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ABSTRACT The classification ofmotor imagery Electroencephalogram (EEG) of the same limb is important

for natural control of neuroprosthesis. Due to the close spatial representations on the motor cortex area

of the brain, the discrimination of the different motor imagery tasks is challenging. In this paper, phase

synchronization information was proposed to classify motor imagery EEGwithin the same limb. In addition,

non-portable was compared with portable EEG acquisition equipment for the purpose of making the brain

computer interface (BCI) system more practical. In the non-portable case, the average accuracy of the

binary classification and 3-class classification was 60.6% and 42.7%. In the portable case, the average

EEG decoding accuracy of 58.5% and 39.9% was achieved for the two and three tasks. Furthermore,

in both two cases, different sets of electrode pairs got the similar results. Moreover, we found that the

proposed phase information based method was less sensitive to the number of EEG channels and had

less performance degradation in portable EEG equipment. These results show it is possible to use phase

synchronization information to discriminate different motor imagery tasks within the same limb. Eventually,

this will potentially make the control of neuroprosthesis or other rehabilitation device more natural and

intuitive.

INDEX TERMS Brain computer interface (BCI), motor imagery (MI), phase synchronization information.

I. INTRODUCTION

Since the 1970s, the brain-computer interface (BCI) system,

especially the non-invasive BCI system, has made significant

progress and has been widely used in medical rehabilitation

and daily life [1]–[4]. It is well known that the key of the

BCI system is classifying EEG signals to obtain correspond-

ing commands to control external devices [5]. Obviously,

the recognition accuracy of EEG signals directly affects the

control performance of the BCI system. Therefore, feature

extraction and classification of EEG signals play an important

role in the development of the BCI system. So far, motor

imagery EEG has been widely studied.

In [6], motor imagery EEG signals based on left hand,

right hand, feet and tongue were applied to the BCI system.

The associate editor coordinating the review of this manuscript and

approving it for publication was Nianqiang Li .

BCI-based neuroprosthesis control system was developed by

using the imagination of repeated planar extension/flexion of

both feet, or the imagination of repeated opening/closing left

or right hand [7]. Mcfarland et al. controlled the movements

of the cursor in three-dimensional space by imagining the

movements of the left hand, right hand and feet [8]. The four-

class BCI designed by Royer et al. allowed users to control

the flight of a virtual helicopter in three-dimensional space.

Users imagined their hands’ movements and rest to control

the forward and backward movements of the helicopter, and

imagined their left and right hand’s movements to control the

helicopter to turn left and right [9].

However, traditional BCI system has the disadvantage of

unnatural control and low control dimension. For example,

a quadriplegic patient triggers a neuroprosthesis to com-

plete the rehabilitation training by imagining the movements

of the left hand, the right hand, the feet and the tongue.
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The movements in rehabilitation training are different from

the imaginary movements, where patients use imaginary of

foot’s movements to control the hand’s movements of neuro-

prosthesis [7]. From the patient’s psychological point of view,

this type of control is unnatural and will cause discomfort to

the patient. In addition, the low control dimension of motor

imagery BCI systems based on the left hand, right hand,

feet, and tongue cannot satisfy the latest requirements for

applications.

In order to solve these problems in the BCI system, it is

of great importance to study EEG signals generated by imag-

ining different movements from the same limb. In this way,

users can use their own imaginary movements to control the

correspondingmovements of the neuroprosthesis and achieve

natural control. Meanwhile, the classification of movement

imagination EEG from the same limb can increase the control

dimension of the BCI system.

In recent years, some studies had been carried out in

this field. Yong and Menon used different algorithms to

classify motor imagery EEG signals of the same upper

limb, which included common spatial pattern (CSP), filter-

bank CSP, logarithmic band power, linear discriminant anal-

ysis (LDA), logistic regression (LR) and support vector

machine (SVM) [10]. Ofner et al. analyzed the encoding

of the same upper limb movement in the time-domain from

low-frequency EEG, and the average classification accuracy

of imagined movement and movement was 27% [11]. Obvi-

ously, the classification of EEG signals from the same limb is

very difficult, because these EEG signals contain very similar

physiological changes in the brain and features [10]. As a

result, more effective algorithms should be explored.

Most of the previous algorithms are based on the features

derived from the power analysis onmu and beta rhythms [12].

However, phase information also plays an important role

when different brain regions communicate with each other

in cognitive tasks [13]. To the best of our knowledge, phase

features have not been applied to the classification of motor

imagery EEG of the same limb in the BCI literature.

In this research, phase synchronization information of

the motor imagery EEG signals within the same limb was

extracted as feature for the classification. At the same time,

comparative study of non-portable and portable EEG acquisi-

tion equipment was carried out for the purpose of making the

BCI system more practical. Furthermore, in both two cases,

two sets of electrode pairs for achieving the phase synchro-

nization information were studied. Discriminating different

movement imagination EEG from the same limb will allow

more natural and intuitive control of rehabilitation device

(e.g. BCI-driven neuroprosthesis).

II. METHODS

A. EEG RECORDING

Eight healthy right-handed subjects volunteered to participate

in our experiments (subject A to subject H), including four

males and four females, aged between 24 and 26 years.

FIGURE 1. EEG acquisition equipment. (a) Non-portable EEG acquisition
equipment. (b) Portable EEG acquisition equipment.

Three of them (subject C to subject E) used the non-portable

equipment (Fig. 1(a)) for experiments, and all eight subjects

conducted experiments with portable equipment (Fig. 1(b)).

The same experiment paradigmwas used for these two differ-

ent EEG acquisition devices. Informed consent was obtained

from all the participants. The experimental procedure was

approved by the Ethics Committee of Medical College of

Southeast University.

For non-portable equipment, we adopted SynAmps2

amplifier (Compumedics Neuroscan, USA) with a sampling

frequency of 1000Hz. Twenty-seven electrodes were used:

F1, Fz, F2, FC5, FC3, FC1, FCz, FC2, FC4, FC6, C5, C3, C1,

Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, P1,

Pz, and P2 (Fig. 2(a)). For portable equipment, g.MOBIlab+

amplifier (G.tec Medical Engineering GmbH, Austria) with

a sampling frequency of 256Hz was utilized. Eight elec-

trodes were chosen: FC3, FCz, FC4, C3, C4, P3, Pz, and P4

(Fig. 2(b)). For two kinds of equipment, left mastoid and Fpz

were functioned as the reference electrode and the ground

electrode, respectively. During the experiment, the amplifier

automatically filtered out 50Hz power frequency interfer-

ence in the signal, and the impedance of all electrodes was

below 10k�.

B. EXPERIMENTAL PARADIGM

As illustrated in Fig. 3, four types of the motor imagery

tasks were used in this study: (a) Rest (REST). (b) Movement

imagination of grip with right hand (MI-HAND). (c) Move-

ment imagination of Flexion/Extensionwith the right forearm

(MI-FOREARM). (d) Movement imagination of reaching

and grasping the target object with the right arm (MI-ARM).

The experimental paradigm is shown in Fig. 4. Each trial

lasted 10 seconds. At t = 0s, a cross ‘‘+’’ was displayed for

1s to indicate the beginning of the trial. The next 1s was quiet.

VOLUME 7, 2019 153843



B. Xu et al.: Phase Synchronization Information for Classifying MI EEG From the Same Limb

FIGURE 2. The EEG electrode positions in two acquisition devices. The electrodes shown in green were used
in this study. (a) Electrodes used by non-portable acquisition devices. (b) Electrodes utilized by portable
acquisition devices.

FIGURE 3. Different motor imagery tasks. (a) REST: The subjects were in a state of relaxation. (b) MI-HAND: Imagine using the grip with right hand.
(c) MI-FOREARM: Imagine the right forearm flexion and extension. (d) MI-ARM: Imagine to reach-and-grasp the target object with the right arm. (e) An
example of MI-HAND task with Non-portable equipment. (f) An example of MI-HAND task of with portable equipment.

At t = 2s, a motor imagery task cue was randomly presented,

and the subjects performed corresponding movement imagi-

nation. From 6s to 10s, the subjects were in a relax state. The

experiments consisted of 360 trials in which 90 trials for each

type of motor imagery task.

C. PREPROCESSING

The EEG signal is a randomly non-stationary signal with

low signal-to-noise ratio [14]. Through data preprocessing,

background noise can be filtered to obtain EEG signals with

high signal-to-noise ratio, which is very important for our

subsequent data analysis.

In this study, time filtering and space filteringwere used for

data preprocessing. Firstly, linear phase FIR digital band-pass

filter was chosen for time filtering in order to avoid phase dis-

tortion. The filtering frequency band of phase synchroniza-

tion was 8-12Hz. Next, common average reference (CAR)

method was used for space filtering. The CARfilter redefined

the potential at each time t and at each electrode h by comput-

ing the mean value of the recorded signals of all H electrodes

as the estimated reference point, as is shown in Eq.(1).

s′h(t) = sh(t) −
1

H

H
∑

i=1

si(t) (1)

D. FEATURE EXTRACTION AND CLASSIFICATION

In neuroscience research, phase synchronization between

signals is the key feature of information exchange between

different cortex. Phase-locking value (PLV) is a measurement

of phase synchronization in the time domain. In this study,

PLV was used to extract phase information from EEG sig-

nals of different motor imagery from same limb. The cal-

culation steps of PLV between two signals are generally as

follows [12]-[14]:

Firstly, two signals are given, and their instantaneous

phases are obtained by Hilbert transformation,

y(t) =
1

π

∫

∞

−∞

x(τ )

t − τ
dτ, (2)

z(t) = x(t) + jy(t) = A(t)ejθ(t), (3)
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FIGURE 4. Experimental paradigm.

where y(t) is the Hilbert transform of x(t), z(t) is the analytic

signal of x(t), and θ (t) is the instantaneous phase of x(t), j is

the imaginary unit.

Secondly, the instantaneous phase difference between the

two signals is achieved using the formula,

θ (t) = θ1(t) − θ2(t). (4)

Finally, PLV is calculated by instantaneous phase differ-

ence,

PLV =
1

N

∣

∣

∣

∣

∣

N
∑

t=1

exp[jθ (t)]

∣

∣

∣

∣

∣

, (5)

where N is the number of points used for calculation. The

PLV ranges from 0 to 1, where 0means no synchrony between

two channels, and 1 means total synchrony between two

channels [13].

According to [12], [14], there are two kinds of phase

synchronization in the brain: large-scale and local-scale syn-

chronization. Large-scale synchronization may exist between

channels in different cerebral cortex, and local-scale syn-

chronization may occur between adjacent channels in the

same sensorimotor cortex. Recent study has demonstrated

that using large-scale synchronization can achieve higher

classification accuracy. Therefore, this study mainly focus on

adopting large-scale phase synchronization to extract features

from motor imagery EEG within the same limb.

In this research, large-scale synchronization was com-

puted involving the following cerebral cortex: sensorimotor

cortex (FC3, C3, CP3, P3, FC4, C4, CP4, and P4), and

supplementary motor cortex (FCz, Cz, CPz, and Pz).

In the non-portable case, two sets of electrode pairs were

designed. As is shown in Fig. 5(a), the first set of electrode

pairs are C3-FCz, FCz-C4, C4-CPz, CPz-C3, C3-C4 and

FCz-CPz. The second set of electrode pairs are FC3-Cz,

C3-Cz, CP3-Cz, FC4-Cz, C4-Cz and CP4-Cz, as illustrated

in Fig. 5(b). Similarly, in the portable case, also two sets of

electrode pairs were adopted. One set of electrode pairs are

C3-FCz, FCz-C4, C4-Pz, Pz-C3, C3-C4 and FCz-Pz, as indi-

cated in Fig. 5(c). Another set of electrode pairs are FC3-Pz,

FC3-C4, FCz-P3, FCz-P4, FC4-C3 and FC4-Pz, as demon-

strated in Fig. 5(d). The PLVs of six pairs of electrodes

in each scheme were calculated and used as classification

features.

Based on a lot of previous research, linear discriminant

analysis (LDA) was chosen as classifier in this study. The

core idea of the LDA algorithm is to project the sample

into the optimal discriminant space to reduce the feature

dimension and extract effective classification information.

FIGURE 5. Large-scale synchronization electrode pairs. (a) and (b): Two
sets of electrode pairs in non-portable case. (c) and (d): Two sets of
electrode pairs in portable case.

The samples calculated by the LDA algorithm obtain the

maximum inter-class distance and the minimum intra-class

distance [15].

III. RESULTS

A. RESULTS BASED ON NON-PORTABLE EQUIPMENT

1) ERD/ERS ANALYSIS

Movement, preparation for movement and imagine move-

ment are accompanied by changes in the energy of the

relevant frequency bands in the brain. When people imag-

ine movement, the energy of the mu rhythm (8-12Hz) and

the beta (13-25Hz) rhythm on the contralateral sensorimo-

tor cortex decrease, this phenomenon is called event-related

desynchronizatio (ERD), which means the cortex is acti-

vated. By contrast, the energy of the mu rhythm and the beta

rhythm on the ipsilateral sensorimotor cortex increase, which

is called event-related synchronization (ERS), and the cortex

is in an inert state at this time [16].

In this research, ERD analysis focused on energy changes

of mu rhythm and beta rhythm in C3 channel. We used the

EEG data between 1-8s from four types of motor imagery

to calculate energy changes before and after motor imagery.

The time = 0s in Fig. 6 was the starting point for movement

imagination. It can be seen from Fig. 6 that when the brain

was at rest, energy of mu rhythm and beta rhythm had not

greatly changed. However, when the brain performed motor

imagery, the contralateral energy of mu rhythm and beta

rhythm decreased. Furthermore, the energy returned to its

original level, when the motor imagery finished. In addition,

the ERD phenomenon of subject C was more visible than

subject E.

Additionally, EEGLAB toolbox was used to calculate the

energy distribution of motor imagery EEG. Fig. 7(a) to

VOLUME 7, 2019 153845
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FIGURE 6. ERD phenomenon of C3 channel with mu rhythm (8-12Hz)
and beta rhythm (13-25Hz). (a) and (b) are the results of subject C.
(c) and (d) are the results of subject E.

Fig. 7(d) shows the brain topographic map of REST,

MI-HAND,MI-FOREARM, andMI-ARM, respectively. It is

obvious that the energy of mu rhythm on both sides of the

FIGURE 7. Brain topographic map. From a1 to d1 of subject C or a2 to
d2 of subject E are the energy distribution of REST, MI-HAND,
MI-FOREARM, and MI-ARM, respectively.

FIGURE 8. The average PLV of each of the four types of EEG on C3-FCz,
FCz-C4, C4-CPz, CPz-C3, C3-C4, and FCz-CPz electrode pairs.

brain increases if the subjects are in a state of relaxation.

By contrast, when subjects perform different motor imagery

with the right limb, the energy of the left side of the brain

decreases. Moreover, the energy changes are concentrated in

the sensorimotor cortex.

2) RESULTS OF THE FIRST SET OF ELECTRODE PAIRS

Fig. 8 demonstrates the average PLV of each of the four types

motor imagery EEG signals on C3-FCz, FCz-C4, C4-CPz,

CPz-C3, C3-C4, and FCz-CPz electrode pairs, respectively.

The average PLV was the average result of all the EEG data

of the three subjects. The EEG signals between 2s and 6swere

used for calculating the average PLV.

As illustrated in Fig. 8, three kinds of motor imagery

EEG obtained higher average PLV on the C3-FCz and

CPz-C3 electrode pairs, indicating that the phase synchro-

nization of these electrode pairs increased when imagining

right limb movement. Furthermore, the average PLV of the

four types of EEG on the C3-FCz and CPz-C3 electrode pairs

is easily distinguishable.

This study involved six kinds of binary classifi-

cation combinations, i.e. REST vs MI-HAND, REST

vs MI-FOREARM, REST vs MI-ARM, MI-HAND vs

MI-FOREARM, MI-HAND vs MI-ARM, and

MI-FOREARM vs MI-ARM, and four kinds of 3-class

153846 VOLUME 7, 2019
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TABLE 1. Classification accuracy of the first set of electrode pairs for non-portable equipment.

FIGURE 9. The average PLV of each of the four types of EEG on FC3-Cz,
C3-Cz, CP3-Cz, FC4-Cz, C4-Cz, and CP4-Cz electrode pairs.

classification combinations, i.e. REST vs MI-HAND

vs MI-FOREARM, REST vs MI-HAND vs MI-ARM,

REST vs MI-FOREARM vs MI-ARM, and MI-HAND vs

MI-FOREARM vs MI-ARM. The recognition accuracy was

calculated using a window of 1s with step of 0.125s on 2-6s

EEG signals.

As shown in Table 1, for the binary classification, the aver-

age accuracy is 60.3%. Furthermore, we obtained an aver-

age accuracy of 58.8% for classifying resting EEG against

another type motor imagery EEG (REST vs MI-HAND,

REST vs MI-FOREARM, and REST vs MI-ARM).

Moreover, a mean classification accuracy between motor

imagery tasks (MI-HAND vs MI-FOREARM, MI-HAND

vs MI-ARM, and MI-FOREARM vs MI-ARM) was 61.7%.

Moreover, for the 3-class classification, the average accuracy

of 42.7% was achieved.

3) RESULTS OF THE SECOND SET OF ELECTRODE PAIRS

Fig. 9 illustrates the average PLV of each of the four types of

motor imagery EEG on FC3-Cz, C3-Cz, CP3-Cz, FC4-Cz,

C4-Cz, and CP4-Cz electrode pairs respectively. As demon-

strated in Fig. 9, the resting EEG obtained the minimum

PLV at FC3-Cz, C3-Cz, and CP3-Cz electrode pairs, and

the maximum PLV achieved at FC4-Cz, C4-Cz, and CP4-Cz

electrode pairs, indicating that the synchronization between

the left hemisphere and the Cz electrode increased and

FIGURE 10. The average PLV of each of the four types of EEG on C3-FCz,
FCz-C4, C4-Pz, Pz-C3, C3-C4, and FCz-Pz electrode pairs.

the synchronization between the right hemisphere and the

Cz electrode decreased, when imagining right limb move-

ment. Also, the average PLV of the four types of EEG

on the CP3-Cz and CP4-Cz electrode pairs can be easily

distinguished.

According to the Table 2, the average accuracy for

the binary classification is 60.6%. Moreover, the average

accuracy between resting EEG and motor imagery EEG

was 59.2%. Furthermore, we achieved an average accu-

racy of 61.9% for the motor imagery against another motor

imagery. Thus, the classification algorithm based on phase

synchronization information had better classification perfor-

mance over the different motor imagery tasks without includ-

ing REST task. This conclusion is consistent with the results

of the first set of electrode pairs. For the 3-class classification,

the mean classification accuracy was 42.1%.

B. RESULTS BASED ON PORTABLE EQUIPMENT

1) RESULTS OF THE FIRST SET OF ELECTRODE PAIRS

Average PLV of each of the four types of EEG on C3-FCz,

FCz-C4, C4-Pz, Pz-C3, C3-C4, and FCz-Pz electrode pairs

is shown in Fig. 10, respectively. The result was the average

of all the EEG data from the eight subjects. As can be seen

from the figure, three kinds of motor imagery EEG obtained

higher average PLV on the C3-FCz and Pz-C3 electrode pairs,

which was similar with those achieved in the first set of
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TABLE 2. Classification accuracy of the second set of electrode pairs for non-portable equipment.

FIGURE 11. The average PLV of each of the four types of FC3-Pz, FC3-C4,
FCz-P3, FCz-P4, FC4-C3, and FC4-Pz electrode pairs.

electrode pairs for non-portable case. Additionally, it is easy

to differentiate the average PLV of the four types of EEG on

the FCz-C4, Pz-C3, C3-C4, and FCz-Pz electrode pairs.

Table 3 shows the classification accuracy of eight subjects.

For the binary classification, the average accuracy of 58.5%

was got, and the average accuracy of the 3-class classifica-

tion was 39.9%. By comparing the Table 3 to the Table 1,

we can see that phase information based pattern recognition

algorithm achieved similar classification accuracy in both the

non-portable and portable scheme.

2) RESULTS OF THE SECOND SET OF ELECTRODE PAIRS

Fig.11 shows the average PLV of each of the four types of

EEG on FC3-Pz, FC3-C4, FCz-P3, FCz-P4, FC4-C3, and

FC4-Pz electrode pairs respectively. This set of electrodes

connects different areas of cerebral cortex, which are far

apart. As demonstrated in Fig. 11, the resting EEG obtained

the maximum PLV at almost all of the electrode pairs. It can

be seen that the average PLV of the four types of EEG on the

FC3-C4 and FC4-C3 electrode pairs are easily distinguished.

The mean accuracy of the binary classification and 3-class

classification was 58.1% and 39.6%, as can be seen from the

Table 4.

C. COMPARATIVE ANALYSIS OF

CLASSIFICATION RESULTS

Fig. 12 and Fig. 13 show the phase information based classi-

fication results for the non-portable and portable respectively.

FIGURE 12. Non-portable classification results. (a) The result of binary
classification. (b) The result of 3-class classification. PLV-1 and
PLV-2 represent the result of the first set of electrode pairs and
the second set of electrode pairs, respectively.

In the non-portable case, the first and second set of elec-

trode pairs got the similar classification performance for both

binary and 3-class classification except REST vs MI-HAND

vs MI-FOREARM. In the portable case, we can achieve the

similar conclusions.

Moreover, classic CSP method was used for comparison.

Fig. 14 shows the average classification accuracy of the

binary and 3-class classifications for different feature extrac-

tion methods under different EEG acquisition equipment.

In the case of non-portable, the algorithm based on spatial

informationwas better than the algorithm based on phase syn-
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TABLE 3. Classification accuracy of the first set of electrode pairs for portable equipment.

FIGURE 13. Portable classification result. (a) The result of binary
classification; (b) The result of 3-class classification. PLV-1 and
PLV-2 represent the result of the first set of electrode pairs and
the second set of electrode pairs, respectively.

chronization information, no matter it was binary or 3-class

classification. The classification algorithm based on spatial

information relied on multi-channel EEG data, and the num-

ber of data channels collected by non-portable equipment was

larger and the spatial information was more obvious. There-

fore, the non-portable algorithm based on spatial information

achieved better classification results.

However, in the case of portable, the difference between

spatial information based classification algorithm and phase

FIGURE 14. Binary and 3-class average classification accuracy of two sets
of equipment under different algorithms. (a) The average accuracy of the
binary classification. (b) The average accuracy of the 3-class classification.
For both the non-portable and portable devices, the PLV1 and
PLV2 represent the mean accuracy of the first set of electrode pairs
and the second set of electrode pairs, respectively. CSP represents
the average accuracy of classic CSP method.

information based algorithm become smaller. These results

are consistent with those achieved in the literature [12].

In addition, from non-portable equipment to portable

equipment, the spatial information based classification per-

formance fell 7.2% and 7.6% for the binary and 3-class

classifications, respectively. However, in the first set of elec-

trode pairs, phase information based classification perfor-

mance dropped only 1.8% and 2.8% for the binary and
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TABLE 4. Classification accuracy of the second set of electrode pairs for portable equipment.

3-class classifications, respectively. In the second set of elec-

trode pairs, phase information based classification perfor-

mance decreased only 2.5% and 2.5% for the binary and

3-class classifications, respectively. In both sets of elec-

trode pairs, phase information based method is less sen-

sitive to the number of EEG channels and had obtained

less performance degradation. This is of great impor-

tance in the BCI application, especially in BCI-driven

neuroprosthesis.

Furthermore, based on our previous work [17], deep learn-

ing was also applied to extract and classify the features of

the motor imagery EEG data. The average accuracy of the

binary classification and 3-class classification in the non-

portable and portable case was 62.6%, 44.3% and 61.4%,

42.4%. The deep learning algorithm also achieved less perfor-

mance degradation from non-portable to portable. However,

the deep learning algorithm takes a longer time to process

the data, which is a disadvantage for online classification

of motor imagery EEG signals. As a result, the phase syn-

chronization information based classification algorithm is

more suitable for the online application of BCI systems,

such as EEG-based rehabilitation device and robot control

system.

IV. DISCUSSION AND CONCLUSION

The motor imagery EEG signals of left hand, right hand, feet

and tongue were used in traditional BCI system, which led to

the problem of unnatural control and low control dimension,

especially in prosthetic limb applications [7]–[9]. To some

extent, these problems can be solved by adopting motor

imagery EEGwith the same limb. However, the physiological

features of these EEG signals are very similar, which brings

a great challenge to feature extraction and classification.

In most studies on the classification of motor imagery EEG

from the same limb, researchersmainly adopted the algorithm

based on the energy change of mu rhythm and beta rhythm,

and seldom considered the phase information of the EEG

signals [10], [11]. However, phase has been also an important

feature to distinguish motor imagery EEG.

In this study, synchronization phase information was pro-

posed to extract the features from the motor imagery EEG

of the same limb. Different sets of electrode pairs were used

to calculate the PLV. In addition, non-portable equipment

can collect more channels of EEG data with high sampling

frequency. However, its experimental procedure is cumber-

some and the equipment is large, which is not suitable for the

BCI application in daily life. By contrast, portable equipment

is small in size and easy to carry. Furthermore there are

fewer channels to collect EEG, and the sampling frequency

is relatively low. However, it is convenient to use portable

equipment for the application of BCI driven system.

For this reason, comparative study on both on-portable

and portable equipment were conducted. The proposed phase

synchronization information based method, the classic CSP

method, and the wavelet transform time-frequency image and

convolutional network based method was used to classify

the movement imagination EEG with the same limb. How-

ever, phase information based method was less sensitive to

the number of EEG channels and had obtained less perfor-

mance degradation. Moreover, the proposed phase informa-

tion based method satisfies online BCI application, due to its

low complexity.

These findings are very significative for the BCI appli-

cation, particularly in the natural and intuitive control

of upper limb neuroprostheisis or other multi-degree-of-

freedom robot.
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