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Abstract:  During supercontinuum formation in nonlinear fiber the 
presence of a noise seed on the input laser pulse can lead to significant 
excess noise on the generated output supercontinuum electric field.  We 
relate pulse-averaged moments of this electric-field noise to the measured 
RF spectrum of the frequency comb formed by the supercontinuum.  We 
present quantitative numerical results for the fundamental phase, timing, 
and amplitude noise on the frequency comb resulting from input quantum 
noise, including the scaling of the noise with different experimental 
parameters. This fundamental noise provides a lower limit to the phase 
stability of frequency combs that originate from microstructure fiber. 
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1.  Introduction 

Frequency combs have proven to be powerful tools for optical frequency metrology and 
optical pulse synthesis [1-4].  These combs are present since the pulse train from a mode-
locked laser forms a comb in frequency space with a spacing set by the repetition frequency 
and an offset set by the carrier-envelope offset (CEO) frequency.  Stabilization of these two 
frequency parameters effectively stabilizes the entire comb.  In order to detect the CEO 
frequency, the laser output is often externally spectrally broadened in microstructure fiber to 
generate an octave (factor of two in bandwidth) of supercontinuum [5] that can then be used 
in an f-to-2f interferometer [1] to generate a signal that can in turn be used to stabilize the 
CEO frequency.  There is no fundamental reason why the 50 nm-wide tightly phase-locked 
comb from the passively mode-locked laser should remain a tightly phase-locked comb over 
the full ~500 nm of supercontinuum output.  Indeed, noise on the input laser pulse can be 
dramatically amplified during this supercontinuum formation.  Previous work has examined 
the excess amplitude noise on the output resulting from both technical noise [6-8] and from 
quantum noise [9-11] on the input laser pulse.  These same noise seeds will also give rise to 
significant excess phase noise across the comb, which can appear as phase noise on the carrier 
wave, the repetition rate, or the CEO offset phase.   

The conversion of input technical noise to CEO phase noise has been measured under 
typical conditions [12-14] and, fortunately, can be removed remarkably well through 
feedback.  In contrast, the phase noise induced by the laser quantum noise cannot be 
effectively removed through feedback, and therefore represents an ultimate limit to the comb 
stability.  The excess phase and amplitude noise is related to the optical coherence across the 
comb, which has been shown to be significantly degraded by input broadband noise and 
technical noise [15-18].  While the coherence provides a useful metric of the comb quality, 
this single number does not directly translate into a noise floor that will be observed in a 
typical heterodyne setup employing frequency combs.  There are in fact four fundamental 
noise terms that contribute to the RF spectrum generated by heterodyning two distinct combs: 
amplitude jitter, phase jitter, real timing jitter, and imaginary timing jitter (i.e., frequency 
jitter).  The CEO phase noise is a linear combination of the phase noise and timing jitter. 

We first present a framework to discuss the noise in terms of the pulse-to-pulse variations 
in the relevant electric field moments.  This framework is independent of the actual noise 
source.  We then specifically consider the fundamental limit to the comb stability by 
numerically calculating the effect of the quantum vacuum fluctuations of the input pulse train 
on the output supercontinuum pulse train, specifically the timing noise, the phase and 
frequency noise on the carrier wave, the corresponding phase noise on the CEO frequency, 
and the amplitude noise.  Our results complement and expand those of Refs. [9, 10], which 
examined only the amplitude noise.  We discuss the basic scaling of the noise terms with 
optical bandwidth, input pulse quadratic phase distortion (i.e., chirp), input pulse energy, and 
fiber length.  We find that the phase jitter, frequency jitter, and timing jitter scale similarly to 
the amplitude jitter; namely, the noise increases exponentially with increasing pulse energy 
and fiber length, and decreases exponentially as the chirp is decreased to an optimal value.  As 
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a result of these strong dependencies, the noise can vary by several orders of magnitude over a 
reasonable range of experimental parameters.  For example, the timing jitter can range from 
0.01 fs to >1 fs, while the phase jitter can range from 0.3 mrad to >30 mrad.  Finally, a 
slightly positive chirp is critical to achieving the minimum noise for a given spectral width.   

2.  Relationship between electric field noise and measured RF noise  

In the basic experimental setup considered (Fig. 1), a femtosecond Ti:sapphire laser with 
repetition frequency fr≡Tr

-1 provides a pulse train of individual, chirped, possibly noisy, 
hyperbolic-secant laser pulses, EL(t)=ΣnEn

L(t).  After passing through the microstructure fiber, 
the supercontinuum is optically filtered in the spectral domain (either explicitly through a 
bandpass filter or implicitly through the spectral response of the receiver) to give an output 
comb, E(t)=ΣnEn(t), where each pulse can be written as  
 

( ) ( ) ( )01 ( ) ( ) ,CEOin
n r n nE t nT r t i t E t e+ ≈ + + φϑ                            (1) 

 

where E0(t) is the field of a noiseless pulse and φCEO is the CEO phase shift per pulse.  The 
noise is described by the two real stochastic functions rn(t) and ϑn(t), which describe the real 
(in-phase) noise component and the imaginary (in-quadrature) noise component.  These 
functions are assumed to be small (so that ϑn(t) also describes the phase noise), but can in 
principle vary dramatically across the pulse envelope.  Experimentally, this electric field is not 
directly measured; instead a measurable RF signal is generated by mixing, or heterodyning, 
this field with a second electric field, which might be the comb itself, an independent second 
comb, a frequency doubled comb, or a narrow linewidth laser.  Here, we consider two simple 
cases: first, a self-heterodyne signal generated by mixing the comb with itself, i.e. measuring 
its intensity on a photodiode; and, second, a cross-heterodyne signal generated by mixing the 
comb with an independent second comb with identical noise properties.  
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Fig. 1. Schematic showing the basic experimental setup for a heterodyne experiment.  Two 
noisy pulse trains, exhibiting amplitude (an), phase (ϕn) and timing (δtn) jitter, are optically 
filtered by a tunable bandpass filter (TBPF) and mixed on a photodetector of response h(t).  
The resulting voltage is recorded with a RF spectrum analyzer.  The contributions of the self 
heterodyne (red) and heterodyne (blue) parts of the total RF spectrum (black) are shown. 

 

For a receiver with a response function h(t), the received signal from a heterodyne beat 
between the (assumed) coincident nth pulses of two arbitrary comb sources (labeled (i) and (j)) 
is,  
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* *
( ) ( ) ( ) ( )n n i n j n t n n i n j ns t h t t E t E t dt h t t t t E t E t dt′ ′ ′ ′ ′ ′ ′≈ − − ∂ − −∫ ∫      (2) 

plus the complex conjugate for i≠j, where we have expanded the response in a Taylor series 
about an arrival time tn.  If we define the, possibly complex, arrival time as  
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( ) ( )
( ) ( )

*
( ) ( )

*
( ) ( )

i n j n

n

i n j n

tE t E t dt
t

E t E t dt
≡ ∫

∫
    (3) 

 

the second term vanishes leaving only the overlap integral. 
Now, consider the simplest case of a self-heterodyne signal (i=j) in which case Eq. (2) 

yields the detected signal ,( ) ( ) (1 2 ) ( )self n n r R ns t h t A a t nT t≈ ⊗∑ + − −δ δ , where ⊗ denotes 

convolution and we have used Eq. (1) to describe the field.  Not surprisingly, the signal 
depends only on the amplitude noise, which is given by the zeroth-order moment,  
 

( ) ( )1
0n na A r t I t dt−≡ ∫ ,    (4) 

 

and the timing noise, δtR,n = tn - nTr, which, from Eq. (3), is given by first order moment,    
 

( ) ( )1
, 02R n nt A r t t I t dt−≡ ∫δ ,   (5) 

 

where the mean intensity I0(t) = |E0(t)|
2, the pulse energy A ≡ ∫I0(t)dt, and for convenience we 

define the arrival time of the unperturbed pulse as zero so that A-1∫tI0(t)dt =0.  The R subscript 
on the timing noise is used to distinguish this real component of the timing noise from the 
imaginary component introduced later.  Both these moments, Eqs. (4) and (5), are random 
variables with zero mean.  We can describe their magnitude in frequency-space by the power 
spectral densities (PSDs), Sa and 

Rt
Sδ  each defined over the Nyquist range ±fr/2.   In the 

absence of correlations between pulses, as is the case for white noise, the PSDs are given in 
terms of the variances <an

2> and <δtR,n
2> as Sa=fr

-1<an
2>, and 

Rt
Sδ =fr

-1<δtR,n
2> where the 

brackets indicate an ensemble average.  The squared magnitude of the Fourier transformed 
signal of sself(t) gives the observed power spectral density for the self-heterodyne signal,  
 

( ) ( ) ( ) ( ) ( ){ }2 2 2 2 24 4
Rself r r a r t rn

S f H f A f f nf S f nf f S f nf= − + − + −∑ δδ π ,     (6) 
 

to first order, where H( f ) is the Fourier transform of the detector response function h(t).   
Equation (6) is just a generalized version of von der Linde’s classic result [19]; i.e. there is a 
flat amplitude noise spectrum and a quadratically increasing phase noise spectrum.  The 
relative intensity noise (RIN) considered in Refs. [9, 10] is twice the amplitude noise term. 

Now consider the second case of heterodyning a comb against another independent comb 
with identical noise properties and a CEO phase difference of ∆φCEO (giving a CEO frequency 
difference of ∆fCEO=fr∆φCEO/2π).  Using Eq. (1) to describe the electric fields, Eq. (2) then 
yields 

, ,( ) ( ) ( / 2 / 2)[1 2 2 ] CEOin
cross r n r R n I n n ns t h t nT A t nT t t a i e ∆≈ − ⊗ Σ − − − + + φδ δ δ ϕ .  The 

signal now depends on four noise terms: the amplitude noise, the phase noise, the real timing 
noise, and the imaginary timing noise.  The phase noise is given by the zeroth moment of 
ϑn(t), 
 

( ) ( )1
0n nA t I t dt−≡ ∫ϕ ϑ ,                                               (7) 

 

in analogy to the amplitude noise, Eq. (4).  The “imaginary” timing noise is given by the first 
moment of ϑn(t) (as can be derived from Eq. (3)),  
 

( ) ( )1
, 02I n nt A t t I t dt−≡ ∫δ ϑ .                                        (8) 
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in analogy to Eq. (5).  As discussed later this term arises from frequency jitter.  Defining the 
PSD of the phase noise, Sϕ, and the imaginary timing noise, 

It
Sδ , in analogy to their 

counterparts Sa and 
Rt

Sδ , the PSD of the heterodyne, cross-product signal scross(t) is  
 

( ) ( ) ( ) ( )
( ) ( ) ( )

2 2 2

2 2 2 2

2

+2 2 2 ,
R I

cross r r CEO a r CEOn

r CEO t r CEO t r CEO

S f H f A f f nf f S f nf f

S f nf f f S f nf f f S f nf fϕ δ δ

δ

π π

= − − ∆ + − − ∆

− − ∆ + − − ∆ + − − ∆
∑

 (9) 

 

assuming no correlations between a and δtI or ϕ and δtR.  The complex conjugate of Eq. (2) 
gives an identical comb with the opposite sign of ∆fCEO.  The total signal measured on an RF 
spectrum analyzer is the sum of these two combs and a self-heterodyne term given by Eq. (6) 
after quadrupling the delta-function contribution and doubling the noise terms.  Figure 1 
shows an example RF spectrum.   

The RF spectrum, Eq. (9), is totally defined in terms of the four noise terms: the 
amplitude noise, Eq. (4), the phase noise, Eq. (7), the real timing noise, Eq. (5) and the 
imaginary timing noise, Eq. (8); only these moments affect the measured RF signal.  With 
these definitions, we can then rewrite the noisy electric field Eq. (1) equivalently as  
 

( ) ( ) ( ) ( )02
0 ,1 ,n n CEOi ti i t in

n r n R nE t nT a e I t t e eθϕ πδν φδ++ ≈ + −                (10) 
 

where the unperturbed electric field, ( ) ( ) ( )0

0 0
i tE t I t e θ= , has intensity I0(t) and phase θ0(t).  

From Eq. (8), we can then relate the “imaginary timing jitter” directly to the carrier frequency 
jitter as δtI,n≡4πδνnt

2
RMS, where tRMS is the root-mean-square width of the pulse.  These four 

noise terms are the same as those assumed in earlier work on the noise of mode-locked laser 
pulses [20].  The last noise term in Eq. (9) represents the carrier-frequency jitter “divided-
down” from the inverse optical pulse width (2πtRMS)

-1 to RF frequencies.  For convenience we 
continue to calculate the imaginary timing jitter in units of fs, rather than converting it to a 
frequency jitter.  Figure 2 depicts the effect of the four relevant noise terms on a pulse train. 
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Fig. 2. (2.44 MB) A movie demonstrating the separate effect of the four jitter terms on a pulse 
train, compared to a noiseless pulse train.  Amplitude jitter causes the peak power to vary per 
pulse with respect to the average.  Phase jitter alters the arrival of the carrier oscillations with 
respect to time.  The real component of the timing jitter alters the arrival time while the 
imaginary component is equivalent to a frequency jitter in the carrier oscillation. 

 

None of the four moments, Eqs. (4), (5), (7), or (8) is the CEO phase.  Defining the CEO 
phase as the intensity average of the temporal phase of the electric field pulse, θn(t), the noise 
on the CEO frequency is 
 

 ( ) ( ), 0 0 ,0
2n CEO n n n Rn

t t tδφ θ θ ϕ πν δ≡ − ≈ + ,                                   (11) 
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where the angle brackets indicate an intensity-weighted average over the nth pulse and 
unperturbed pulse as indicated by the subscript and we have dropped terms of higher order 
chirp (in which case this definition is equivalent to that used in Ref. [3]).  The carrier 
frequency ν0 is strictly given by (2π)-1∂tθ(0), but since higher-order chirp is ignored we use 
the more convenient definition that ν0 is the intensity-averaged carrier frequency, When both 
carrier phase noise, ϕ, and timing jitter, δt, are present, the CEO phase noise depends on 
whether the carrier moves with or against the timing jitter (a positive ϕ corresponds to the 
carrier moving to the “left” while a positive timing jitter corresponds to the pulse envelope 
moving to the “right” in Fig. 1).  

The RF spectra (Eqs. (6) and (9)) assume no correlation between the four noise terms.  
During fiber propagation the noise terms will become correlated and additional terms should 
be added to account for any cross-correlations.  However, as is shown later, the cross-
correlation terms oscillate dramatically about zero with wavelength across the 
supercontinuum.  Given this variation and since the RF spectrum is typically dominated by a 
single noise term, the cross-correlation terms are not included in the spectra for simplicity.  
However, over the far-infrared soliton, there is a strong extended correlation between the 
phase jitter, real timing jitter, and frequency jitter.  The physical reason for this correlation is 
that this soliton moves as a packet, shifting to ever longer wavelengths as it propagates 
through the self-frequency shift.  Thus, the envelope and underlying carrier oscillation are 
translated together in time.   

As mentioned earlier, the noise is related to the mutual coherence of the comb, calculated 
in [15-18], and in our notation the modulus of the complex degree of coherence is effectively 
given as 1-<an

2>-<ϕn
2> for a given optical bandwidth.  The coherence is a convenient single 

number to represent the degradation of the comb; however, it does not permit a full 
calculation of the noise properties since a full description of the noise require the separate 
calculation of the four distinct moments given in Eqs. (4), (5), (7), and (8). 

3.  Calculations for quantum input noise 

The above discussion relates the noise spectra and CEO phase noise to the intensity-averaged 
moments of the complex multiplicative noise and is independent of the underlying noise 
source.  In the remainder, we focus on the effects of input quantum noise.  The laser pulse 
input to the microstructure fiber is modeled semiclassically as 0( ) ( ) ( )L L shot

nE t E t E t= +  where 
the last noise term represents the input quantum vacuum fluctuations (responsible for shot-
noise) and is delta-correlated.  In Refs. [9, 10], this relatively low quantum input noise was 
shown to result in a noise of surprisingly large amplitude through the effects of modulation 
instability (MI) gain and soliton fission.  These same effects will presumably result in 
surprisingly large phase noise as well.  

To determine the output noise, we numerically solved the generalized nonlinear 
Schrödinger equation (NLSE) as in Refs. [6, 9, 10] assuming a microstructure fiber [5] with a 
nonlinearity of γ=100 W-1km-1 and the same dispersion as in Ref. [10].  For a given set of 
experimental parameters, such as input pulse energy, chirp, and fiber length, we generated 128 
input pulses, of 45 nm spectral full width at half maximum (FWHM) centered at 810 nm, with 
different noise.  The NLSE was used to compute the resulting supercontinuum generated by 
propagation of each input noisy pulse through the microstructure fiber.  The resulting 128 
different realizations of the supercontinuum were then processed as follows in order to 
generate the spectrum of the noise across the supercontinuum.  First, each realization was 
spectrally filtered with a Gaussian filter centered at a specific wavelength.  Next, the 128 
different realizations of the filtered En(t) were then used to calculate the mean field E0(t) and 
the jitter of the four moments given in Eqs. (4), (5), (7), and (8), which is defined as the square 
root of the variance.  This process was then repeated for the next wavelength value across the 
supercontinuum (conceptually this process is equivalent to sweeping the tunable bandpass 
filter of Fig. 1 across the spectrum).  Based on these variances and the laser repetition rate, the 
expected RF spectrum can be calculated directly from Eq. (6) or Eq. (9). 
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4.  Results and discussion 

Figure 3 shows the results of a typical simulation for the spectrum, phase jitter, amplitude 
jitter, real timing jitter, imaginary timing jitter (frequency jitter), and CEO phase jitter as a 
function of wavelength.  As in Refs. [6, 9, 10] the noise varies dramatically with wavelength.  
All of the jitter terms are substantially greater than the shot noise on the output pulse.  The 
noise terms are nevertheless small enough that the first order expansion of Eqs. (6) and (9) is 
valid.  As mentioned previously, the cross-correlations between the noise terms oscillate 
strongly over the supercontinuum except across the far-infrared soliton.  
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Fig. 3. (a) Supercontinuum spectrum, after filtered by a 8 nm Gaussian bandpass filter, 
generated by launching a 0.5 nJ laser pulse with a chirp of -282 fs2 into 8 cm of fiber. (b) The 
amplitude and phase jitter.  (c) The complex timing jitter. (d) The CEO phase jitter.  (e) The 
cross-correlation between the real timing jitter and the phase jitter.  (f) The cross correlation 
between the imaginary timing jitter (frequency jitter) and the amplitude jitter.  The jitter, 
defined as the square root of the total noise variance, is not calculated for wavelengths when 
the filtered intensity drops below -15 dB of the peak.  
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Fig. 4. (a) Median spectral width as a function of initial chirp for an input pulse energy of 
0.5 nJ and a fiber length of 8 cm.  (b) The median amplitude and phase jitter.  (c) The median 
complex timing jitter.  (d) The median CEO phase jitter.  For an input pulse bandwidth of 
45 nm, the input pulse duration changes from 15 to 90 fs as the chirp changes from 0 to 
±600 fs2 

 

As described in Ref. [10], the majority of the amplitude noise generation arises from MI 
gain in the short length of fiber before the pulse has fissioned into individual solitons.  Since 
the MI gain will depend exponentially on pulse power, an exponential dependence of the 
noise on power is also expected.  More interestingly, the MI gain will also depend 
exponentially on the propagation length before the pulse fissions into individual solitons.  
Since, as shown numerically in Ref. [10], this length depends on the initial chirp value (with a 
minimum at a slightly positive chirp due to the combined effects of self-phase modulation and 
fiber dispersion), the noise will depend exponentially on chirp as well.  While the discussion 
of Ref. [10] focused on amplitude noise, this same amplification will occur for any of the 
noise terms.  Therefore, all the noise terms should scale similarly with the input pulse 
parameters.  The overall magnitude of the noise terms remains undetermined from this 
argument, but as is discussed later there is a fairly direct connection between the magnitude of 
the amplitude jitter and both the phase jitter and timing jitter.    

In order to capture the general behavior of the noise terms as a function of the pulse 
parameters, we calculate the median value across the supercontinuum spectrum.  In addition, 
the spectral width or fractional frequency width of the supercontinuum is of interest since an 
octave of bandwidth (fractional frequency width of 2) is required for an f-to-2f interferometer.  
For all the results presented here the noise was calculated after passing the supercontinuum 
through a Gaussian filter with an 8 nm FWHM.  The various noise terms decrease weakly 
with bandpass width for a range of ~2 to 20 nm.  For lower widths the noise is roughly 
independent of the widths.   

In Fig. 4, the values of spectral width and median jitter are plotted versus the input pulse 
quadratic phase distortion (chirp).  The noise terms increase exponentially as the chirp moves 
from its optimal, slightly positive value.  The CEO phase jitter values can be very high; 
however, the CEO phase on the laser pulse does not suffer from this excess noise other than 
any excess noise that is fed back to the laser as part of any stabilization scheme.   
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Fig. 5. (a) Median spectral width as a function of pulse energy for chirp of -282 fs2 and a fiber 
length of 15 cm.  (b) The corresponding median amplitude and timing jitter.  (c) The 
corresponding median complex timing jitter.  (d)  Median spectral width as a function of fiber 
length for chirp of -282 fs2 and an input energy of 0.5 nJ.  (e) The corresponding median 
amplitude and timing jitter.  (f) The corresponding median complex timing jitter.   

 
 

In Figs. 5(a)-5(c), the same quantities are plotted as a function of pulse energy; clearly all 
noise quantities increase exponentially with pulse energy as expected from such a nonlinear 
system.  In Figs. 5(d)-5(f), the same quantities are plotted as a function of fiber length.  As 
noted in Ref. [10], most of the spectral broadening and most of the noise generation occurs in 
the first centimeter of the fiber.  At longer lengths, there is a modest increase in spectral 
bandwidth with a continued buildup of the noise.   

As expected, the data of Figs. 4 and 5 show that all the noise quantities scale roughly in 
the same manner.  Since the amplitude noise is the most easily measured in a simple self-
heterodyne experiment (Eq. (6)), it is interesting to relate the other terms to it.  The amplitude 
and phase jitters are roughly equal, although the phase jitter is typically 2-3 times larger.  This 
difference in phase and amplitude jitter is particular pronounced at longer fiber lengths and in 
the wings of the spectrum (see Fig. 3), where the dispersion is highest, and may be related to 
the Gordon-Haus effect [21].  The real and imaginary components of the timing jitter are very 
nearly equal.  Finally, we find the timing jitter and amplitude jitter are related by 
<δtn

2>=2<an
2> t2

RMS, where tRMS ~85 fs for the data of Fig. 4.  These relationships are 
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expected if the complex multiplicative noise of Eq. (1) is uncorrelated in time across the 
filtered pulse. For smaller bandwidths, the noise will grow increasingly correlated in time and 
this simple relationship between the amplitude noise and timing jitter begins to break down.   

5. Conclusion 

There are a number of conclusions to be drawn from the data.  Perhaps the most interesting 
question is how the noise scales with spectral bandwidth, or, more specifically, how to 
achieve the largest spectral bandwidth with the minimum noise.  If the spectral bandwidth is 
widened by 10% by increasing fiber length (beyond ~1 cm), the noise variances will increase 
by ~12 dB.  If the spectral bandwidth is widened by 10% by increasing the input energy, the 
noise variances will increase by ~8 dB.  On the other hand, from Fig. 4, if the spectral width is 
widened by 10% by decreasing the pulse chirp (toward the optimal value of +100 fs2), the 
noise variances will decrease by ~12 dB.  Therefore, the lowest-noise supercontinuum can be 
achieved with a shorter fiber and higher pulse energy and, most importantly, an initial pulse 
chirp set to the optimal slightly positive value.  If instead the chirp is not set to the optimal 
value, but is allowed to vary over the possible range of 0 to ±500 fs2 (corresponding to an 
initial pulse duration of 15 to 80 fs), and the fractional bandwidth is fixed at 2.2 by varying 
the input power (slightly more than the octave needed for f-to-2f detection of the CEO 
frequency), the timing jitter is found to range from 0.01 to 1 fs, the phase jitter from 0.3 to 
30 mrad, the amplitude jitter from 0.01% to 1%, and the CEO phase jitter from 0.03 to 3 
radians.  The wide range of values reflects the strong dependence of the noise on chirp and 
input pulse energy.  Given the magnitude of the different noise terms, the RF spectrum for the 
self-heterodyne signal, Eq. (6), is completely dominated by the amplitude noise term and is 
therefore flat with frequency.  Similarly, the RF spectrum for the heterodyne signal from two 
distinct combs, Eq. (9), is completely dominated by the phase and amplitude noise terms and 
is also flat with frequency.  

Despite the degradation in the general quality of the broad frequency comb, quantified by 
these various noise terms, the quality of the comb does basically remain adequate for high-
precision metrology (which is unsurprising given the proven successes of the frequency comb 
[1-4]).  For example, using the above jitter values for a chirp of +500 fs2 the total noise floor 
for the RF spectrum detected by beating two noisy combs with 100 MHz repetition frequency 
has the value ~-105 dBc/Hz.  This is well above the detection shot noise limit, but still yields a 
comfortable signal-to-noise ratio (SNR) of ~50 dB in a 300 kHz bandwidth, about 20 dB 
greater than needed for a good phase lock.  However, this 20 dB margin cannot be taken for 
granted; it can rapidly disappear under the wrong experimental conditions.  For example, it 
represents a median SNR over the spectrum.  An unfortunate choice of wavelengths can lead 
to a greatly reduced SNR.  Moreover, if a portion of the noise were translated through 
feedback to the laser cavity length into a varying time delay, δtdelay, between the two pulse 
trains, the effective phase noise of -2πν0δtdelay can easily dominate.  Finally, a strong 
imbalance of power between the two combs, higher values of chirp, higher power levels, or 
fiber lengths beyond what is required to achieve an octave of bandwidth can all further 
dramatically reduce this 20 dB margin.   

Acknowledgments 

The authors are grateful to Scott Diddams, Albrecht Bartels, Kristan Corwin, and Sarah 
Gilbert, and Leo Hollberg for useful discussions. 
 

(C) 2004 OSA 17 May 2004 / Vol. 12,  No. 10 / OPTICS EXPRESS  2175
#4020 - $15.00 US Received 11 March 2004; revised 29 April 2004; accepted 3 May 2004


