Phase synchronization of chaotic oscillations in terms of periodic orbits
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We consider phase synchronization of chaotic continuous-time oscillator by periodic external force.
Phase-locking regions are defined for unstable periodic cycles embedded in chaos, and
synchronization is described in terms of these regions. A special flow construction is used to derive
a simple discrete-time model of the phenomenon. It allows to describe quantitatively the
intermittency at the transition to phase synchronization. 1997 American Institute of Physics.
[S1054-15007)02504-4

When a periodic self-sustained oscillator is governed by a plitude and the phase even for chaotic motions. Roughly
periodic external force, the phenomenon of synchroniza- speaking, the amplitude corresponds to a coordinate on a
tion can be observed, i.e., the phase of the oscillator is Poincaresurface of section, and the phase increasesby 2
locked to the phase of the driving force. For certain cha-  during the motion between the cross-sectith§he ampli-
otic autonomous dissipative systems the phase can be in- tude is chaotic, while the phase is characterized by zero
troduced as well. Such systems can also be synchronized Lyapunov exponentphase shifts are marginal, like time
by external periodic force. In this case the phase is shifts). The phase synchronization of chaotic system can be
locked, while the amplitude remains chaotic. We describe defined as the occurrence of a certain relation between the
here the phase synchronization of chaotic oscillators phases of interacting systenfer between the phase of a
through the phase-locking properties of the unstable pe- system and that of an external foycevhile the amplitudes
riodic orbits embedded in a chaotic attractor. For each  can remain chaotic and are, in general, uncorrelated. This
such orbit the phase-locked region can be constructed, relation between the phases appears usually as frequency en-
and when these regions overlap, full phase synchroniza- trainment. It can be easily observélso experimentallyif
tion is observed. Transition to this state is shown to occur  one defines the mean frequency of chaotic oscillations as a
via a specific kind of intermittency, arising at the  number of maxima of the process per unit tifmeore rigor-
attractor —repeller collision in phase space. ously, one can introduce it as a number of iterations of the
Poincaremapping per unit time If this frequency coincides
or nearly coincides with the frequency of the external force,
. INTRODUCTION one can speak of frequency locking. Defined in this way, the
Synchronization is a basic nonlinear phenomenon irphase synchronization appears to be a direct analog of phase
physics, discovered at the beginning of the modern age dbcking of periodic oscillations. It describes the onset of
science by Huygensin the classical sense, synchronizationlong-range correlations in chaotic oscillatiofguppression
means adjustment or entrainment of frequencies of periodiof phase diffusion and thus also corresponds to the appear-
oscillators due to a weak interactidqnf. Refs. 2—4. This  ance of certain order inside chaos.
effect is well studied and finds a lot of practical applications  Different synchronization transitions can be character-
in electrical and mechanical engineerihg. ized with the help of the Lyapunov exponents. Because these
Extensive investigations of chaotic oscillations have re-are the transitioninside chaosthe largest Lyapunov expo-
quired generalization of the notion of synchronization to thisnent remains positive. The transition to complete synchroni-
case. In this context, different phenomena have been founzhtion happens when a partigonditiona) Lyapunov expo-
which are usually referred to as “synchronization.” Gener-nent changes sign. The phase synchronization occurs when
ally, one speaks on synchronization if some nontrivial ordeithe zero Lyapunov exponent becomes negative. It is impor-
is encountered in weakly interacting chaotic systems; e.g. th@nt, that these transitions occur in a chaotic environment,
complete(identica) synchronization is observed if the states and therefore are not as “clean” as the order-chaos transi-
of interacting systems coincide while their dynamics remairtions. In fact, one has to consider these transitions statisti-
chaotic; the attractor is then embedded into a symmetricatally, assuming some characteristic statistical properties of
subspace of the phase sp4c&Another example is the gen- the underlying chaos.
eralized synchronization, where also the dimension of the In this paper we exploit the analogy between synchroni-
attractor decreases but the dynamics is restricted to some npation of periodic and chaotic oscillations to achieve deeper
necessarily symmetric subspacé? understanding of structural metamorphoses of strange attrac-
Recently, the effect ophase synchronizatioof chaotic  tors at the phase synchronization transitions. Our approach is
systems has been described theoretitalyand observed the investigation of phase-locking properties of unstable pe-
experimentally** It appears in autonomous continuous-time riodic orbits embedded in strange attractoFor each of this
oscillators, where one can introduce the notions of the amperiodic orbits one can define phase-locking regi@msold

Chaos 7 (4), 1997 1054-1500/97/7(4)/680/8/$10.00 © 1997 American Institute of Physics 680

Downloaded 13 Apr 2001 to 141.89.178.57. Redistribution subject to AIP copyright, see http://ojps.aip.org/chaos/chocr.jsp



Pikovsky et al.: Phase synchronization of oscillations 681

20 T T T Q-v

0.02 -

10 0.01 |

-0.01

-20 -10 0 10 20
FIG. 2. Phase synchronization of the chaotics8ler oscillator.
FIG. 1. The phase portrait of the Bsler attractor.

The graph of the observed frequency as a function of the

tongues, thus characterizing the phase-locking of the chaotic€Xternal force amplitudg and the frequency allows one to
attractor as a state where all periodic orbits are locked. Co/d€termine the regime of phase synchronization as the state
respondingly, the transition to phase synchronization igVith €=v. This regime is clearly seen as a large plateau in
smeared because generally the Arnold tongues do not coifid9- 2. o ) .
cide. As a result a specific kind of intermittentyhich we As the unstable periodic orbitsycles build a skeleton
call “eyelet” since the seldom leakages from the locked©f the chaotic set, we can attempt to represent the phase
state require the very precise hitting of certain small region$ynchronization in terms of these cycles. Indeed, periodic
in the phase spapés observed at this transition. ext_ernal force leads to phase-locking of a cycle, apd t_h|s is
The paper is organized as follows. In Section Il we in- valid both for stable_ and unstable cycleémly numerics is
troduce the phase synchronization on the example of the eX10re€ cumbersome in the latter case because one has to use
ternally driven Resler model. Further, in Section Il we de- SPecial methods to locate an unstable solytishthe fre-
scribe the special flow construction and reduce the problerffuency of the forcing is close to the frequency of the cycle,
to a simple mapping. Study of this mapping as performed irf’® Main phase-locking regiofthe largest Arnold tongue
Section IV, allows us to determine the quantitative propertie&PP€ars, where two periodic solutions exist having exactly
of the synchronization transition. The &er model is revis- _the penod_ of the external force. To classify these solutlons it
ited in Section V where we discuss the correspondences arfg convenient to look at the Lyapunov exponents. In a dissi-

discrepancies with the derived theoretic implications. pative three-dimensional system like) an autonomous un-
stable limit cycle has one positive, one negative, and one

II. PHASE SYNCHRONIZATION IN THE ROSSLER zero Lyapunov exponenk ,,0\ _. The periodic orbits in

SYSTEM AND UNSTABLE PERIODIC ORBITS the main phase-locking region have the Lyapunov exponents

NioAg Ao andh, N _,A_ whereh <0<\, . One can
attribute the zero Lyapunov exponent of the autonomous
cycle to the phase variable, thus two appearing closed orbits
correspond to a stable and unstable position of the phase. At
the border of the phase-locking region the orbits with stable
X=—z—y+YE cosut, and unstable phase disappear through a saddle-node bifurca-
tion.
y=Xx+ay—XE sin ut, (1) We want to characterize synchronization of a strange
attractor, thus we have to study phase-locking of different
periodic orbits embedded in it. First, we need to find these
Below the parametera=0.2, c=9 andb=1 are fixed. At  Orbits in the autonomous case. To this end a discrete repre-
these values, the dynamics of the autonomous sy¢tenis ~ sentation of the dynamics is useful, e.g. via the Poincare
rather simple(Fig. 1) and can be viewed as weakly noniso- map. For the autonomous Bsler system we use the secant
chronous rotations around the origin. Therefore, one can forsurface
mally define the phase as

As an appropriate illustration we take here thes&ler
system’ and act on it with the external force whose ampli-
tude and frequency are given I&/and v, respectively. The
resulting equations are:

z=xz—cz+b.

y=0, x<O0.
¢>=arctan¥ (2)  As the mapping is highly contracting in tieedirection, we
X get a one-dimensional mapping- f(x) shown in Fig. 3a.
and calculate the mean observed frequency as ThlS mapplng allows us to |dent|fy all periOdiC orbits in the
. Rossler system and to classify them according to the number
QO ={(¢). (3)  of points they produce on the Poincarap (the number of

Chaos, Vol. 7, No. 4, 1997

Downloaded 13 Apr 2001 to 141.89.178.57. Redistribution subject to AIP copyright, see http://ojps.aip.org/chaos/chocr.jsp



682 Pikovsky et al.: Phase synchronization of oscillations

6.5 (b) T T 1.03 T T
6.4 | E +
+ F i, + 1
L . ] + + o4
: 6.3 . + N + + % + % + .
£ + +
=62t 1 Pt i i
g + + + + $
261t 1 102 + * + $ b 1
+ N * " i
60 : g st E L ;
5} F o+
3 + + + 4
L o + o+
2 + M 3
= A ¥ o+ +
T y +
(a) 1.01 + .
-5 | i
N
-10 | ]
1.00 . :
] 5 10 15
cycle length M
AT 10 '
- - X, -5 FIG. 4. The mean frequencies for cycles of different lengths in thesiRo

model.

FIG. 3. The Poincarenap (a) and the return timegb) for the autonomous
Rossler system.
The dynamics is defined in the following way: inside the
domain one has
loops. The latter discrete characteristics we call the orbit's . .
length M. It is clear, that to find the effect of a periodic =~ Y~ 1+ *=0. )
force, it is not sufficient to knowM, but we need to know and as the trajectory reaches the boundary pdint
the real period of the continuous-time orBit(the mean fre- y=T(x)), it jumps to the point {(x), 0) (see Fig. 5. It is
quency of the cycle can be then defined @s 27M/T).  easy to see that the mappirg- f (x) is the Poincarenap for
This period cannot be found from the Poincanap, but the flow, and the return time is given by the functid(x).
requires additional information on the return times betweerOne can take both functions from the simulations for a par-
consecutive intersections. We present the return time as tiular system(in the case of Rssler attractor these should
function of coordinatex along the attractor in Fig. 3b. The be the dependencies from Fig. 3a and Fig. 3b, respectively
range in which this differences vary, is not large; nevertheor extract them from the experimental data, thus modeling
less, as a consequence, the mean frequencies of unstal&l dynamics. The advantage of the special flow construc-
cycles embedded into the attractor are scattered over the cafon is that here the phas@ariabley) and the amplitude
tain (also relatively narrowinterval. (cf. Fig 4 where these (variablex) are separated. If the mdifx) is chaotic and its
frequencies are computed for all the orbits with the length
<15).
In its turn, this implies that the onset of frequency lock-
ings for these orbits should happen at different values of the Y
frequency of external force. It is clear that an adequate de-

scription of synchronization must effectively take account NT(X)
for this unequal frequencies. /\/

Ill. SPECIAL FLOW MODEL A

Fortunately, a construction which allows to simplify the / )
problems for the flows with varying return times, is already / \
known. This is the “special flow,” or the flow over a / '
mapping'® The model is a continuous-time flow in a two- ’ 2 X
dimensional domain 0 i) x f) 1

O0=x<1, 0O=sy<T(x). FIG. 5. The special flow construction.
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statistical properties are described by the invariant measure
u(x), then the average frequency of oscillatiamss defined
simply as

— 27

(T)”
where the mean period is calculated with respeqgt.to
We now generalize the construction by taking into ac-
count a periodic external force. First, we introduce the nor-
malized phase according to

B 2w
¢—YW-

FIG. 6. The synchronization region in systéi8) for §=0.2.

Next, we assume that the external force having frequency
and amplitudes influences only the phase, and not the am-
plitude x. This approximation is justified at least for small Xo s 1= (%) ©)
forcing, because the chaotic attractor of the mapping n+i n

x—Tf(x) is relatively robust with respect to small perturba- Uni1=Un+ vT(X,) + P (¢, ,X,). (10
tions, while a marginal position of the phase is sensitive t
external influence. Thus, for the phase we write instead)of
the equation

(%t is worth noting that this is not a stroboscopic map as one
could expect for a periodically driven system, but a Poincare
map. Correspondingly, the transformatidd) gives the val-

.27 ues of the phase of the external force at the moments when

¢= WJ“ F(vt, ), ®  the phase of oscillations is equal to zero. We can define the

o o rotation humber for the mag0) as
where the functiorF is 2m-periodic in both arguments. The

flow is now defined on the domainOx<<1, 0< ¢< 2 with — lim n— o (11)
the jump from the pointx,2#) to the point(f(x),0). P n '’

n—o
Let us introduce the phase of the external force accord- o )
the frequency of oscillations is then

ing to
_ "1)—¢'(0) 27
p=nt. Q=lim —¢()t¢( )_2m, (12)
Then we can rewrite the evolution @fas a two-dimensional o P
flow on a torus (here¢’ is the phasep lifted onto the whole real line
. Mathematically, the systeif®,10 is a skew product: the
p=v, (6) mapping(9) is not affected by(10). This essentially simpli-
o fies the analysis, which we perform in the next section.
¢=m+|:(¢,¢)- (7
A natural line of section for this flow is the ling=0, and IV. MAPPING APPROACH TO PHASE
the corresponding Poincarmeap can be written as SYNCHRONIZATION
Unr1= Unt vT(Xp) + O (¢, ,X,)- (8) As a concrete example we consider here the following

Here the nonlinear functio® is a 27-periodic function of two-dimensional mapping

the first argument. It is determined by the solution of the  X,,1="f(X,)=1—2|x,|, (139
nonlinear continuous-time equatio(&7) and therefore can-
not be generally obtained analyticalfHaving the solution Une1= T v(Tot OXn) & COL2mihy). (13b)
d=d(t, X, ), ¥=(t,X,,¢,) and settingp=2m we get Heree is the amplitude of the forcing. We assume that the
the timet,(x,,¢,) between two intersections. Substitution amplitude obeys the tent map, and the phase is governed by
of this time in the expression foys gives the mapping the simple chaotically forced circle map. The dependence of
Pnr1=Un+1(Xn,¥,). ] We can only say that in the case of the periodT on the amplitudex is assumed to be linear. To
vanishing forcingF=0 the trajectories on the torus are demonstrate that this map indeed mimics the properties of a
straight lines, so the functio® vanishes as well. Thu® real system, we present in Figs. 6 and 7 calculations of the
describes the effect of forcing on the trajectories of the spemean rotation number according (tbl), which can be com-
cial flow. pared with the frequency for the Bsler systentFig. 2). The

We now combine the mappin(B) with the Poincare paramete regulates the level of nonisochrony of the oscil-
map for the amplitude to get finally a discrete-time systemlations, so that the small values éfcorrespond to a phase-
that describes the phase synchronization coherent attractor.
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fixed points of the tent mafil3a x,;=—1, x,= 1/3 the bor-
ders of the phase-locked regions can be easily calculated
65 | 8 analytically: v=(27*¢)/(To+ 6x; ). For each periodN
orbit x(1), ... X(N) of the tent mapg13a the dynamics of
l the phase variable) inside the phase-locked region is
63 b | simple: there exist a corresponding stalpig€l), . .. i/s(N)
a and an unstables (1), ... 4y (N) orbit. At the border of
I synchronization these orbits disappear via the saddle-node
bifurcation and a state with the rotation numher# 27
6.1 4 appears.
In our case the two fixed points of the tent map play a
crucial role, because on these orbits the average value of
5o . ‘ ‘ . ) T(x) reaches the maximum and the minimum, corresponding
094 09 098 100 102 104 106 to the maximal and minimal average continuous-time period
v of the cycle of the chaotic oscillatofThis is due to the
FIG. 7. Dependence of the rotation numpemn the external parameterfor monotonic func,tlonT(X) chosen, otherwise the mmlmum
the model(13) with 5=0.2 and different forcing amplitudes=0.2, 0.15,  @nd/or the maximum can be reached by a cycle of high pe-
0.1, 0.05. The arrows show the attractor—repeller collision points400.2.  riod or even by an aperiodic orbit of the mé&jB83.) There-
Note that the freque_ncy_ plateau appears to be much larger than the region fbre, the phase-locked regions for all cycles of high periods
full phase synchronization. lie between these “primary” locked regions. A region where
all the phase-locked regions overlap is the gray one in Fig. 8.
We turn now to the representation of a chaotic attractoin this region all periodic orbits embedded in the maga
through unstable periodic orbits embedded in it. Recall thatire locked, with corresponding stable and unstable orbits of
we distinguish between the integer period of the orbit ac{13) shown in Fig. 9a. These orbits can be considered as
cording to the mappin¢l3a and the continuous-time period skeletons of the attractor and the repeller, respectively, and
of the flow. The tent mag13a has periodic orbits of all they are well-separated. All trajectories on the attractor wan-
lengths, and these orbits can be easily found explicitly. If weder in a vicinity of the skeleton, therefore the value of the
choose one such orbit, the mélBh) becomes a simple pe- phase remains bounded, and the rotation number is exactly
riodically driven circle map, and the classic theory of phasezero. We call this domain the region of full phase synchro-
locking (Arnold’s tonguey can be applied® 2 For each pe- nization.
riodic orbit in (139 we can construct the main phase-locked  As the parameters of the system are changed in such a
region with the rotation numbgsr=27. Some of these re- way that the boundary of the region of full phase synchroni-
gions are shown in Fig. 8. The tongues stick into differentzation is approached from inside, the attractor and the repel-
points on thes=0 line, because different periodic orbits of ler come closer to each other. At the transition point of
the chaotic oscillator have different mean continuous-timeattractor—repeller collision the saddle-node bifurcation for
periods. In our approach these periods are determined by tlmme of the unstable periodic orbits occurs. The situation just
average values of the functioR(x) on the orbits. For the beyond the transition is shown in Fig. 9b. Although most
cycles remain phase-locked, those few, which have lost
phase-locking, allow phase slips to ocgat a slip the phase
changes by+27). We now develop a statistical theory of
these slipdcf. Refs. 22,23
Consider, for definiteness, the transition at which the
phase-locking for the fixed point, is lost. It happens for
ve=(2m+¢)/(To+ 6-X,). Let us first suppose that the
value of the variable in the mapping 133 is taken exactly
at this fixed point, i.ex=x, for all times. Then the dynamics
of the phase is described by the simple circle map just out-
side of phase-locking, with characteristic time intervals be-
tween phase slips growing as an inverse square root of the
distance to the bifurcation point, in the same way as at the
type-1 intermittency**

L T79~Cq(v— VC)_1/2. (14
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For a chaotic trajectory such a phase slip can also occur, if
_ _ _ _ _ the trajectory of the tent mafl3g stays for a long timedat
FIG. 8. Phase-locking regions for the fixed points of the tent risatid

lines) and for the periodic orbits with periods 2,3,4(8ashed linesfor least TS') in a close vicinity Of, the fixed pointx,:
5=0.1. The region of full phase synchronization, where all the phase-IX_X2|<C2- SUppO_Se that_ a tra_Jectory of the tent map
locking regions overlap, is delineated with grey. comes close to the fixed point at timeX{0)~x,. Because
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FIG. 9. The stabldfilled circles and unstablgopen circles periodic orbits with periods,1..,8 forming the skeletons of the attractor and repeller,
respectively(a): inside the full synchronization regian= 0.2, §=0.2, v=1.01, the attractor and the repeller are distifiot just after the attractor—repeller
collision, at which the stable and unstable fixed points correspondirg-td/3 disappear=1.0225). A trajectory of the circle ma@3b) with fixed x=x,

is depicted by pluses.

the fixed point of the map(13a is unstable with the when sufficiently large number of periodic orbits undergoes
Lyapunov exponenf\(x,) (for the tent map considered, a saddle-node bifurcation and the probability of phase slip
A =log 2), for the evolution ofx we can write becomes large, one observes a deviation of the mean ob-
served frequency from the frequency of the external force.
[X(1) = xel ~[X(0) =Xzl exd M (x2)t]. This also explains the asymmetry of the frequency character-
Thus, the condition for the phase slip to occur can be rewritistics Fig. 7: as one can see from Fig. 8, the fixed prinis
ten as more isolated in the “skeleton,” compared to the fixed point
_ X»; therefore the probability of phase slips increases more
IX(0) =l extM(xz) 73] < C rapidly at the boundary where the fixed poiot undergoes
which gives the estimate for the slip region in the tent mapihe saddle-node bifurcation.
X(0)— Xo| < Cy ex — A (X)Cq(v— 1)~ 2. (15) We have considered the simplest possible case when the
borders of the region of full phase synchronization are given

This region is exponentially small, like an “eyelet,” and the py the phase-locking regions of the fixed points. This is con-
phase slips are correspondingly extremely rare. Using the

uniform invariant probability density for the tent map we can
estimate the probability to visit any interval as proportional
to its length. Thus, the probability for a phase slip to occuris ~ 1° ' i ' ‘
proportional to the r.h.s. df15), and the rotation number is

inverse proportional to this probability. As a result, we ob-
tain the following expression for the rotation number at the

attractor—repeller collision transitic?i:?® 102 L ]
logp|~ —|v—v|*2 1
(=%
We check this relation in Fig. 10. It is valid for both transi- &

tions where fixed pointx; and x, leave the phase-locked

region. From the consideration above it is clear that the time 107 | 7
statistics of phase slips corresponds to the statistics of Poit
carerecurrence times for a chaotic systéstatistics of the
returns to the eyeletl5)), and this is known to have the

exponential taif? - ‘ . . ‘
The exponentially slow eyelet intermittency is the reasor 8 12 % 20 24
why the phase-locked region for the chaotically driven circle Iv=vd

map(Fig. 7) appears to be larger than the region of full phase ,

svnchronization. and whv the nearl erfect phase s nChrOF_IG. 10. The rotation numbes at the border of the attractor—repeller tran-
Y . ’ y yp p . Yy sition in the region of eyelet intermittency. The parameters are0.2,

nization can be observed also for small amplitudedor ;-2 squares: the fixed point s loses stability; circles: the fixed point

which there is no full phase synchronization at all. Onlyatx, loses stability.
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FIG. 12. Statistics of phase slips at the border of full phase locking for the
Rossler attractor(a): A histogram of time intervals between phase slips for
v=1.0195,E=0.05 (b): Frequency difference vs external force frequency
near the transition point,,=1.0185,E=0.05.

in full accordance with the theoretical predicti¢i6).

There are, however, peculiarities of the Rier system
FIG. 11. The Poincareection in the coordinates, ,#, . (a): inside the that do n.0t fit the picture predlctepl by the ConSIdera“O,n of
phase-locked regiofE=0.05, »=1.018. The stablgwith respect to phage ~ the special flow model. The location of the locked regions
phase-locked cycle of length 2 is shown with diamor{. near the tran- ~ for the particular periodic orbits embedded in the attractor
sition border(E=0.05, »=1.0196. (c): outside the phase-locked region (Fig. 13, reveals the discrepancy with the phase synchroni-
(E=0.05,»=1.02. zation region calculated for the full system. The phase syn-

chronization can be observed already below the intersection

of the outermost tongues, i.e. in the domain where only a
nected to specific properties of the mig@) and the function  part of periodic orbits is synchronized. However, at the larg-
T(x): in the considered above case the maximum and miniest computationally times we were unable to detect the con-
mum of the averaged period are reached on fixed points of tribution of phase slips which should be gained in vicinities
The case when these extrema are reached on periodic orbis unlocked cycles. Thus, it appears that some cycles do not
of f(x) can be considered in a similar way. More compleXcontribute to the phase rotation. To find a reason for this
situations can occur if an extremum is reached on a chaotigehavior, we have looked at the positions of this cycles in
everywhere dense trajectory. Then the attractor and the rehe phase space. It appears that these cycles lie outside of the
peller can collide in a dense set of points; similar situationattractor. E.g., in Fig. 11a it is demonstrated that such a cycle

happens in a quasiperiodically forced circle Mi&hl This  (the cycle of length Plies in a completely white area with
latter case needs special investigation.

V. THE ROSSLER SYSTEM REVISITED \

Now we can compare the data from the forcedsster N
system with the conclusions of the preceding section. The 0.10 +
similarity between the synchronization plateaus in Fig. 2 and
Fig. 6 is not to be overlooked. The Poincamap induced by )

the the phase-synchronized attractor on the hyperplar@,
x<0 is plotted in Fig. 11a. We present only the coordinate
Xp (the coordinate,, is not important because the attractor is
nearly two-dimensional owing to the strong compression
along thez-direction. As the second coordinate we use the )
phase of the external force at the momenqtsf intersections \
with this plane:y,= vt,, mod 2. This graph is thus analo- \
gous to Fig. 9. Outside the transition boundaries, the phas '
slips are possible and the attractor fills the whole region !
0<y <2 (Fig. 11b,9. These slips contribute to the devia- VY Sy
tion of the observed frequend® from that of the external 09 000 1020 1040
force v. Near the transition point,(E) these deviations are frequency v

rather rare(Flg. 12, and we observe the scallng of the fre- FIG. 13. The phase-locking regions for some cycles in thesko model

quency(Fig. 12: and the region of phase synchronization for the attratgoey area; this
region is extracted from the Fig).ZThe black square marks the parameters
used in Fig. 11a; here the cycle of length 2 and one of the cycles of length
log|Q— v~ —|v—v| 2 (17) 3 are locked by the external force.

/| — length 1
R length 2
--- length 3
—— length 3
—-- length 4

amplitude E
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