spectrally resolved pump

probe where an additional coordinate describes the depen-

dence of the transient spectra on the excitation frequency. An

approach to 2D spectroscopy with femtosecond pulse-

shaping techniques was recently presented by Warren and

coworkers.23 Time-domain heterodyne techniques to fully

characterize nonlinear signals have also been discussed,24–27

but because of the need to scan an additional time delay they

are more difficult to implement than frequency-dependent

techniques.

Until recently, 2D electronic spectroscopy has been lim-

ited to the wavelength range provided by the very stable

output of Ti:sapphire oscillators.22 In order to observe a

larger range of electronic transitions throughout the visible

spectral region, it was desirable to develop methods suitable

for broadly tunable light sources such as optical parametric

amplifiers ~OPA!. There, the required interferometric phase

stability and positioning accuracy of pulse time delays is

more difficult to achieve than for the near-infrared or mid-

infrared regime: For shorter wavelengths, path-length and

Poynting fluctuations lead to correspondingly larger phase

errors. In related applications, passive phase stabilization

was achieved by use of diffractive optics ~DO!,28–32 and

Miller et al. also reported preliminary heterodyne-detected

photon echoes using DO.33 We have recently reported full

2D traces recorded in our development of frequency-tunable

noncollinear DO-based FWM with heterodyne detection of

three-pulse photon echoes by spectral interferometry, in

short, 2D Fourier spectrometry for the visible region.34 Very

accurate pulse delays are provided by movable glass wedges.

Two-dimensional spectra were also obtained by Miller

et al.35 in their related but different geometrical setup.a!Electronic mail: grfleming@lbl.gov
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In this paper we describe in detail the experimental tech-

nique and the theoretical treatment of 2D phase-stabilized

spectroscopy in the visible, and illustrate these issues on a

prototypical dye molecule. The organization of the manu-

script is as follows: In Sec. II, the principle of 2D spectros-

copy is briefly reviewed, forming the basis for the following

discussions. The experimental technique is presented in Sec.

III, focusing on the DO-based setup and its role in phase

stabilization ~Sec. III A!, the accurate calibration of time de-

lays ~Sec. III B!, the data acquisition and evaluation proce-

dure including the subtraction of unwanted scattering terms

~Sec. III C!, and the subject of absolute-phase determination

~Sec. III D!. In Sec. IV, the theory for 2D spectroscopy in-

volving more than two electronic states is developed. A dis-

cussion of results is given in Sec. V. Experimental 2D traces

~Sec. V A! are reported for Nile Blue in acetonitrile at 595

nm, and the simulations ~Sec. V B! indicate general depen-

dencies of these spectra on model parameters. Conclusions

are given in Sec. VI, and the Appendix contains the deriva-

tion of the three-level response function.

II. PRINCIPLE OF TWO-DIMENSIONAL
SPECTROSCOPY

Two-dimensional femtosecond spectroscopy aims at de-

termining the complete third-order optical response function

of quantum-mechanical systems such as molecules or aggre-

gates. For this purpose, a sequence of three ultrashort laser

pulses is used to excite the sample, and the emitted signal

field is characterized in amplitude and phase as a function of

frequency and as a function of the excitation-pulse time de-

lays. After suitable data analysis involving Fourier-transform

methods, one obtains two-dimensional frequency ‘‘maps’’ of

the system’s behavior. Two-dimensional spectroscopy has

been reviewed in detail elsewhere.22 Here we restrict our-

selves to the basic formalism that will be used in later sec-

tions.

Perturbation theory can be used to calculate the third-

order polarization

P (3)~ t !5E
0

`E
0

`E
0

`

S (3)~ta ,tb ,tc!E~ t2ta2tb2tc!

3E~ t2tb2tc!E~ t2tc!dtadtbdtc , ~1!

at time t and one specific point in space, induced by three

electric-field interactions in the past at times t2ta2tb

2tc , t2tb2tc , and t2tc ~see Fig. 1 for a definition of

time variables!. The real-valued third-order time-domain re-

sponse function S (3)(ta ,tb ,tc) is hence given as the polar-

ization excited by three d-function pulses. The response

function is nonzero only for ta , tb , and tc.0 to ensure

causality.

Inverse Fourier transformation of S (3)(ta ,tb ,tc) with

respect to the interaction times then leads to the complex-

valued third-order frequency-domain susceptibility

x (3)(va ,vb ,vc). For an experimental determination of S or

x one therefore needs to vary the interaction times in a sys-

tematic fashion. However, it needs to be considered that,

since time-domain electric fields are real-valued quantities,

the frequency-domain electric fields are complex and con-

tribute to x with positive as well as negative frequencies.

In a noncollinear geometry, it is possible to use phase

matching to select the signs of the frequencies contributing

to the observed signal because different sign combinations

lead to signal radiation into different spatial directions.22 For

example, with the noncollinear box geometry employed be-

low ~compare Fig. 2!, we detect the signal along wave-vector

direction kW s52kW 11kW 21kW 3 , where kW 1 , kW 2 , and kW 3 are the

wave vectors of the three excitation pulses with frequencies

v1 , v2 , and v3 . Hence the polarization has contributions

for negative v1 , positive v2 , and positive v3 . Since the

pulses have finite durations, however, the interactions in Eq.

~1! can occur in any order and also at any time under the

pulse envelopes. It is therefore not possible to vary ta , tb ,

and tc directly, but only the pulse centers at t1 , t2 , and t3 .

The ~real-valued! temporal electric field interacting with the

sample can then be described as

E~ t !5Ã~ t2t1!e2iv0(t2t1)1ikW1•rW
1Ã~ t2t2!

3e2iv0(t2t2)1ikW2•rW
1Ã~ t2t3!e2iv0(t2t3)1ikW3•rW

1c.c.,

~2!

with carrier frequency ~i.e., central laser frequency! v0 ,

complex envelopes Ã(t8)5A(t8)exp@2iw(t8)#, and c.c. de-

noting the complex conjugate of all previous expressions.

The complex envelope contains both the shape †e.g., a

Gaussian A(t8)5exp@22 ln2(t8/tp)
2# with intensity-full

width at half maximum ~FWHM! pulse duration tp‡ as well

as any phase modulation w(t8). Note that the time shifts t i

should be contained in both the envelopes as well as in the

oscillatory phase terms.36,37 Time zero is set at the center of

the third pulse, i.e., t350. It is customary to define the co-

herence time t as the separation between the centers of the

first two pulses, t5t22t1 , and the population time T as the

difference between the second and third pulse, T52t2 for

the pulse order shown in Fig. 1.

FIG. 1. Definition of time variables. Time zero is defined at the center of the

third excitation pulse. The first two excitation pulses arrive at times t1,0

and t2,0, separated by the coherence time t which is positive for the shown

pulse order, and negative if pulse 2 arrives first. The population time T.0 is

the separation between the second and third excitation pulse at t350. Non-

linear third-order polarization at time t is induced by field interactions at

times ta1tb1tc , tb1tc , and tc earlier, which may occur somewhere

under the excitation pulse envelopes. This leads to a free-induction decay

and for inhomogeneously broadened systems, an additional photon echo

signal is observed with an average arrival time ts that is similar to the

coherence time. The local oscillator ~LO! used for heterodyned signal de-

tection always arrives first at time t4 .

4222 J. Chem. Phys., Vol. 121, No. 9, 1 September 2004 Brixner et al.
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The multiplication E(t2ta2tb2tc)E(t2tb2tc)E(t

2tc) in Eq. ~1! using the field of Eq. ~2! yields 63636

5216 terms of the form of multiplication of three envelope

functions Ã(t) or Ã*(t) and corresponding phase factors de-

termining their directions and frequencies. Each term of this

sum corresponds to a specific time order of interaction con-

tributions. For example, the contribution

Ã~ t2t22ta2tb2tc!Ã*~ t2t12tb2tc!

3Ã~ t2t32tc!e2iv0(t2t22ta2tb2tc)

3e iv0(t2t12tb2tc)e2iv0(t2t32tc)e i(kW22kW11kW3)•rW, ~3!

corresponds to the case when the system first interacts with

the pulse going along the kW 2 direction at the time t2ta

2tb2tc , then it interacts with the pulse characterized by

the direction 2kW 1 at time t2tb2tc and finally with the

pulse traveling along kW 3 at time t2tc . The star denotes com-

plex conjugation. Only six of the 216 terms generate a signal

in the direction of 2kW 11kW 21kW 3 along which we measure.

All terms possess a common phase factor e2iv0t1iv0t, and in

addition they contain one of the phase factors that can be

either e iv0(ta1tc), e2iv0(tc2ta), or e iv0(ta12tb1tc).

Depending on the system in question, the response func-

tion S (3)(ta ,tb ,tc) contains a sum of contributions with

similar phase factors. If the laser frequency v0 approxi-

mately matches the electronic transition frequencies in the

system, some of the phase factors originating from the re-

sponse function may cancel with those originating from the

laser field. Thus, under the integration in Eq. ~1! we would

have slowly varying terms ~where oscillatory factors can-

celed! and fast oscillating terms ~where phase factors added!.
After the integration, oscillatory terms result in a much

smaller contribution than slowly varying ones, and we can

neglect them. This is usually referred to as rotating-wave

approximation ~RWA!. Thus, taking into account only the

signal contribution emitted into the phase-matched direction

kW s52kW 11kW 21kW 3 under the RWA, one arrives at

Prw
(3)~t ,T ,t !5exp@2iv0t1iv0t#E

0

`E
0

`E
0

`

dtadtbdtc

3$SR ,rw
(3) ~ta ,tb ,tc!e2iv0(tc2ta)@ Ã*~ t2t12ta2tb2tc!Ã~ t2t22tb2tc!Ã~ t2t32tc!

1Ã*~ t2t12ta2tb2tc!Ã~ t2t32tb2tc!Ã~ t2t22tc!#

1SNR ,rw
(3) ~ta ,tb ,tc!e iv0(ta1tc)@ Ã~ t2t22ta2tb2tc!Ã*~ t2t12tb2tc!Ã~ t2t32tc!

1Ã~ t2t32ta2tb2tc!Ã*~ t2t12tb2tc!Ã~ t2t22tc!#

1SDC ,rw
(3) ~ta ,tb ,tc!e iv0(ta12tb1tc)@ Ã~ t2t22ta2tb2tc!Ã~ t2t32tb2tc!Ã*~ t2t12tc!

1Ã~ t2t32ta2tb2tc!Ã~ t2t22tb2tc!Ã*~ t2t12tc!#%. ~4!

Herein the response functions SR ,rw
(3) , SNR ,rw

(3) , and SDC ,rw
(3) are

sums of Liouville pathways surviving the rotating-wave ap-

proximation, i.e., those which contain phase factors that ap-

proximately cancel with the corresponding electric field fac-

tors. We use t1 , t2 , and t3 in Eq. ~4! as an abbreviation for

2t2T , 2T , and 0 ~compare Fig. 1! to elucidate that each Ã

represents an envelope of the first, second, or third pulse,

respectively. The exponential factor in front of the integral

indicates that the polarization oscillates at frequencies within

a certain interval around 1v0 for the t coordinate and at

frequencies within an interval around 2v0 for the t coordi-

nate. ~This is the reason why the 2D spectra shown below,

e.g., Fig. 6, have a negative vt frequency axis and a positive

v t frequency axis.! The integrand of Eq. ~4! contains only

slowly oscillating factors from the complex pulse envelopes.

The details of the response functions S depend on the mo-

lecular system under study and will be given later in Sec. IV.

A two-dimensional Fourier transformation of

Prw
(3)(t ,T ,t) with respect to t and t then delivers two-

dimensional ~2D! spectra ~one for each population time T)

with frequency axes vt and v t . However, experimentally

one does not detect the polarization of Eq. ~4! directly but

rather the phase-matched signal field, which is in turn not

observed as a function of t but instead with a spectrometer as

a function of the conjugate frequency v t . Using Maxwell’s

equations, it can be seen that under ideal circumstances this

frequency-domain signal field Es is related to the polariza-

tion by

Es~t ,T ,v t!;
iv t

n~v t!
P (3)~t ,T ,v t! ~5!

with linear refractive index n(v t). Since one of the Fourier

transformations is therefore already implicit in the

frequency-domain detection technique, it is necessary to

carry out only the transformation along the coherence time

t5t22t1 ~for each fixed population time T), which finally

leads to the 2D correlation spectra,

S2D~vt ,T ,v t!5E
2`

`

iP (3)~t ,T ,v t!exp~ ivtt !dt ~6!

4223J. Chem. Phys., Vol. 121, No. 9, 1 September 2004 Two-dimensional electronic spectroscopy

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.32.208.2 On: Wed, 06 Nov 2013 22:54:36



for positive v t and negative vt . The factor iP (3)(t ,T ,v t) is

easily obtained from the measured signal field via

Es(t ,T ,v t)n(v t)/vt and removes radiative line-shape dis-

tortions due to the factor of v t . In our experimental results

we have ignored the frequency dependence of n(v t) as this

is a very minor effect. For a very precise comparison of

experiment and theory, pulse propagation effects can be

taken into account by a suitable multidimensional frequency

filter function.22

Note that the 2D spectra are complex-valued entities and

therefore require separate plots of their real parts ~‘‘absorp-

tive’’ contribution! and imaginary parts ~‘‘refractive’’ contri-

bution!, or alternatively, their absolute magnitude and phase.

As can be seen from Eqs. ~5! and ~6!, the ~complex-valued!
electric signal field has to be determined in both amplitude

and phase in order to perform this Fourier-transform data

analysis. Full characterization in our experiment will be done

with the help of spectral interferometry. It should also be

kept in mind that laser spectra have a finite width and there-

fore offer only a limited spectral ‘‘window’’ onto the

frequency-domain nonlinear response function. It is hence

preferable to implement 2D spectroscopy with a broadband

and tunable light source such that the central laser wave-

length can be matched to the relevant electronic transitions

of the investigated system.

III. EXPERIMENT

A. Setup

One major difficulty in experimentally implementing 2D

electronic spectroscopy is that, due to the phase factor in the

Fourier kernel of Eq. ~6!, the coherence time needs to be

varied with very high ~interferometric! accuracy. Otherwise,

artifacts can appear in the 2D traces after Fourier

evaluation.18 This is especially critical in the visible spectral

region ~as opposed to the infrared regime!, because for

shorter wavelengths a certain path-length fluctuation leads to

a correspondingly higher phase error, and therefore the re-

quired accuracy is increasingly difficult to achieve. We have

developed an inherently phase-stabilized setup to avoid this

problem,34 and recently Miller and coworkers have reported

a similar technique.35

A home-built Ti:sapphire regenerative-amplifier laser

system pumps a commercial OPA from Coherent to generate

30 mJ, 3 kHz laser pulses ~attenuated for the experiment!
between 400 nm and 700 nm ~ca. 15 nm bandwidth!. After

passing a prism compressor, the pulses are split into two

identical replicas, one of which is optionally delayed, before

the two parallel and equal-intensity beams enter the experi-

mental setup ~Fig. 2!. A 20 cm lens is used to create a com-

mon focus on a 30 grooves/mm diffractive optic ~DO! which

is optimized by design for highly efficient first-order diffrac-

tion. The emerging total number of four beams ~positive and

negative first orders, all others blocked by a mask! are then

imaged by a spherical mirror at the distance of two focal

lengths (2 f 550 cm) via a plane folding mirror into a com-

mon spot within the sample cell. The focus diameter of 100

mm (1/e2 intensity level as measured by the knife-edge

method! is a good compromise between tight focusing

~yielding larger signals!, the necessity to illuminate enough

grooves on the DO for good spatial separation of the dif-

fracted beams, and the requirement to accommodate the

delay-generating optical components.

Time delays for excitation pulses 1 and 2 are introduced

with interferometric precision by means of movable glass

wedges ~thickness 1.5 mm, angle 1°, fused silica!, addressed

by computer-controlled stepper motors ~Nanomover from

Melles Griot!. Each wedge is closely paired with an identical

second one at antiparallel orientation. Lateral translation oc-

curs along the inner surface, whereas the outer surfaces are

aligned perpendicular to the laser beam. In this way, the

beam is not displaced at all upon moving any of the wedges,

and each pair effectively just acts as one glass plate of ‘‘vary-

ing thickness.’’ The dispersion introduced by the additional

material is negligible but can also be compensated numeri-

cally if necessary, as will be shown in Sec. III B. Since the

stepper motors are specified with 100 nm position repeatabil-

ity, and a translation of 1 mm corresponds to a time delay of

27 fs, this leads to a nominal timing precision of 2.7 as over

a total range of 400 fs. The calibration procedure is described

in Sec. III B. For comparison, the time drift in previous 800

nm 2D spectroscopy was 0.1 fs over a time interval of 20

min, which was reduced to 40 as by the help of simulta-

neously recorded reference interferograms followed by nu-

merical rephasing.22 Note also that the use of the delay-

generating wedges under normal incidence removes timing

fluctuations that could originate from vibrations of the wedge

holders, because to first order the glass path length does not

change with fluctuations of the incidence angle. This is dif-

ferent if rotating glass slides under larger incidence angles

are used to vary glass thickness and time delays.

The third beam also passes a wedge-pair combination,

FIG. 2. Experimental setup. Two parallel beams of femtosecond laser pulses

in the visible spectral region are focused by a lens onto a grating. The first

diffraction orders emerge with high efficiency and provide the excitation

pulses 1–3 as well as a local oscillator (45LO) for heterodyne-detected

three-pulse photon-echo electronic spectroscopy. A spherical mirror (2 f

550 cm) creates an image of the pulse overlap in the sample cell via a

plane folding mirror. The required time delays are provided with subwave-

length precision by motor-controlled movable glass wedges. Full character-

ization of the nonlinear phase-matched signal field is carried out by spectral

interferometry with the attenuated LO. An automated beam shutter is used

for subtraction of scattering contributions. This diffractive-optics based

setup is inherently phase-stabilized.

4224 J. Chem. Phys., Vol. 121, No. 9, 1 September 2004 Brixner et al.
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which is used to balance the dispersion with respect to beams

1 and 2, and also to allow manual fine-tuning of its delay

with respect to the local oscillator ~LO! in beam 4. The

computer-controlled shutter in beam 3 is used for automatic

subtraction of unwanted scattering contributions as explained

in Sec. III C. The LO is required for heterodyne detection of

the signal field by spectral interferometry. It is attenuated by

three to four orders of magnitude before it hits the sample.

This ensures that it does not influence the response of the

system. Furthermore the time ordering is such that the LO

always arrives first. This guarantees ~by causality! that the

LO cannot be pump probe contaminated. But even if suffi-

cient attenuation is not possible, the attenuator can be

slightly tilted such that the resulting beam displacement

moves the LO out of the pulse overlap in the sample cell.

Then no mutual influences between excitation pulses or sig-

nal on the one hand and LO on the other hand are present at

all, but the propagation of signal and LO after the sample is

still sufficiently collinear to facilitate heterodyne detection.

Characterization of the third-order signal field is

achieved by spectral interferometry with the local oscillator,

which is positioned at time tLO5t4'2700 fs before pulse

3. Due to the phase-matching box geometry chosen here, the

signal copropagates with the LO after the sample and is fo-

cused into a multichannel spectrometer ~while the three ex-

citation pulses are blocked by an aperture!. This leads to

spectral interference patterns

ISI~v t!5uEs~v t!1E4~v t!exp@ iv tt4#u2, ~7!

where Es(v t) is given by Eq. ~5!, and E4(v t) is the LO field

for delay t450. Interferences are recorded with a 0.3 m im-

aging spectrograph and a 16 bit, 25631024 pixel, thermo-

electrically cooled charge-coupled device detector. For any

given coherence time t and population time T , a different

spectrum is obtained @even though these parameters have

been omitted from Eq. ~7! for brevity#. Evaluation by a

Fourier-transform method then yields the desired spectral

signal intensity and phase ~Sec. III C!.
The major advantage of the DO-based setup is its inher-

ent ~i.e., passive! phase stability which can be understood in

the following way. Imagine that there are fluctuations in the

optical path lengths for each of the pulses 1–4 which lead to

shifts Dt i in the arrival times at the sample. Replacing t i in

Eq. ~2! by t i1Dt i , the polarization from Eq. ~4!, and there-

fore also the signal field from Eq. ~5!, gets multiplied by

exp@iv0(2Dt11Dt21Dt3)#. This is easily seen by considering

the phase factor exp@iv0t# in front of the integral ~and keep-

ing in mind that we set t350), whereas the little shifts

within the slowly varying envelopes Ã can be ignored be-

cause the Dt i are assumed to be small. A similar time shift

Dt4 in beam 4 may affect the local oscillator, so that Eq. ~7!
is changed into

ISI~v t!5uEs~v t!exp@ iv0~2Dt11Dt21Dt3!#

1E4~v t!exp@ iv tt41iv0Dt4#u2. ~8!

The measured signal will hence not be modified ~i.e., the

setup will be phase stabilized! if

2Dt11Dt21Dt32Dt450. ~9!

Consider now vibrations of the spherical mirror or the fold-

ing mirror as sources of path-length fluctuations. For a tilt of

either mirror around its horizontal axis, for example, both

Dt1 and Dt2 will change by the same amount and therefore

cancel each other in Eq. ~9!. The same is true for Dt3 and

Dt4 . If the mirrors tilt around a vertical axis, then both Dt1

and Dt3 ~or Dt2 and Dt4) change by the same amount, and

again the net result is a cancellation. Since arbitrary vibra-

tions are just linear combinations of these two examples, the

total setup is inherently phase stabilized. Remaining phase

instabilities are due to fluctuations which affect the four arms

independently, e.g., air currents. This effect is reduced by the

compact setup which guarantees almost uniform environ-

mental conditions everywhere and which employs only one

common mirror for the beam steering of all pulses. The DO

setup is additionally enclosed in a suitable box.

B. Delay calibration

Even with phase stability, the introduction of time delays

still needs to be done with subwavelength accuracy and lin-

earity to facilitate Fourier evaluation without artifacts. This

cannot be achieved easily by conventional delay stages be-

cause first, they would not fit into the DO-based setup ~and at

least the coherence-time delay has to be introduced after the

splitting of the beams!, and second, it would be very hard to

obtain the required delay precision. The glass wedges, how-

ever, work like a ‘‘gear transmission’’ so that moderately

precise mechanical movements are transferred into very pre-

cise time delays.

For the calibration procedure, the sample cell is replaced

by another DO identical to the first one ~alternatively, a

simple pinhole can be used!. This leads to diffraction of

beam 1 and beam 2 into one common direction. Spectral

interferograms similar to Eq. ~7!, but for identical pulses, are

then recorded in 10 mm steps. The result is shown in Fig.

FIG. 3. Delay calibration by spectral interferometry. ~a! Spectral interfer-

ence patterns between pulses 1 and 2 are recorded in 10 mm steps by mov-

ing the glass wedge in arm 1. The cross section along the vertical dashed

line shows ~b! the spectral interference outside of the temporal pulse over-

lap, whereas the cross section along the horizontal dashed line delivers ~c!
the temporal oscillation for one particular wavelength. Counting these oscil-

lations gives a precise calibration factor of wedge position vs time delay.
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3~a!. The temporal separation between adjacent interference

maxima ~along the horizontal wedge-position axis! depends

on the wavelength ~i.e., the vertical axis!. For larger wave-

lengths, these separations are also larger and hence the inter-

ference plot shows ellipsoidal patterns which tilt the more

the further the two laser pulses are separated in time. At the

precise pulse overlap, one of the ellipses is exactly vertical.

This fact is used to determine the time-delay zero point with

interferometric precision. For a specific delay time outside of

the pulse overlap, spectral interference is observed as in the

cross section along the dashed line shown in Fig. 3~b!. The

cross-section for one particular wavelength, shown in Fig.

3~c! for the central wavelength of 595 nm, gives temporal

oscillations which are present both within and outside of the

temporal pulse overlap due to the spectral resolution. Since

the measured wavelengths are known, ‘‘counting’’ the tem-

poral oscillations delivers the conversion of wedge position

into time delay. We use a sliding-window fast-Fourier trans-

formation ~FFT! to determine this calibration factor as a

function of the wedge position. Hence, systematic variations

in the glass thickness can be compensated for. However,

since the relative standard deviation of the calibration factor

in our case was only 1024, a single calibration constant was

used ~but determined separately for each one of the wedges!.
One issue that needs to be addressed in this context is

the additional material dispersion introduced by inserting

more glass into the beam path. The dispersive spectral phase

after an optical element of length l is

Fd~v !5n~v !vl/c . ~10!

Consider now a Taylor expansion around the central laser

frequency v0 . The first-order Taylor coefficient introduces

the desired time delay

t5

dF

dv
U

v0

5lFn21

c
1

v

c

dn

dvG
v0

~11!

with respect to propagation in vacuum, whereas the second-

order coefficient

b25

d2F

dv2 U
v0

5lF2

c

dn

dv
1

v

c

d2n

dv2G
v0

~12!

is responsible for dispersion. Substituting for l in Eq. ~12!
from Eq. ~11!, one arrives at

b25t
2n81vn9

n211vn9
U

v0

, ~13!

and with specific values for fused silica38 at b25t
30.034 fs.

The maximum delay introduced for the coherence period

t during the scans is 300 fs, such that the maximal dispersion

coefficient is b2510 fs2. At an initial pulse duration of tp

540 fs, this leads to a broadening by a factor of only 1.6

31024 and therefore can be neglected in its influence on the

temporal amplitude envelopes. Hence, the response-function

contributions to the time-domain convolution integral in Eq.

~4! are unchanged. In principle, the additional dispersive

phase Fd(v) is however transferred directly onto the signal

phase Fs(v). This can be compensated numerically for each

coherence time t by using

Fs ,corr~v !5Fs ,meas~v !1

b2 /t

2
t~v2v0!2, ~14!

where b2 /t50.034 fs is taken from Eq. ~13! and the plus

sign is obtained after careful analysis for the pulse order in

Fig. 1, assuming balanced phases for t50. Two-dimensional

spectra calculated with this compensation procedure lead to

results indistinguishable from those reported in Figs. 6 and 7

for our experimental parameters. However, in the case of

much shorter pulses ~and therefore broader bandwidth! the

application of Eq. ~14! may be useful.

Population times larger than zero are realized by reduc-

ing the glass thickness in both of the arms 1 and 2 by the

same amount. This also leads to diminished dispersion for

both pulses. However, these contributions cancel each other

as they enter with opposite sign into Eq. ~4!, and hence Eq.

~14! is still correct. Alternatively, population times larger

than those conveniently realized by moving the glass wedges

can be introduced with the conventional delay stage in front

of the DO setup, by varying the delay for the pulse pair 1 and

2 at once. This time delay does not need to be introduced

with subwavelength precision, because according to Eq. ~4!
the population time T enters only in the slowly varying en-

velopes and not into the critical phase factor in front of the

integral. ~All phase factors remaining within the integral can-

cel under the RWA and are completely independent of the

pulse-center times or their fluctuations.! Hence also path-

length fluctuations in the ‘‘conventional’’ part of the setup

are not critical.

C. Data acquisition and evaluation

For any given population time T , the coherence time t is

scanned by moving pulse 1 from 2(t1T) to 2T , and then

moving pulse 2 from 2T to 2(t1T), typically in time

steps of 2 fs. At each position, the electric signal field is

determined by spectral interferometry. This part of the data

analysis procedure is described in detail elsewhere.17,39,40

Briefly, the spectral interferogram from Eq. ~7! is Fourier

transformed and a window applied which keeps only hetero-

dyne contributions around time ts2t4 ~with the LO arrival

time t4'2700 fs and the average signal time ts*0). After

transformation back to the frequency domain, one obtains

I f~v t!5AIs~v t!I4~v t! exp$i@Fs~v t!2F4~v t!2v tt4#%,
~15!

from which both the desired signal intensity Is(v t) and

phase Fs(v t) can be recovered. For this purpose, the LO

spectrum I4(v t) is determined at the beginning of the experi-

ment such that it can be divided out. Since in our experimen-

tal configuration the LO also propagates through the sample

cell, its phase may be subject to dispersion. This effect can

be measured in a separate experiment by spectral interferom-

etry, and the phase correction F4(v t) can be applied.

The overall shape of all the pulses 1–4 entering into the

experiment is determined by second-harmonic generation
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frequency-resolved optical gating ~SHG-FROG! ~Ref. 41! at

the sample position with a 30 mm b-barium borate ~BBO!
crystal. Quantitative analysis in our case revealed near-

transform-limited pulses of duration tp541 fs at 595 nm

~bandwidth product 0.57!. To a good approximation, this in-

put phase does not affect the measured 2D spectra ~if the

temporal pulse shape is not significantly altered! because all

phases enter the spectral interference with mutually cancel-

ing signs, just as in the discussion of phase stability in Sec.

III A. Hence the input phase was not included in the data

analysis.20 The determination of the LO delay t4 , which is

needed in Eq. ~15! as well, is described after Eq. ~18! below.

In principle, the signal intensity Is(v t) could also be mea-

sured directly in homodyne detection by blocking beam 4.

However, the application of heterodyne detection and Eq.

~15! offers the advantage of ‘‘boosting’’ weak signals which

would otherwise lie below the noise floor. In fact, we have

achieved signal-to-noise ratios of 105 in the Fourier analysis,

and for very weak signals we successfully performed 2D

spectroscopy even when the maximum signal energy was

below 100 aJ. This is possible because the phase stability

allows realizing long CCD integration times without shifts in

the spectral fringe patterns.

Application of Eqs. ~5! and ~6!, i.e., Fourier transforma-

tion of the recovered signal field along the coherence time t,

finally leads to the desired 2D spectra. However, the pres-

ence of scattering in the sample cell can degrade the 2D

signal quality due to unwanted light contributions propagat-

ing in the direction of the phase-matched signal. We show in

the following how this problem can be solved by subtracting

appropriate ‘‘noise’’ measurements.

In general, the spectrometer which is placed in beam 4

will detect a superposition of the electric fields from the local

oscillator E4 , the third-order signal Es , but also scattered

light contributions E1 , E2 , and E3 from the three excitation

pulses which may furthermore be pump probe contaminated.

In the notation used below, Ea[@Ia(v)#1/2 exp@iFa(v)

1ivta# contains the intensity and phase information as well

as the average ‘‘arrival’’ time ta for each of the contributions.

The measured spectral intensity I1234 when all four incoming

beams are present is then not given by Eq. ~7! but rather by

I12345uE11E21E31E41Esu
2 ~16!

5~E11E2!*E31~E11E2!E3
*1uE11E2u2

1uEsu
2

1~E11E2!*Es1~E11E2!Es
*1E3

*Es1E3Es
*

1~E11E2!*E41~E11E2!E4
*1uE31E4u2

1E4
*Es1E4Es

* . ~17!

In the ideal case, we would only want the terms from the last

line, as they contain the desired information about the signal

heterodyned with the local oscillator @compare with Eq. ~15!,
where the second of these heterodyne terms has been re-

moved by the Fourier windowing of the spectral-

interferometry analysis#. And while all other terms also con-

tribute to the raw data, only those terms survive the Fourier

windowing as well which occur at approximately the same

time difference of ts2t4 as the ‘‘true’’ signal. Since the local

oscillator always comes first in time and never overlaps with

any of the excitation pulses, the only surviving scattering

terms are therefore those collected in the second-last line of

Eq. ~17!, i.e., those at which the excitation pulses may over-

lap with the nonlinear signal and therefore appear at the same

time difference with respect to the LO.

At the beginning of an experiment, we therefore record a

scattering contribution where only pulses 3 and 4 are present,

I345uE31E4u2, ~18!

which takes care of one of the undesired terms. Since the

time separation between pulse 3 and 4 remains constant dur-

ing 2D scans, the corresponding fringe pattern ~18! is invari-

ant and needs to be measured only once. Fourier evaluation

of this term furthermore gives the LO delay time t4 needed

in the spectral-interferometry analysis of Eq. ~15!. The other

undesired scattering terms are determined with beam paths 1,

2, and 4 opened

I1245uE11E21E4u2 ~19!

5~E11E2!*E41~E11E2!E4
*1uE11E2u2

1uE4u2.

~20!

Since the time delays of pulses 1 and 2 are constantly varied,

this spectrum has to be recorded for each time step sepa-

rately, which is achieved by help of the automated shutter in

beam 3 as indicated in Fig. 2.

During data analysis, the scattering-corrected spectra

I12342I342I124 are used for Fourier evaluation, which at

times 'ts2t4 only contain the desired heterodyne term

E4
*Es . We have tested this procedure experimentally with a

very strongly scattering sample ~where the scattering was

emphasized by picking a ‘‘bad spot’’ on the sample cell!.
Without scattering compensation, the resulting 2D trace @Fig.

4~a!# shows significant distortions even in the absolute-

magnitude plot. However, with the procedure outlined above,

these artifacts disappear @Fig. 4~b!#. This is especially useful

for the investigation of molecular aggregates and biological

samples with imperfect solubility properties. Note that this

subtraction scheme exploits the phase relation between the

signal heterodyne term and the scattering terms, which is

well fulfilled in the inherently stabilized setup but might not

work as well for conventional heterodyne schemes.

FIG. 4. Subtraction of undesired scattering. The absolute magnitude of a 2D

spectrum for Nile Blue in acetonitrile at T50 fs is shown for a heavily

scattering sample. ~a! Without compensation, artifacts lead to a distortion of

the contour lines. ~b! Employing the correction method described in Sec.

III C, these undesired effects disappear.
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D. Phasing

The final step in the data analysis is the determination of

the absolute phase of the 2D spectra. For this purpose, the

projection-slice theorem is used which relates the real part of

the projection of the 2D spectrum onto the v t axis with sepa-

rately measurable spectrally resolved pump-probe data.20,22

This separate measurement is carried out in the same experi-

mental setup. Here it is necessary to record very small pump-

probe effects in the visible spectral region ~where the re-

quirement for optical parametric amplifiers may lead to

additional instabilities!. Since conventional lock-in detection

cannot be used because of the long CCD-detector integration

time, we remove intensity fluctuations of the laser by record-

ing reference laser spectra I ref(v) simultaneously to the

probe spectra Ipr(v), using a separate line on the CCD. Both

types of spectrum are furthermore recorded both when the

pump beam is present, Ipu(v), and when it is blocked,

I0(v). This is achieved by a computer-controlled shutter in

the pump beam.

For comparison between the results from 2D spectros-

copy and pump probe, we then first calculate

App~T ,v !5S Ipu
pr ~v !

Ipu
ref~v !

2

I0
pr~v !

I0
ref~v !

D Ipu
ref~v !1I0

ref~v !

2AI0
pr~v !

~21!

at pump-probe delay T . This determines the transient

changes in the spectral nonlinear signal amplitude which is

heterodyned with the probe field. The division of the first

two terms by their respective reference intensities ~recorded

at the same time! ensures that the sensitive difference signal

is not affected by laser noise. Since this division modifies the

shape of the spectra, the difference signal is then again mul-

tiplied by the average of the two references ~here the fluc-

tuations are not critical because no difference is taken!. Since

we are ultimately interested in the signal field, we finally

again divide by the probe field @I0
pr(v)#1/2. The transient sig-

nal is alternatively obtained as a projection of the 2D spec-

trum

A2D~T ,v t!5ReH v t

n~v t!
E

2`

`

S2D~vt ,T ,v t!

3exp@ iFc1i~v t2v0!tc#dvtJ , ~22!

which should give the same shape ~note that here the probe

electric field is also not included!. The 2D spectrum is mul-

tiplied by an overall constant phase correction Fc and a tim-

ing correction tc which are varied such that the two plots

using Eqs. ~21! and ~22! overlap. This procedure is called

‘‘phasing’’ and removes uncertainties in the interferometric

phase relation F4 of the LO with respect to pulse 3 and of its

arrival time t4 , respectively.

Experimental results for Nile Blue are shown in Fig. 5.

The open circles are the result from the pump-probe data

App(T50,v), and the solid line is the real part of the 2D

projection A2D(T50,v t) obtained from the data of Fig. 6

after suitable phasing. It is seen that the two data sets nicely

overlap. We found that the value for the LO time t4 obtained

by evaluation of Eq. ~18! always gave the best fit immedi-

ately, i.e., we obtained tc50. Because of the inherent phase

stability of the setup, the same phase-correction values can

be used for all population times.

In discussing Fig. 5, a positive contribution ~‘‘more

light’’! is seen for smaller frequencies, and an almost equally

strong negative contribution ~‘‘reduced light’’! for larger fre-

quencies. These can be interpreted as mainly arising from

stimulated emission and bleach versus excited-state absorp-

tion, respectively. The presence of excited-state absorption

points at a third electronic level in this example, requiring an

extension of the two-level response-function formalism. This

is the topic of the following section. However, that descrip-

tion is also useful for other systems, because we are ulti-

mately interested in tunable broadband 2D electronic spec-

troscopy, where in general more than two electronic levels

will need to be considered.

IV. THEORY

To simulate the experimental results we have calculated

the third-order nonlinear optical response for two- and three-

electronic-level systems. While the treatment of a second

excited state is common in infrared experiments,42 higher

excited electronic levels are often ignored in standard formu-

lations of response-function calculations. We assume the

electronic ground state ug&, first excited state ue& , and second

excited state u f & to have energies eg , ee , and e f , and the

nuclear degrees of freedom ~DOF! in these states to be de-

scribed by Hamiltonians Wg(Q), We(Q), and W f(Q), re-

spectively. Here, Q is a collective coordinate of the nuclear

DOF describing both the intramolecular vibrations and the

influence of the solvent. For the frequency and bandwidth of

the laser field we apply to the system, only the transitions

ug&→ue& and ue&→u f & are relevant. Transition frequencies

are defined as \vab5ea2eb . We assume the Condon ap-

proximation to be valid, which allows usage of the vibra-

FIG. 5. Phasing of 2D spectra. The 2D-trace projection A2D(T50,v t) is

shown as the solid line whereas the open circles are obtained from spectrally

resolved pump-probe measurements App(T50,v). Positive signals corre-

spond to increased light intensity ~e.g., due to stimulated emission and

ground-state bleach!, whereas negative signals are mainly attributed to

excited-state absorption. The good correspondence is a sign for the correct

absolute phase of the 2D spectra, allowing to divide them into real and

imaginary part as in Figs. 6 and 7.
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tional coordinate-independent dipole-moment operator. Thus,

the complete Hamiltonian of the molecular system and laser

field reads

H5HS2VE~ t ! ~23!

with the molecular Hamiltonian

HS5 (
a5g ,e , f

$ea1Wa~Q !%ua&^au, ~24!

and

V5degue&^gu1d f eu f &^eu1c.c., ~25!

where the dipole matrix elements of the two electronic tran-

sitions are given by deg and d f e .

To calculate the third-order nonlinear response of the

system, which is responsible for the photon echo signal, we

employ the standard perturbation theory and RWA as de-

scribed in Ref. 1 and Sec. II. Since in our sample molecule

Nile Blue the width of the absorption spectrum is small com-

pared to the center transition frequency, we also expect de-

viations from the RWA to be small.43 For the three-level

system, the response functions from Eq. ~4! will read as fol-

lows: The ‘‘rephasing’’ contribution SR ,rw
(3) includes only

Liouville pathways with approximate oscillatory factor

e iv0(tc2ta), i.e., those which contribute to the creation of an

echo signal. As is shown in the Appendix, it can be written as

the sum of three terms:

SR ,rw
(3) ~ta ,tb ,tc!5R2g~ta ,tb ,tc!1R3g~ta ,tb ,tc!

2R1 f
* ~ta ,tb ,tc!. ~26!

Similarly, the ‘‘nonrephasing’’ part

SNR ,rw
(3) ~ta ,tb ,tc!5R1g~ta ,tb ,tc!1R4g~ta ,tb ,tc!

2R2 f
* ~ta ,tb ,tc! ~27!

includes only pathways that oscillate with 'e2iv0(ta1tc),

i.e., those which contribute only as a free-induction decay.

And finally, the ‘‘double coherence’’ contribution oscillates

with e2iv0(ta12tb1tc) and reads

SDC ,rw
(3) ~ta ,tb ,tc!5R4 f~ta ,tb ,tc!2R3 f

* ~ta ,tb ,tc!.

~28!

Using the results of the Appendix, we can express the

different pathways in terms of four line-shape functions

gab~ t !5E
0

t

dt1E
0

t1

dt2^dvag~t2!dvbg~0 !&,

a ,b5e , f ~29!

with

dvag~ t !5

1

\
Ug

†~ t !@Wa~Q !2Wg~Q !#Ug~ t !. ~30!

The ground-state evolution operator Ug(t) is defined as

Ug~ t !5expH 2

i

\
Wg~Q !tJ . ~31!

For pathways including ground and first excited states only,

we obtain standard expressions which can be found in Ref. 1

and transformed into the current notation by substitutions

g(t)[gee(t) and Rn[Rng where n51, . . . ,4. However, the

pathways involving the second excited state read

R1 f~ta ,tb ,tc!5udegu2ud f eu
2e2ivegtc1iv f eta

3exp$2gee
* ~tb!2g f f

* ~ta!

2gee~ta1tb1tc!1ge f
* ~tb!2ge f

* ~ta1tb!

1ge f
* ~ta!2gee

* ~ta1tb!1gee
* ~ta!

2gee~tc! 1gee~tb1tc!1g f e
* ~ta!

2g f e~tb1tc! 2g f e~ta1tb1tc!%, ~32!

R2 f~ta ,tb ,tc!5udegu2ud f eu
2e ivegtc1iv f eta

3exp$2gee
* ~tb1tc!2g f f

* ~ta!

2gee~ta1tb!1ge f
* ~tb1tc!

2ge f
* ~ta1tb1tc!1ge f

* ~ta!

2gee
* ~ta1tb1tc!1gee

* ~ta!2gee
* ~tc!

1gee~tb!1g f e
* ~ta!2g f e~tb!

2g f e~ta1tb!%, ~33!

R3 f~ta ,tb ,tc!5udegu2ud f eu
2e iveg(tb1tc)1iv f e(ta1tb)

3exp$2gee
* ~tc!2g f f

* ~ta1tb!2gee~ta!

1ge f
* ~tc!2ge f

* ~ta1tb1tc!1ge f
* ~ta1tb!

2gee
* ~ta1tb1tc!1gee

* ~ta1tb!

2gee
* ~tb1tc!1gee

* ~tb!1g f e
* ~ta1tb!

2g f e
* ~tb!2g f e~ta!%, ~34!

R4 f~ta ,tb ,tc!5udegu2ud f eu
2e2iveg(ta1tb1tc)2iv f etb

3exp$2gee~ta!2g f f~tb!2gee~tc!

1ge f~ta!2ge f~ta1tb!1ge f~tb!

2gee~ta1tb!1gee~tb!

2gee~ta1tb1tc!1gee~tb1tc!

1g f e~tb!2g f e~tb1tc!2g f e~tc!%. ~35!

The third-order nonlinear optical response function, which is

related to the signal generated by Eq. ~4!, is fully determined

by the four line-shape functions gee(t), ge f(t), g f e(t), and

g f f(t), the system transition frequencies veg and v f e , and

the transition dipole moments deg and d f e . In fact, for a

conventional echo peak-shift measurement, just the ratio of

the dipole moments d f e /deg is significant, since only the

position of the integrated echo maximum is measured.

As it is indicated in Eq. ~29!, the form of the line-shape

function gab(t) depends on the corresponding energy-gap

correlation functions

Cab~ t !5\2^dvag~ t !dvbg~0 !&. ~36!

The terms Cee(t) and C f f(t) correlate the energy-gap func-

tion with itself and are related to their respective spectral

densities by a Fourier transformation as described in Ref. 1.
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Introducing the spectral density r~v!, one can rewrite Eq.

~29! into a more convenient form. Thus, we define

v2r~v !5C9~v !, ~37!

where C9(v) is the Fourier transformation of the imaginary

part of the energy-gap correlation function C(t) ~we dropped

indices for brevity!. Using the spectral density, we define the

reorganization energy

l5

1

p
E

0

`

vr~v !dv ~38!

as well as two normalized @M 8(t50)5M 9(t50)51# real

functions

M 8~ t !5

1

pD2 E
0

`

v2r~v !coth~b\v/2!cos~vt !dv ,

~39!

M 9~ t !5

1

pl
E

0

`

vr~v !cos~vt !dv , ~40!

where b is the usual Boltzmann inverse temperature factor,

and we recast Eq. ~29! into ~we omit indices again!

g~ t !5D2E
0

t

dt1E
0

t1

dt2M 8~t2!2ilE
0

t

dt@12M 9~t !# . ~41!

Here D2
5(1/p)*0

`v2r(v)coth(b\v/2)dv . Since M 9(t)

and r~v! in Eq. ~40! are related by a cosine Fourier transfor-

mation ~CFT!, we can write vr(v)5lCFT21@M 9(t)#(v),

where CFT21 denotes inverse cosine Fourier transformation.

Thus, g(t) can be calculated from a given M 9(t) which pre-

scribes its shape by postulating a single parameter l and

temperature. Usually, one assumes g(t) of a real system to

be a compound of several components of different origins,

e.g., inertial solvent motion, intramolecular vibrations, etc.

Each component is characterized by its own characteristic

shape M 9(t) and its reorganization energy l. Thus, for the

total density of states we have

vr~v !5(
c

lcCFT21@M c9~ t !#~v !. ~42!

For the ‘‘off-diagonal’’ correlation functions Ce f(t) and

C f e(t) we can perform a similar analysis to that one pre-

sented above, leading in general to slightly different relations

between the Fourier transformations of their real and imagi-

nary parts. It is not obvious what should be the actual form

of these functions in terms of usual ansatz forms used for the

‘‘diagonal’’ correlation functions. However, assuming

Ce f(t)5C f e(t), the frequency-domain symmetries appear to

be the same as in the diagonal case and we therefore will use

the same functional forms for both diagonal and off-diagonal

line-shape functions throughout this work, with different pa-

rameters to account for their differences. The comparison of

the simulations with the experimental data may indicate if

such an approach is indeed sufficient.

In previous work on Nile Blue,44 peak-shift measure-

ments have been successfully explained using g(t) consist-

ing of two simple solvent modes and a vibrational contribu-

tion including 40 intramolecular vibrational modes taken

from the resonance Raman measurements by Mathies and

co-workers.45 In this work we use the vibrational part g
vib(t)

of the total g(t) with the same definition and parameters as

in Ref. 44. The solvent part of the line-shape function is

modeled by a Gaussian and an exponential mode with their

M 9(t) functions defined as

M g9~ t !5expF2S t

tg
D 2G , ~43!

M e9~ t !5expF2

t

te
G , ~44!

and reorganization energies lg and le , respectively. The fast

Gaussian component is usually attributed to the inertial mo-

tion of the solvent and a slower exponential solvation com-

ponent models diffusional and structural relaxation of the

solvent. The total g(t) of the system will be considered to be

a sum of the solvent and vibrational contributions

g~ t !5gsolv~ t !1g
vib~ t !. ~45!

V. RESULTS AND DISCUSSION

A. Experiment

In order to illustrate the feasibility of tunable two-

dimensional spectroscopy in the visible, we carried out mea-

surements on the dye molecule Nile Blue in acetonitrile at a

center wavelength of 595 nm. This prototype system had

already been investigated with conventional three-pulse

photon-echo peak-shift ~3PEPS! spectroscopy in earlier

work,44,46 where primarily the influence of intramolecular vi-

brations was discussed. For the 2D spectroscopy, we fol-

lowed the data acquisition and analysis procedure of Sec. III

to obtain electronic correlation spectra for a number of dif-

ferent population times between T50 fs and T5100 fs.

The results are plotted in Figs. 6 and 7. We point out that

these relatively large numbers of 2D traces for different

population times are easily obtained with the phase-

stabilized setup because interferometric stability is routinely

maintained over total measurement times of around 10 h.

The real parts of the 2D traces can be roughly interpreted as

the transient field amplitude at a particular ‘‘probe fre-

quency’’ v t , induced by a specific ‘‘excitation frequency’’

vt and after the waiting time T . In this sense, it can be

understood as spectrally resolved transient absorption where

in addition the pump pulse is also spectrally resolved. It

should be kept in mind, however, that different Liouville

pathways contribute to this signal which are not limited to

excited-state population evolution alone. The imaginary part

correspondingly describes refractive index variations at cer-

tain frequencies v t , induced by excitation at vt . The diag-

onal inclination of the real part at early population times

indicates disorder which is consistent with the observation of

a peak-shift signal in 3PEPS spectroscopy. This diagonal

shape mainly means that the emission frequency v t is corre-

lated with the excitation frequency vt , i.e., the molecule

‘‘remembers’’ the initial excitation.

However, as the population time T is increased, the 2D

spectra get more and more symmetric around the vertical
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axis, and the correlation ~i.e., memory! of the initial excita-

tion is lost. Furthermore, the region of negative signal in the

2D real part disappears. The same trend of increasing sym-

metry and loss of correlation with larger population times

can be observed in the imaginary 2D part, and the absolute

scale of the signal ~both Re and Im! gets smaller. At 100 fs,

no further change in the 2D spectra can be observed. This

behavior is consistent with the decay of the 3PEPS on the

same time scale.44,46

B. Simulation

In this part we simulate experimental results using the

two- and three-electronic-level model. In particular, we want

to clarify the origin of the main features in the experimental

2D trace. Of central interest are here the negative features in

both the real and imaginary part of the 2D spectrum. The real

part of the experimental 2D trace in Figs. 6 and 7 is mostly

positive for long populations times T , but shows significant

negative features for short T . A previous study using a two-

level model19 suggested that the negative features can be

produced by a simultaneous creation of coherent wave pack-

ets in the ground and excited states.

Thus, as a reference we calculated 2D spectra using the

two-level model. In Fig. 8 the 2D traces for population times

T50 fs and T5100 fs are presented for different line-shape

functions gee(t) and different durations of the laser pulses. In

Figs. 8~a! and 8~b! a simple line-shape function is assumed,

including one Gaussian mode with tg560 fs and reorgani-

zation energy lg5140 cm21. Since the negative features in

the experimental 2D traces disappear on the time scale of the

FWHM of the laser pulses, we first study the influence of the

laser pulse length on the 2D spectrum. In Fig. 8~a!, a d pulse

is applied, and due to its infinite spectral width we obtain

broad spectral features. Clearly some negative features ap-

pear. Also the symmetrization of the spectra for larger popu-

lation times T is very pronounced. However, the imaginary

part shows a large negative feature even at long times, and

FIG. 6. Experimental 2D spectra for Nile Blue in acetonitrile. Each spec-

trum is an average over three individual scans for that particular population

time. Because of the stability of the setup, the background amplitude levels

outside the shown regions are below 2% of the peak values. Contour lines

are drawn in 10% intervals at 295%,285%,... ,25%,5%,... ,95% for the

absorptive real parts ~left column! and refractive imaginary parts ~right col-

umn! of S2D(vt ,T ,v t). The level of 100% is determined from the highest

peak value within the series, here occurring for the imaginary part at T

50 fs. Solid contour lines correspond to positive and dashed lines to nega-

tive amplitudes. In this evaluation, the dispersion of the LO was not com-

pensated, thus yielding the signal phase at the entrance rather than the exit

of the sample cuvette.

FIG. 7. Experimental 2D spectra for Nile Blue. This data set is the continu-

ation of Fig. 6 for larger population times.
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also the slope and relative intensity of positive and negative

features is different from the experiment. Using the experi-

mental FWHM pulse duration of 41 fs in Fig. 8~b! does not

change the picture significantly. The spectral features be-

come smaller in extension due to the limited spectral window

covered by the laser pulse.19

Although reproducing main features of the 2D traces,

this simple form of the line-shape function gee(t) cannot be

accepted as a candidate for the qualitative explanation of 2D

spectra of Nile Blue, because it does not correctly reproduce

the linear absorption spectrum and 3PEPS measurements.

Also the ratio of the intensities of real versus imaginary parts

of the 2D spectrum is in favor of the real part, whereas the

experimental traces show the opposite tendency.

Previously,44,46 both linear spectrum and 3PEPS of Nile

Blue were successfully accounted for. In addition to Gauss-

ian and exponential solvent modes, 40 vibrational modes of

intramolecular DOF were included, with parameters obtained

from resonance Raman experiments.45 In Fig. 8~c! we use

the gee(t) of Ref. 44 including all these modes and the cor-

rect experimental laser frequency detuning with respect to

the absorption maximum of the linear spectrum. It is imme-

diately seen that the presence of the intramolecular modes

results in a reduction of the negative features in both the real

and imaginary part of the spectrum. Most significantly, the

negative feature in the imaginary part disappears for long

times in accordance with the experimental observation. On

the other hand, this model still does not correctly reproduce

the relatively higher intensity of the imaginary part of the 2D

trace with respect to the real one, and especially the negative

feature in the real part at T50 is much too small as com-

pared to experiment.

The pump-probe measurement ~see Fig. 5! suggests the

presence of a higher excited state in Nile Blue, and conse-

quently its influence on the 2D spectrum has to be discussed.

The linear absorption spectrum of Nile Blue shows several

excited states in the vicinity of v f g5v f e1veg with v f e

'veg . In the following discussion, we will therefore accept

the hypothesis that an optical transition from the first excited

state of Nile Blue (ue& in our notation! into some of these

higher excited states or into another state invisible in the

linear spectrum is allowed. Simulating the three-level-system

optical response is significantly more complicated than the

two-level response due to the presence of additional line-

shape functions ge f(t) and g f f(t). While the gee(t) line-

shape function is bound to correctly explain the linear spec-

trum and the same can be said about g f f(t) if the

participating higher excited state were known, no such re-

striction is put on ge f(t). As discussed above, ge f(t) arises

from the corresponding correlation function Ce f(t) which

describes correlations between energy gaps of the ug&→ue&
and ug&→u f & transitions. Very little a priori can be said

about the form of this function. However, as will be seen

below, the 2D traces are sensitive to ge f(t), and therefore we

can use 2D spectroscopy as a tool to learn about excited-state

correlations, i.e., about electronic coherences in solution-

phase photoprocesses.

For the current purposes, we will assume g f f(t)

5gee(t) and study the limiting cases of ge f(t)50 and

ge f(t)5gee(t) to obtain insight into the influence of the dif-

ferent parameters. Thus in Fig. 9 we study the influence of

the second excited state u f & on the 2D spectrum. We start

again with a simple gee(t) with one solvent mode and the

second excited state. In Fig. 9~a! we investigate the three-

level model with the second transition frequency v f e5veg

1100 cm21 and the ratio of dipole moments d f e /deg51.

The line-shape function ge f(t) is set to zero. Comparing with

the corresponding two-level results of Fig. 8~b! and the ex-

perimental results of Fig. 6 we can see encouraging changes

toward the reproduction of the experimental features. For T

50 the ‘‘lower’’ negative feature in the real part is now

stronger, and a new negative feature appears in the lower

section of the imaginary part. With increasing T the lower

negative feature in the real part of the 2D spectrum moves

from its rather ‘‘diagonal’’ position to the ‘‘vertical’’ one in a

parallel manner to the experiment. The detailed evolution

with T ~not shown! indicates that this feature becomes

weaker until about T530 fs, but later regains intensity. In

the experimental trace, the feature disappears completely.

Comparison of Figs. 8~b! and 9~a! also reveals that the ratio

of the real and imaginary part intensities is closer to the

experiment in the three-level model than in the two-level

one. Furthermore, the relative intensities depend on the rela-

tive strength of both electronic transition dipole moments as

will be demonstrated below.

Employing the second limiting case ge f(t)5gee(t) re-

veals that the ‘‘disappearance’’ of the long-living negative

FIG. 8. Theoretical 2D spectra for a two-level system. ~a! The system is

characterized by a line-shape function gee(t) resulting from a correlation

function M (t) of a simple Gaussian form with tg560 fs and reorganization

energy lg5140 cm21, subject to d-pulse excitation. Population times T

50 fs and T5100 fs are presented. The laser frequency matches the maxi-

mum of the absorption spectrum. ~b! The same molecular parameters are

used as in part ~a!, only the laser pulse duration is equal to 41 fs. ~c! The

system is characterized by a line-shape function gee(t) correctly reproduc-

ing the linear absorption spectrum ~see description in the text! and the same

laser frequency detuning with respect to the absorption maximum and pulse

length as in the experiment.
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feature in the real part of the 2D spectrum is controlled by

the ge f(t) function. The correlation between the two energy

gaps disables the excited-state absorption for longer T as it

can be seen in Fig. 9~b!. Indeed, for T5100 fs the two-level

@Fig. 8~b!# and three-level results @Fig. 9~b!# become almost

identical when ge f(t)5gee(t).

Figure 9~c! presents the 2D traces for the same param-

eters as in Fig. 9~a! @i.e., ge f(t)50], but now again with

gee(t)5g f f(t) including all modes from Ref. 44. In this case

the experimental 2D traces are qualitatively well reproduced,

especially at shorter times. The correct shape and intensity of

the negative features in the real and imaginary part are ob-

tained, and also the reduction of the peak amplitudes with

larger times is seen as in the experiment. Furthermore, the

imaginary part of the spectrum is now stronger than the cor-

responding real part in accordance with experiment. How-

ever, due to the fact that ge f(t)50, the negative feature in

the real part survives to long times which is not the case

experimentally.

If we set ge f(t)5gee(t) in the case of all vibrational

modes ~not shown!, the same conclusion as obtained from

Fig. 9~b! can be drawn, i.e., the negative feature in the imagi-

nary part disappears for long times and the results are very

similar to those already seen for two levels @Fig. 8~c!#.
Looking at the experimental 2D traces one can therefore

conclude that they indeed exhibit signatures of a second ex-

cited level. Interestingly, the 2D spectrum is sensitive to the

correlation between the two excited levels, and the experi-

mental trace suggests that ge f(t) is nonzero ~otherwise the

negative features in the real part would survive to long times

T). This means we have available a method to determine

electronic coherences between excited states. In the molecule

here, these correlations constitute an intermediate case be-

tween the two limits ge f(t)50 and ge f(t)5gee(t). A more

detailed determination of the form of ge f(t) requires further

investigation which is in progress.

In Fig. 10 we further study the influence of the dipole-

moment strength ratio d f e /deg on the 2D spectrum using the

complete-mode g(t) functions from Ref. 44. Figure 10~a!
shows the three-level results for d f e /deg51, ge f(t)50 and

v f e5veg . Here the two electronic transitions are on the

same frequency and thus the negative feature which would

otherwise be surviving in the real part of the 2D spectrum is

covered by a large positive one. If we increase the ratio to

d f e /deg51.5 @Fig. 10~b!#, the negative features exceed the

positive ones. Comparing Figs. 10~a! and 10~b! demonstrates

that the imaginary part remains mostly untouched by increas-

ing the dipole ratio, but the real part is very sensitive. Thus,

the dipole ratio could be assessed from the 2D measurement

in the case of uncorrelated excited levels. As Fig. 10~c! re-

veals ~still for d f e /deg51.5), the presence of the coherence

@again ge f(t)5gee(t)] influences the 2D spectrum signifi-

cantly.

VI. CONCLUSION

In this paper we have described the technique, applica-

tion, and analysis of phase-stabilized two-dimensional ~2D!
spectroscopy for electronic transitions. Following the pio-

neering work of Jonas and coworkers,17–22 we can now

record low-noise 2D Fourier-transform spectra throughout

FIG. 9. Theoretical 2D spectra for a three-level system. ~a! The line-shape

functions gee(t)5g f f(t) result from a correlation function M (t) of a simple

Gaussian form with tg560 fs and reorganization energy lg5140 cm21,

and ge f(t)50. The second transition frequency is v f e5veg1100 cm21.

The laser frequency matches the absorption maximum of the linear absorp-

tion spectrum and the pulse length is 41 fs. ~b! The same parameters are

used as in part ~a!, only ge f(t)5gee(t)5g f f(t). ~c! The line-shape function

gee(t)5g f f(t) is used that correctly reproduces the linear absorption spec-

trum ~see description in the text! and the same laser frequency detuning with

respect to the absorption maximum, and the same pulse length as in the

experiment. In this case we set ge f(t)50. All figure parts are obtained with

ratios d f e /deg51.

FIG. 10. Influence of dipole strength and ge f(t) parameters in the three-

level system. ~a! The same line-shape functions are used as in Fig. 9~a!, but

with v f e5veg , the laser detuning is as in the experiment, ge f(t)50, and

d f e /deg51. ~b! The same parameters are employed as in part ~a!, only

d f e /deg51.5. ~c! The same parameters are used as in part ~b!, only ge f(t)

5gee(t).
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the visible wavelength region, using broadband tunable light

sources ~optical parametric amplifiers!. This is due to the

very compact diffractive-optic-based setup, which further-

more employs only two beam-steering elements common to

all excitation beams and the local oscillator.34 The introduc-

tion of highly accurate delay times with better than l/100

precision and repeatability removes experimental artifacts

that can be present when conventional delay stages are used.

Together with automated subtraction of unwanted scattering

terms, the 2D background is below 2%. The stability also

facilitates very high sensitivity (,100 aJ signal energy! be-

cause long CCD integration times can be realized without

loss of heterodyne fringe contrast. All of this makes our ap-

proach very suitable for investigating biological samples or

other excitonically coupled systems where high excitation

intensities have to be avoided. While the technique has been

applied here in the visible spectral range ~where stability

issues are more critical!, similar setups should also be of

benefit in 2D infrared spectroscopy.

The understanding of the features of 2D spectra of rela-

tively simple dye molecules such as Nile Blue represents an

important prerequisite to a successful interpretation of more

complicated 2D spectra of complex systems with coupled

chromophores. The simulations performed in this paper re-

veal considerable sensitivity of the method to the correlation

properties of the electronic states involved in the 2D spec-

trum. In particular we found that to explain the experimental

data on Nile Blue, a three-level model has to be employed.

This will also be necessary in general for 2D spectroscopy

with broadband excitation, because more and more transition

frequencies can be covered. The 2D spectroscopy is sensitive

to the correlation between the two excited levels, and the

degree of correlation between them controls the disappear-

ance of the features attributed to the excited-state absorption.

We have studied the two extreme cases of a strict correlation

between excited states and complete absence of their corre-

lation and found the line-shape function ge f(t) of Nile Blue

in acetonitrile to fall somewhere in between these two cases.

The precise form of the ge f(t) line-shape function can, in

principle, be obtained by careful fitting of the experimental

2D spectra including their dependence on the population

time T . A simple picture of the correlation function Ce f(t)

leading to ge f(t) is the following: If level ue& fluctuates in

energy by a certain amount, Ce f(t50) tells us to what de-

gree level u f & shifts into the same direction and by the same

amount, and Ce f(t.0) indicates if this correlated shift also

persists for longer times.

Future prospects of 2D visible spectroscopy include the

direct measurement of electronic coupling. An investigation

of an excitonically coupled system (J aggregate! with 2D

spectroscopy will be presented elsewhere.47 We expect 2D

electronic spectroscopy to be of great value also in biological

systems such as light-harvesting complexes. Valuable in-

sights could be obtained by analyzing both the intensities and

shapes of diagonal peaks as well as those of ‘‘cross peaks.’’

This can lead to direct two-dimensional frequency ‘‘maps’’

of electronic couplings.
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APPENDIX A: THIRD-ORDER RESPONSE FUNCTION
FOR THREE-LEVEL SYSTEMS

For a general N-level system in interaction with the elec-

tric field of a laser, the third-order response function

S (3)(ta ,tb ,tc) can be written in terms of Liouville pathways

as1

S (3)~ta ,tb ,tc!5S i

\
D 3

Q~ta!Q~tb!Q~tc!

3 (
a51

4

@Ra~ta ,tb ,tc!2Ra*~ta ,tb ,tc!# ,

~A1!

where

R1~ta ,tb ,tc!5Tr$V~ta!V~ta1tb!V~ta1tb1tc!

3V~0 !r~2` !%, ~A2!

R2~ta ,tb ,tc!5Tr$V~0 !V~ta1tb!V~ta1tb1tc!

3V~ta!r~2` !%, ~A3!

R3~ta ,tb ,tc!5Tr$V~0 !V~ta!V~ta1tb1tc!

3V~ta1tb!r~2` !%, ~A4!

R4~ta ,tb ,tc!5Tr$V~ta1tb1tc!V~ta1tb!V~ta!

3V~0 !r~2` !%. ~A5!

Here,

V~ t !5e i/\ HStVe2 i/\ HSt ~A6!

is the dipole-moment operator in interaction representation,

with system Hamiltonian HS . The concrete form of the ex-

pressions ~A2!–~A5! depends on the properties of the dipole

operator V .

In our three-level system, the electronic dipole-moment

operator can be represented by a 333 matrix

V5S 0 deg 0

deg
* 0 d f e

0 d f e
* 0

D . ~A7!

In this case, all of the pathways split into two contributions,

one that recovers the standard two-level pathway expression

and one involving the second excited state. Thus we can

write
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S (3)~ta ,tb ,tc!5S i

\
D 3

Q~ta!Q~tb!Q~tc!

3 (
a51

4

(
b5g , f

@Rab~ta ,tb ,tc!

2Rab* ~ta ,tb ,tc!# , ~A8!

where the additional index b equals g for two-level pathways

~leading through the ug& and ue& states only!, and b5 f for

the ones that have third-level contributions ~leading through

the second excited state u f &), respectively. The pathways can

be written in terms of two functions Fb , b5g , f as

R1b~ta ,tb ,tc!5Fb~ta ,ta1tb ,ta1tb1tc,0!, ~A9!

R2b~ta ,tb ,tc!5Fb~0,ta1tb ,ta1tb1tc ,ta!, ~A10!

R3b~ta ,tb ,tc!5Fb~0,ta ,ta1tb1tc ,ta1tb!, ~A11!

R4b~ta ,tb ,tc!5Fb~ta1tb1tc ,ta1tb ,ta,0!, ~A12!

where

Fb~t1 ,t2 ,t3 ,t4!

5udegu2udbeu
2Tr$Gge~t1!Geb~t2!Gbe~t3!

3Geg~t4!r~2` !%. ~A13!

The G’s are defined by time-ordered exponentials1 as

Gab~ t !5exp2H i

\
E

0

t

dvag~t !dtJ
3exp1H 2

i

\
E

0

t

dvbg~t !dtJ , ~A14!

where a ,b5e , f , and dvag(t) has been defined in Sec. IV. In

the case of Gab(t) involving either a or b equal to g , the

corresponding time-ordered exponential turns into the unity

operator because dvgg50.

Introducing the cumulant expansion,1 the F functions of

Eq. ~A13! can be expressed in terms of the line-shape func-

tions defined by Eq. ~29!. It reads

Fb~t1 ,t2 ,t3 ,t4!5udegu2udbeu
2e iveg(t12t4)1iveb(t22t3)

3exp$2hb~t1 ,t2 ,t3 ,t4!% ~A15!

with

h f~t1 ,t2 ,t3 ,t4!

5gee~t12t2!1g f f~t22t3!1gee~t32t4!

2ge f~t12t2!1ge f~t12t3!2ge f~t22t3!

1gee~t12t3!2gee~t22t3!1gee~t12t4!

2gee~t22t4!2g f e~t22t3!1g f e~t22t4!

1g f e~t32t4!, ~A16!

and

hg~t1 ,t2 ,t3 ,t4!5gee~t12t2!1gee~t32t4!

1gee~t12t3!2gee~t22t3!

1gee~t12t4!2gee~t22t4!. ~A17!

The final expressions ~26! and ~27! are obtained after

invoking the rotating-wave approximation ~RWA! and as-

suming the outcoming signal in the direction 2kW 11kW 2

1kW 3 .
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Lett. 86, 2154 ~2001!.
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