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We investigate the synchronization of oscillators based on anharmonic nanoelectromechanical

resonators. Our experimental implementation allows unprecedented observation and control of parameters

governing the dynamics of synchronization. We find close quantitative agreement between experimental

data and theory describing reactively coupled Duffing resonators with fully saturated feedback gain. In the

synchronized state we demonstrate a significant reduction in the phase noise of the oscillators, which is key

for sensor and clock applications. Our work establishes that oscillator networks constructed from

nanomechanical resonators form an ideal laboratory to study synchronization— given their high-quality

factors, small footprint, and ease of cointegration with modern electronic signal processing technologies.
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Synchronization is a ubiquitous phenomenon both in the

physical and biological sciences. It has been observed to

occur over a wide range of scales—from the ecological [1],

with oscillation periods of years, to the microscale [2], with

oscillation periods of milliseconds. Although synchro-

nization has been extensively studied theoretically [3–5],

relatively few experimental systems have been realized

that provide detailed insight into the underlying dynamics.

Here we show that oscillators based on nanoelectrome-

chanical systems (NEMS) can readily enable the resolution

of such details, while providing many unique advantages

for experimental studies of nonlinear dynamics [6–8]. In

addition, nanomechanical systems might prove useful for

exploring quantum synchronization [9,10].

Nanomechanical oscillators also have been exploited

for a variety of applications [11–13]. In particular, nano-

scale mechanics exhibits enhanced nonlinearity [14,15]

and tunability [16,17], which has been used to suppress

feedback noise [18,19] and create new types of electro-

mechanical oscillators [20–22]. These oscillators may find

application as mass [23], gas [24,25], or force sensors [26],

without the need of an external frequency source.

Building frequency sources from arrays of NEMS may

yield enhanced applicability, but is challenging. For exam-

ple, statistical deviations in batch fabrication inevitably

lead to undesirable array dispersion [24]. If an array has

appreciable frequency dispersion, global sensor responsiv-

ity gets reduced. However, if the elements of the array are

made into a self-sustained oscillators and synchronized

with one another, then the array responsivity will recover

due to a reduction in phase noise [3]. Since NEMS have

numerous applications, and are useful in studying nonlinear

dynamics, we set an important milestone by demonstrating

synchronization in nanomechanical systems.

There are previous reports of synchronization in micro-

or nanomechanical systems. However, these do not, in fact,

demonstrate the phenomenon as conventionally defined [3]

—that is, the phase locking of weakly coupled self-

sustained oscillators. Shim et al. [27] reported synchroni-

zation of the driven excitations in coupled resonators,

not self-sustained oscillators. Zhang et al. [28] reported

self-sustained oscillations excited by radiation pressure in

optomechanical resonators, coupled through the evanescent

optical field. However, the model and data presented in

Zhang et al. reflect strong coupling [29], with the energy to

excite the oscillations equal to the energy to couple the

devices. This strong coupling inevitably leads to confusion

between synchronization of individual oscillators and the

excitation of a single coupled mode.

Our experiment is designed to unambiguously demon-

strate canonically defined synchronization with a pair of

weakly coupled oscillators. This is accomplished by

employing an additional feedback loop, separate from the

feedback loop necessary to sustain oscillations, to couple the

resonant devices. This coupling can be modified via analog

electronics, allowing full control of all relevant parameters.

Importantly, it can set to a value where the coupling is a

weak perturbation on the individual oscillator dynamics.

Since all of these parameters are carefully calibrated, we

can make quantitative comparisons with theory, yielding an

ideal platform to elucidate synchronization. Our implemen-

tation is scalable to thousands of devices through standard

methods of large-scale integration. To show the applicability

of synchronized NEMS, we measure the phase noise of the

oscillators, and demonstrate the reduction in phase noise

theoretically expected from noise averaging.

We describe our system with a set of equations similar

to the model theoretically examined by Aronson et al. [30],

except that here our oscillation amplitude is not constrained

by nonlinear dissipation, but rather by amplifier saturation.

We scale the amplitude by the level of saturation and

examine the system dynamics in slow time, T ∼Q � t � ω0,
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where Q is the quality factor of the driven response of

the resonators and ω0 the linear resonance frequency of

the NEMS device when under driven excitation, and t
is the real time in seconds. In the slow time dynamics,

feedback loop time delays are represented by a phase

shift. The resulting equations for the amplitudes a1;2 for

each oscillator and phase difference φ between them

are [29]

a0
1;2 ≡

da1;2

dT
¼ −

a1;2

2
þ
1

2
∓
β

2
a2;1 sin φ (1)

φ0 ≡
dφ

dT
¼ Δω − ða2

1
− a2

2
Þ

�

α −
β

2a1a2
cos φ

�

; (2)

where −, þ corresponds to a1, a2, respectively. Here Δω

is the difference between the resonant frequencies of the

devices, α is the measure of frequency pulling (which is

the increase in frequency proportional to the square of

the amplitude), and β is the coupling strength. Note that

our coupling here is not dissipative, but reactive, in

contrast to most studies of synchronization to date [31].

Reactive coupling inevitably leads to the amplitudes

playing a key role in the synchronization, as previously

shown theoretically [31,32]. The parameters Δω, α, and

β, which we call the synchronization parameters, set the

dynamics of thesystem: thestable fixedpointsofEqs. (1)and

(2), for example,yieldsynchronizedstates.Theseparameters

are expressed in units of the devices’ resonance line

width, ω0=Q.

To construct an experimentwith independent control of the

synchronization parameters we use the setup shown in Fig. 1.

The NEMS devices are two piezoelectrically actuated, pie-

zoresistively detected [14], doubly clamped beams 10 μm

long, 210 nm thick, and 400 nm wide. In the oscillator loop,

the signal is strongly amplified (gain stage, g) into a diode

limiter (saturation stage, s) in order to ensure the feedback

signal to the beam is of constant magnitude. Therefore, the

feedback signal is a strongly nonlinear function of the device

displacement [19]. On the other hand, the coupling loop is

kept linear; the feedback is directly proportional to the

displacement over the full range of experimental values.

For the oscillator loop, the signal is fed back in phase with

the beams velocity. For the coupling loop, this signal is fed

into the beams in phase with the displacement. This causes

the coupling loop to be reactive and the oscillator loop to

be dissipative. The synchronization parameters are each

controlled by a dc voltage. Adjusting oscillator feedback

saturation controls frequency pulling α, adjusting coupling

feedback amplitudes controls coupling β, and adjusting

piezovoltage controls frequency detuning Δω [29].

This system is designed to be integrable within CMOS

technologies. The system consists of transistor amplifiers,

saturation diodes, direction couplers (capacitors), and

phase shifters. Here we use adjustable attenuators; these

may also be implemented with adjustable amplifiers. The

phase shifters can be implemented with fixed resistance-

capacitance filters. However, we note that if we

measure the piezoelectric response in addition to the

piezoresistive response, we are able to directly capture

both the in-phase and out-of-phase response of the oscil-

lators. Since all parameters are controlled with dc voltages,
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FIG. 1 (color online). Simplified circuit schematic for experiment. Each NEMS resonator (colored SEM micrograph) is embedded in

two feedback loops: one is used for creating oscillations in each resonator, and the other creates coupling between the oscillators. The

attenuators after each limiter (single heavy line boxes) sets the level of oscillation, and constitutes a means to control the frequency

pulling. In the coupling loop the signal is amplified so that an attenuator (double heavy line boxes) adjusts the signal level in the common

loop, thereby setting the coupling strength. The frequency difference is controlled by adjusting the stress induced in the left resonator by

the piezovoltage.
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our system offers the possibility of massive arrays with

individual control over constituent elements.

We begin by looking at the small coupling limit, with

β < 0.1, where experiment can be compared to analytical

predictions. In that case, the amplitudes of the two

oscillators stay near unity, so Eqs. (1) and (2) become

a1;2 ¼ 1∓β sin φ; (3)

φ0 ¼ Δωþ 4αβ sin φ; (4)

where Eq. (4) is the Adler equation [33]. Note that even

though Eq. (4) is of the same form as the one Adler used to

study injection locking, it describes the mutual synchro-

nization of two oscillators [29]. When the oscillators are

unsynchronized, the solution to Eq. (4) can be expressed as

φ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δω2 − ð4αβÞ2
q

: (5)

In the synchronization regime (φ0 ¼ 0), as the amplitudes

stay near unity, a linear relationship between the oscillation

amplitudes and the frequency difference is found from

Eqs. (3) and (4),

∂a1;2

∂Δω
¼ �

1

4α
; (6)

where 1,2 corresponds to þ, −, respectively. Equation (6)

holds explicitly in the synchronization regime.

In Fig. 2, φ0 is the oscillator frequency difference in units

of the resonance width. The plots show synchronization

between the two coupled oscillators, with remarkable

agreement between Eqs. (5,6) and the experiment. The

oscillator amplitudes change in order to adjust the oscillator

frequencies, demonstrating the importance of frequency

pulling in reactively coupled oscillators.

In addition to control of the detuning through a wide

range of values (shown in Fig. 2), we are able to modify

both the frequency pulling and coupling, to study the

parameter space for synchronization. Figure 3 shows the

synchronization parameter space for three levels of fixed

detuning (Δω ¼ 0.6, 1, 2) as coupling and frequency

pulling α are varied. The red border is the data with

attractive (ATT) coupling [β < 0 in Eqs. (1,2)] and green

with repulsive (REP) coupling [β > 0 in Eqs. (1,2)]. These

lines represent the boundaries of the transition between

synchronized and unsynchronized states when sweeping

to higher values of coupling, i.e., from left to right in

Fig. 3. This transition is defined by a change to a measured

oscillator frequency difference φ0 < 0.05.

In general, analytical solutions to Eqs. (1) and (2) cannot be

found. Therefore, we perform two numerical studies and

compare them to the experiment.We performa linear stability

analysis (LSA) [34] of Eqs. (1) and (2) with the orange and

purple dashed lines in Fig. 3 showing the stability boundaries.

The LSA boundaries define only where the synchronized

states are stable, and so there may be unsynchronized stable

states coexisting within these boundaries.

We also perform a time domain simulation of Eqs. (1)

and (2), (with β > 0) using initial conditions of amplitudes

fixed at 1 and random phases. At each point in paramater

space this time domain simulation gives a basin of

attraction for stabilizing in either an unsynchronized or a

synchronized state (from an initially unsynchronized state).

For each value of the parameters plotted in Fig. 3, we run

100 such simulations and assign a synchronization value of

0 for unsynchronized and 1 for synchronized. The average

value of these 100 simulations is represented by a linear

gradient between white and blue for 0 and 1, respectively.

Note that the parameters space which synchronizes (blue)

lies within the LSA-1 boundaries, and there is a slight

increase in probability for synchronizing inside the border

of the LSA-2 boundary. However, the initial amplitudes

of our time-domain simulation are not random. The
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FIG. 2 (color online). Synchronization in the limit of small

coupling described by Eqs. (5) and (6) with a frequency pulling

α ¼ 1.25. (a) Experimental data (points) are compared against

theoretical predictions (lines) for the amplitudes of the two oscil-

latorsas the systemmoves throughsynchronization; thedependence

upon detuning Δω for a coupling of β ¼ 0.068 is shown. The

synchronization regime is shown by orange shading. (b) Data and

predictions for the frequency differenceφ0 for three different values

of coupling. The set of data with the largest value of coupling

β ¼ 0.068 corresponds to the amplitude data from the upper plot.

Frequency locking (synchronization regime) is shownwhere values

φ0 ¼ 0 occur. SR 0.012, SR 0.044, SR 0.068 denote the synchro-

nization regimes (shaded regions) for the three couplings.
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amplitudes are fixed to unity, in accord with the experi-

ment. This causes the area bordered by the LSA to be larger

than the synchronized regions shown by the time domain

simulation.
We can distinguish two different “borders” in the basins

of attraction. The first is moving from completely white
to lightly shaded blue. The second is moving from lightly
shaded blue to completely dark blue. Synchronization
between these borders is determined by the initial phase
of the simulation. The experimental boundaries (red and
green lines) seem to correspond to these borders from the
time-domain simulation. However, Eqs. (1) and (2) are
completely symmetric upon exchange of β↦ − β, since
synchronization will occur for φ↦φþ π. Thus, given an
initial random phase difference between the oscillators,
these two boundaries for positive and negative β should
overlap. On the other hand, the two time-domain simulation
borders do correspond quite well to the experimental data.
This could be accounted for if the initial phase difference
of the oscillators is not completely random, but biased
towards a particular phase. This may be due to higher order
dynamics or experimental asymmetries.
We observe that at large detunings, asymmetries in

saturation level or discrepancies in quality factor between
the twooscillators tend tocreate largerdisagreementbetween
theory and experiment. This is due to the large coupling
necessary in order to synchronize the oscillators, which
magnifies the nonlinear behavior (and thus asymmetry) of
the system. However, the close agreement of Figs. 2 and 3
show the generality and accuracy of our approach.
Finally, we explore the effect of synchronization on

the phase noise. In Fig. 4, the green and blue spheres are
the phase noise at 1 kHz offset from the carrier
frequency (a key figure of merit for the frequency source

community [35]) plotted as a function of coupling for
oscillators 1 and 2, respectively [29]. The red diamonds
show the oscillator frequency difference φ0 for comparison.
As coupling is increased the phase noise at this offset
initially increases (due to phase slipping between the
oscillators) and then suddenly drops to 3 dB below the
uncoupled noise level. The plot of the oscillator frequency
difference indicates that the phase noise reduction occurs at
the onset of synchronization. This corresponds to a phase
noise reduction by factor of two, as predicted by theoretical
estimates [3].
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FIG. 3 (color online). Experimentally measured synchronization space as a β and α for Δω ¼ 0.6, 1, 2. The basins of attraction, found

from the time domain simulation of Eqs. (1) and (2), are shown by the gradient between white and blue, and correspond to the average

number of times the simulation synchronized under 100 random initial phases. All lines show boundaries with respective regions to the

right of the line. The green solid line (REP) is the experimental boundary for the transition from unsynchronized to the synchronized state

for repulsive coupling. The red solid line (ATT) is the experimental boundary for the transition from the unsynchronized to the

synchronized state for attractive coupling. The experimental synchronized state is defined as φ0 < 0.05 (in units of the resonator width).

The orange dashed line (LSA-1) depicts the predicted (linear stability analysis) boundary for which at least one synchronized state is stable.

Similarly, the purple dashed line (LSA-2) bounds the space for which both synchronized states are stable.

FIG. 4 (color online). Oscillator phase noise at 1 kHz offset

from carrier frequency (blue and green spheres, left axis) and

oscillator frequency difference (red diamonds, right axis) as

coupling is increased. At the value of coupling β ¼ 0.086 the

oscillator frequency difference goes to zero and the phase noise

for both oscillators decreases by 3 dB, i.e., corresponding to

reducing the phase noise by half.
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Our demonstration of the synchronization of two
reactively coupled anharmonic NEMS oscillators shows
excellent agreement with analytical and numerical model-
ing. We track not only the frequency difference, but also the
individual amplitudes, important for a full multivariable
description of the synchronization. These results highlight
the importance of the oscillator amplitudes in synchroni-
zation for reactive coupling. Our work shows the potential
of this system to examine nonlinear dynamics at the
intermediate scale of discretization: full control of individ-
ual elements and tracking of large arrays. All of the
components in these experiments can be realized using
CMOS technology, implying that very large scale networks
can be built using the precise technology of present-day
semiconductor nanoelectronics and electronically tested
with cointegrated state-of-the-art signal processing capa-
bilities. The flexibility of this system permits creation of
dissipative or reactive coupling in arbitrarily complex or
completely random networks. Our experimental demon-
stration of reduced phase noise in the synchronized state
marks an advance for detection of very weak phenomena
using synchronized nanoscale sensor arrays.

We thank E. Kenig and X. L. Feng for discussions

and P. Ivaldi, E. Defaÿ, and S. Hentz for providing us

with the AlN/SOI material. M. C. Cross acknowledges

financial support from the National Science Foundation

Grants No. DMR-0314069 and No. DMR-1003337. L. G.

V. acknowledges financial support from the European

Commission (PIOF-GA-2008-220682).

In the process of going through review, synchronization

was explored in a similar system [36].
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