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The X-ray phase tomography of biological samples is reported, which is based on X-ray Talbot interferometry. Its imaging
principle is described in detail, and imaging results obtained for a cancerous rabbit liver and a mouse tail with synchrotron
radiation are presented. Because an amplitude grating is needed to construct an X-ray Talbot interferometer, a high-aspect-
ratio grating pattern was fabricated by X-ray lithography and gold electroplating. X-ray Talbot interferometry has an
advantage that it functions with polychromatic cone-beam X-rays. Finally, the compatibility with a compact X-ray source
is discussed. [DOI: 10.1143/JJAP.45.5254]
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1. Introduction

The high sensitivity achieved by X-ray phase imaging
methods has been attracting increasing attention.1,2) Because
conventional X-ray imaging methods rely on absorption in
an object to be inspected, weak absorbing structures, such as
biological soft tissues, cannot be imaged with a sufficient
signal-to-noise ratio under the allowable X-ray dosage limit.
The use of X-ray phase contrast provides a way to overcome
this difficulty. This is because the interaction cross section of
X-ray phase shift is about a thousand times larger than that
of absorption for soft tissues.3)

Several methods have been developed for X-ray phase
imaging to date, which are categorized into the interfero-
metric method,4–7) refraction-based method,8–11) and prop-
agation-based method.12–14) Besides the methods that only
generate phase contrasts, phase measurement methods are
also developed, enabling quantitative image analyses, such
as phase tomography.6,7,15–19)

X-ray phase imaging is very attractive from a clinical
point of view because the sensitivity to soft tissues is
tremendously increased and/or X-ray dose is considerably
reduced, as compared with the conventional X-ray imaging
methods. Nevertheless, the introduction of these methods to
medical diagnosis is very slow. This is because X-ray
sources with a quality much higher than that of conventional
laboratory (or hospital) X-ray sources are required in most
X-ray phase imaging methods.

As for methods using a crystal interferometer4–7) or
analyzer crystal for selecting refracted X-rays,8–11,16–19) a
restriction emerges from the fact that crystal optical
elements are used. The crystal optics functions under the
Bragg diffraction condition; therefore, a monochromatic and
parallel beam is needed with a sufficient flux. As a result,
synchrotron radiation is a sole choice available for those
methods with practical imaging exposure time.

The propagation-based method12–15) relies on the detec-
tion of Fresnel diffraction, by which an outline contrast is
generated at the surface and structural boundaries of a
sample. The width of the outline contrast is approximatelyffiffiffiffiffiffi
�‘

p
, where � and ‘ are the X-ray wavelength and distance

between the sample and detecting plane, respectively. To
resolve the outline contrast, whose width is of the order of
microns even when an image is detected 1m downstream
from the sample, an image detector with an effective pixel
size of the order of microns or smaller is needed. Because
X-rays enough to ensure a sufficient signal-to-noise ratio are
needed in a pixel, a brilliant X-ray source is required
consequently. Many experiments are therefore performed
at synchrotron facilities. The contribution of the outline
contrast can be observed using a detector of a pixel size
larger than the above estimation, and a medical apparatus
has been developed on the basis of this usage for use in
hospitals.20) However, for quantitative phase measurement
and thereby phase tomography, Fresnel diffraction must be
observed with a sufficient spatial resolution and a sufficient
signal-to-noise ratio, which are attained by synchrotron
radiation.15)

Recently, X-ray differential interferometry that employs
transmission gratings has been studied for X-ray phase
imaging,21–25) which is potentially compatible with compact
X-ray sources. X-ray Talbot interferometry (XTI)22) shown
in Fig. 1 is an X-ray differential interferometer consisting of
a phase grating (G1) and an amplitude grating (G2). XTI
may provide an opportunity for the instrumentation outside
synchrotron facilities, because it functions in principle with a
cone beam with a broad energy band width.

The principle of XTI is the same as that of optical Talbot
interferometry,26,27) but the fabrication of an amplitude
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Fig. 1. Configuration of XTI, where two transmission gratings (G1 and

G2) are arranged in line along X-ray axis.�E-mail address: momose@exp.t.u-tokyo.ac.jp
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X-ray grating is a difficulty that needs to be overcome to
realize XTI. Because of the high penetrating power of
X-rays, a thick pattern must be fabricated to block X-rays
fully. At the same time, the period of the grating should be of
the order of microns, as explained later according to the
principle of XTI. The fabrication of a pattern with such a
high aspect ratio is not straightforward.

A capillary plate, which has a two-dimensional array of
holes in a lead glass plate with an aspect ratio that meets
already the requirement for XTI, is a candidate device for
the amplitude X-ray grating.28) However, its quality, such as
the uniformity of the pitch of the hole array, is currently
unsatisfactory. A line and space (L&S) pattern is used for a
simple and typical grating and available for XTI. However,
the fabrication of a high-aspect-ratio L&S pattern is difficult
using conventional lithographic techniques. However, X-ray
lithography is attractive for that purpose, and in this study
we used a grating fabricated by X-ray lithography and
electroplating of gold,29) which was selected as a material for
blocking X-rays because of its high absorption coefficient
and technical convenience in the fabrication process.

In this paper, theoretical aspects of XTI are described first,
including the procedure of phase tomography. Then, we
report evaluation results of an X-ray Talbot interferometer
constructed with gold gratings. We performed phase
tomography measurements on biological soft tissues with
the interferometer using synchrotron radiation, and recon-
structed images are presented next. Finally, future prospects
of XTI are discussed.

2. X-ray Talbot Interferometry

2.1 Principle of phase imaging
The principle of XTI was described in a previous paper22)

but again described here, adding more details, for the
following explanation of phase tomography based on XTI.

The function of XTI is based on the X-ray (fractional)
Talbot effect30) discovered originally in the visible light
region,31) which is known as a self-imaging effect by an
object with a periodic structure under coherent illumination.
While a transmission image becomes blurry with increasing
distance from an object to an imaging plane under normal
illumination, self-images are reconstructed at specific dis-
tances from a periodic object to an imaging plane by the
Talbot effect. This phenomenon is understood as a result of
Fresnel or Fraunhofer diffraction.

Let us consider a situation in which a grating of a period
d is illuminated coherently with unit-amplitude plane-wave
X-rays of wavelength � . Given the complex transmission
function Tðx; yÞ of the grating with a Fourier expansion
series

Tðx; yÞ ¼
X
n

�n exp 2�i
nx

d

� �
; ð1Þ

the wave field Eðx; y; zÞ behind the grating is written as

Eðx; y; zÞ ¼
X
n

�nðzÞ exp 2�i
nx

d

� �
ð2Þ

under a paraxial approximation, where

�nðzÞ � �n expð��i�zn2=d2Þ: ð3Þ

Here, the optical axis is parallel to the z axis, and the grating

is on the ðx; yÞ plane (z ¼ 0) and has periodicity in the x

direction. Equations (2) and (3) imply that the periodic
pattern in the wave field varies and oscillates as induced by
propagation. The intensity of the wave field is given by

Isðx; y; zÞ ¼ jEðx; y; zÞj2 ¼
X
n

anðzÞ exp 2�i
nx

d

� �
; ð4Þ

where

anðzÞ �
X
n0

�nþn0�
�
n0 : ð5Þ

The distances zT given by

zT ¼ md2=�; ð6Þ

where m is an integer for an amplitude grating or a half
integer for a phase grating, are particularly interesting. If
m is an even integer, �nðzTÞ ¼ �n; therefore, a wave field
whose complex amplitude is the same as the complex
transmission function of the grating is generated (Talbot
effect). If m is an odd integer, �nðzTÞ ¼ ��n, and a wave
field with a complex amplitude of Tðxþ d=2Þ is generated
(a case of fractional Talbot effect); that is, the contrast is
inverted. When a phase grating is used, no intensity patterns
are observed at the distances. However, if m is a half integer,
the phase modulation pattern TðxÞ ¼ exp½i�ðxÞ� is converted
into intensity patterns, which are also called self-images in
this work, as given by

jEðx; y; zTÞj2 ¼ 1� sinf�ðxÞ � �ðxþ d=2Þg; ð7Þ

where � corresponds to cases in which m� 1=2 is even and
odd.32) Visibility is therefore at the maximum when the
magnitude of phase modulation is �=2 while a � phase
grating is used in many applications because �1st-order
diffractions are enhanced, suppressing the 0th order. The
self-image of a �=2 phase grating is understood as a
constructive superposition of interference fringes mainly
between neighboring orders (i.e., 0th and �1st orders, �1st
and �2nd orders, . . .).

Under partial coherent illumination, the visibility of a
self-image is degraded and its influence can be reflected in
eq. (4) by replacing anðzÞ with �ðn�z=dÞanðzÞ, where � is the
complex degree of coherence, which is given by the Fourier
transform of the distribution of an X-ray source, according to
the van Cittert–Zernike theorem.33)

Next, let us consider a case in which the incident X-ray
wave is deformed due to the phase shift �ðx; yÞ caused by
an object placed in front of the grating. In this case, the
self-image is also deformed as illustrated in Fig. 2 and its
intensity is given by

Isðx; y; zÞ ¼
X
n

a0nðx; y; zÞ exp 2�i
n

d
ðx� z’xðx; yÞÞ

� �
; ð8Þ

where

’xðx; yÞ ¼
�

2�

@�ðx; yÞ
@x

ð9Þ

and anðzÞ has been replaced with a0nðx; y; zÞ, which takes into
consideration the effect of X-ray attenuation by the sample.
The amount of deformation is proportional to z.

It is therefore possible to detect the object by analyzing
the deformed self-image by using an image detector with
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a spatial resolution below d (of the order of microns).
However, an X-ray image detector with such a resolution is
rare. Instead XTI uses another grating at the position of the
self-image, as illustrated in Fig. 1. If the period of the
second grating is almost the same as that of the self-image, a
moiré fringe pattern is generated by the superposition of the
deformed self-image and the pattern of the second grating.
The deformation of the self-image is also reflected on the
moiré pattern. Because a typical fringe spacing is much
larger than d, normal X-ray image detectors are available.

Giving the transmission function tðx; yÞ of the second
grating with a Fourier expansion series as

tðx; yÞ ¼
X
n

bn exp 2�i
nx

d

� �
; ð10Þ

a moiré pattern is given by

Iðx; y; zÞ ¼ Isðx; y; zÞ � tðx; yÞ

¼
X
n

a0nðx; y; zÞb �nn exp 2�i
n

d
y� þ z’xðx; yÞ þ �

� �� 	
;
ð11Þ

where � (� 1) and � are the relative inclination and
displacement, respectively, in the ðx; yÞ plane of the second
grating against the first. The factor describing the contrast
with the period of d has been averaged out.

2.2 Phase tomography
The X-ray phase shift �ðx; yÞ is written as

�ðx; yÞ ¼
2�

�

Z
	ðx; y; zÞ dz; ð12Þ

where 	ðx; y; zÞ is the refractive index decrement from unity.
Therefore, if phase shifts are measured in plural projection
directions, 	ðx; y; zÞ is reconstructed with the algorithm of
computed tomography. This is X-ray phase tomography.6)

The quantitative measurement of �ðx; yÞ is therefore
significant. In the case of XTI, ’x is determined from moiré
patterns. Then, � is obtained by integration, enabling X-ray
phase tomography.

To determine ’x from the moiré patterns, phase-shifting
interferometry (or fringe-scanning method)34) is available.
Normal phase-shifting interferometry assumes a two-beam
interference, which generates a sinusoidal fringe profile in
general given by Aþ B cos�, where A and B are the average
intensity and fringe contrast. By introducing a phase
difference that varies with a step of 2�=M (M: integer),
interference patterns

IðkÞðx; yÞ ¼ Aðx; yÞ þ Bðx; yÞ cos �ðx; yÞ þ
2�k

M

� 	
ð13Þ

ðk ¼ 1; 2; . . . ;MÞ
are measured, and � is calculated using

�ðx; yÞ ¼ arg
XM
k¼1

IðkÞðx; yÞ exp �2�i
k

M

� �" #
: ð14Þ

In the case of XTI that causes multibeam differential
interference, by changing � in eq. (11) with a step of d=M
(M: integer), moiré patterns

IðkÞðx; y; zTÞ ¼
X
n

a0nðx; y; zTÞb �nn

� exp 2�i
n

d
y� þ zT’xðx; yÞ þ

kd

M

� �� 	 ð15Þ

are measured. If the 0th and �1st orders are dominant, it is
clear that the operation of eq. (14) is available; that is,

2�

d
ðy� þ zT’xðx; yÞÞ

¼ arg
XM
k¼1

IðkÞðx; y; zTÞ exp �2�i
k

M

� �" #
:

ð16Þ

The influence of higher orders is considered as below. The
substitution of eq. (15) into the right hand side of eq. (16)
yields

arg

"X
n

a0nðx; y; zTÞb �nnCn;M

� exp i2�
n

d
ðy� þ zT’xðx; yÞÞ

� 	#
;

ð17Þ

where

Cn;M �
XM
k¼1

exp 2�i
k

M
ðn� 1Þ

� 	

¼ M if n� 1 ¼ qM

0 otherwise

�
q: integer:

ð18Þ

The combinations of n and M that yield non-zero values
of Cn;M are shown in Table I, which suggests that if a
sufficiently large number is selected for M, the influence of
higher orders is cancelled out and eq. (16) is available.35)

Here, it should be noted that even orders can be ignored if
the gratings have 1:1 L&S patterns. Then, when M ¼ 5, the
lowest order is ninth, which causes an error in calculating ’x

using eq. (16). The magnitude of such a high order is very
small normally. In addition, actual grating patterns are not

Grating

Self-i
mage

x

y

z

Sample

Fig. 2. Deformation of self-image by refraction at sample placed in front

of grating.

Table I. Combinations of n and M indicated by ‘‘e’’ yield non-zero values

of Cn;M and cause errors in calculating ’x using eq. (16).

M
Harmonics (jnj)

2 3 4 5 6 7 8 9

3 e — e e — e e —

4 — e — e — e — e

5 — — e — e — — e

6 — — — e — e — —

7 — — — — e — e —

8 — — — — — e — e
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completely rectangular and the spatial coherency of X-rays
that impinge on the gratings is normally incomplete. These
factors decrease higher orders and contribute to reducing
errors in calculating ’x using eq. (16). Thus,M ¼ 5 is a kind
of magic number suitable for applying the technique of
phase-shifting interferometry to XTI. The absorption con-
trast caused by the sample, which is involved in a0n, is
eliminated by this procedure, and the resultant image maps
purely the differential phase shift ’x.

Normally, ’x is determined by measurements with and
without a sample. Then, the effect of � on eq. (16) is
removed by subtraction. In addition, the effect of the
imperfection of gratings and/or deformed wavefronts of
incident X-rays are excluded as well.

The right term of eq. (16) involves the operation of
arctangent, whose value ranges from �� to �. Therefore,
when X-rays are refracted partially exceeding the amount
corresponding to the range, jumps between �� and � are
found in the resultant image obtained by the calculation of
eq. (16). In such a case, we need a process for unwrapping
the jumps by adding (subtracting) 2� to (from) one of the
pixels neighboring across the jumps. When the jump lines
are clear, the procedure is completed without errors.
However, the jump lines become unclear occasionally when
the data is noisy or when regions of steep value changes are
contained. Sophisticated techniques are developed to enable
unwrapping in such cases, and we used a cut-line algo-
rithm36) in the present study.

Finally, � is obtained by calculating

�ðx; yÞ ¼
2�

�

Z
’xðx; yÞ dxþ C; ð19Þ

and the constant of integration C is determined by the fact
that a sample is surrounded by a null region in the
measurement by tomography; that is, C ¼ 0. By repeating
this measurement at various angular positions of the sample
rotation, one can reconstruct 	ðx; y; zÞ using a conventional
algorithm in computed tomography.

One can skip this integration process if an algorithm with
a filter function for beam-deflection optical tomography37) is
used; in the case of the convolution-backprojection method,

Hðh�xÞ ¼
1

�2h�x
h: odd

0 h: even

(
ð20Þ

is the filter function to be used, where �x is the pixel size.
As a summary of this section, images at each image

processing step described above are shown in Fig. 3 using
the data of the phantom experiment reported previously.23)

3. Experiments

3.1 Grating
We selected gold as a material for the grating pattern

because its absorption coefficient is comparatively large.
Nevertheless, the thickness should be much more than ten
microns. As for the grating period, it should be smaller than
or comparable to the X-ray spatial coherence length, which
is several microns typically, and as a result a pattern of a
high aspect ratio must be fabricated.

Although microfabrication by optical lithography is
routinely performed, it is difficult to form a L&S pattern

whose thickness exceeds ten microns. A solution is found in
the field of X-ray lithography, which enables the formation
of a high-aspect-ratio structure, taking advantage of the
property of X-rays, that is, they tend to go straight in
comparison with light of longer wavelengths. In this study,
we used an X-ray amplitude grating fabricated by X-ray
lithography and gold electroplating, as described below.

The synchrotron radiation beamline 11 of NewSUBARU,
Japan, which is dedicated to Lithographie Galvanoformung
Abformung (LIGA) fabrication, was used. A 30 mm X-ray
resist film (MAX001, Nagase ChemteX) was spin-coated on
a 200-mm Si wafer with a 0.25-mm Ti layer, and then a 4-mm
L&S resist pattern (d ¼ 8 mm) was fabricated by X-ray
exposure. Gold lines were formed by electroplating between
resist lines, which were left after the electroplating to
support the gold lines (Fig. 4). The effect of absorption by
the X-ray resist is negligible. The height of the gold lines

(a) (b) (c)

(d) (e) (f)

Fig. 3. Images at each step of phase tomography with XTI. A moiré

pattern (a), which was due to the relative inclination (�) of the grating

against the other, is deformed by the differential phase shift caused by a

sample (plastic sphere about 1mm in diameter with some air bubbles in

it) placed in the field of view, as shown in (b). (c) was obtained by a five-

step fringe scan. The effect of � was removed using (a). Because (c) is the

output of eq. (16), the image is wrapped, and after an unwrapping

procedure, (d) that exhibits ’x is obtained. Black-white jumps observed in

the outline region of the sphere in (c) are compensated. (e), which is to be

input to the reconstruction algorithm of tomography, is obtained through

the spatial integration of (d). Repeating this series of procedure at every

angular position of the sample rotation, a three-dimensional image (f)

mapping the refractive index is reconstructed, where one quadrant has

been cropped to show the inside.

Au X-ray resist

Fig. 4. SEM image of X-ray amplitude grating fabricated by X-ray

lithography and gold electroplating. This grating was used for the second

grating in XTI.
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was nearly 30 mm, and the effective area of the grating was
20� 20mm2.29)

The first grating was also fabricated in a similar manner,
except that UV lithography was used, and had a gold pattern,
which was much thinner than that of the second. The
thickness was experimentally evaluated to be optimal for
X-rays of about 0.065 nm for a �=2 phase grating. An
amplitude grating is available for the first grating, but a
phase grating is superior to an amplitude grating in that
X-ray intensity is twice at an image detector and that the
requirement for spatial coherency is moderated because zT
is reduced by one-half.

3.2 Performance of XTI
An X-ray Talbot interferometer was arranged at the

beamline 20XU of SPring-8, Japan, where undulator X-rays
were available at 245m from the source point. The vertical
source size of synchrotron radiation is normally much
smaller than the horizontal size. However, because the effect
of the instability of the beamline monochromator existed,
the gratings were aligned so that the gold pattern was almost
vertical. Then, spatial coherency was determined by hori-
zontal source size. Strictly, in the present case, source size
was determined by the front-end slit 400 mm in width located
214m upstream from the grating. The spatial coherence was
certainly larger than d (¼ 8 mm).

Figure 5 shows moiré patterns observed with 0.065-nm X-
rays with the visibility as a function of the distance between
the gratings. Here, � was 1.3� and therefore the moiré fringes
were generated. Although this study was performed assum-
ing that synchrotron radiation is a plane wave, strictly a
spherical wave with a small curvature was introduced into
the interferometer, and its effect was observed as the
inclination of fringes; that is, the horizontal component of
spatial frequency is due to the mismatch of the period
between the second grating and the self-image of the first
grating, which was enlarged by slightly spherical-wave
illumination.

At z ¼ d2=2� , which was the best position for XTI with a
�=2 phase grating, the fringe visibility exceeded 0.8. With
increasing the distance, visibility minimized at z 	 d2=� and
again increased, indicating that this phenomenon was
induced by the fractional Talbot effect. Strictly, a minimum
was found at a distance slightly shorter than d2=� . This is
considered to be due to the coexisting amplitude modulation
caused by the first grating.

The influence of higher orders when using eq. (16) was
commented above. Figure 6 shows the Fourier-transforms of
the moiré patterns shown in Fig. 5. In Fig. 6(b), that is, the

Fourier transform of the moiré pattern of the best visibility,
spots of 0th, 1st, and 3rd orders existed, and those of higher
orders and even orders were not detected. This result
confirmed that the selection of 5 for M as discussed above
was reasonable for the experiments of phase tomography
that will be presented below. However, at the same time, it
was found that other Fourier-transforms exhibited even
orders as shown in Fig. 6. Therefore, one should be careful
when XTI is operated with the grating separation widely
different from d2=2� even if the visibility is still high.

Next, keeping the condition z ¼ d2=2� , the visibility was
plotted as a function of � (Fig. 7). This result shows that the
Talbot interferometer functioned in a wide energy range; the
visibility was over 0.3 even at 0.04 nm (31 keV). The
availability of the interferometer at higher energy is mean-
ingful because the observation of high-density tissues such
as bone and calcification becomes more feasible, revealing
soft tissue structures in the same view.

3.3 Phase tomography of biological samples
The X-ray Talbot interferometer was used for the tomo-

graphic observation of biological soft tissues. A sample was
fixed on the tip of a rotation rod and immersed in formalin
filling a cell. Because of the problem of bubble generation
in the cell due to intense X-ray irradiation, beam intensity
was moderately reduced by undulator-gap detuning. The
flux density at a sample was approximately 1011 photons
mm�2 s�1.

The measurement of ’xðx; yÞ by a five-step fringe scan was
repeated at each angular position of the sample rotation with
a step of 0.72� over 180�. Images were recorded using a
CCD camera coupled with optical lens and a phosphor
screen, whose effective pixel size was 4.34 mm. The tomo-
grams presented below are therefore formed by voxels
4.34 mm on one side. Exposure times for recording a moiré
pattern were 1.0, 0.2, and 0.25 s for Figs. 8, 9, and 10,
respectively.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
2/λ)

V
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ili
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z /(d

Fig. 5. Moiré patterns and their visibilities observed by XTI at various

spacings between two gratings. � ¼ 0:065 nm.

(a) (b) (c) (d) (e)

Fig. 6. Fourier-transforms of moiré patterns shown in Fig. 5 in the same

order.
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Fig. 7. Visibility of moiré pattern as function of X-ray wavelength. The

distance between gratings was kept at d2=2� .
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A piece of rabbit liver with cancer (VX2) was first
examined using 0.1 nm X-rays. A cancerous lesion depicted
with a lower grayscale value was clearly differentiated from
a normal tissue as shown in Fig. 8. Furthermore, necrosis
was detected as bright areas in the cancerous lesion. The
grayscale corresponds to the refractive index difference

ranging from 0 to 1:1� 10�7. This feature is comparable to
the result obtained by phase tomography using a Mach–
Zehnder type crystal X-ray interferometer.38)

XTI is available for a sample containing bone tissue,
while phase tomography with a crystal X-ray interferometer
is not suitable for such a sample because interference fringes
that are too fine to resolve are generated by bones. Figure 9
shows a result obtained for a mouse tail using 0.07 nm
X-rays. The arrows in the sagital image [Fig. 9(a)] indicate
the positions of axial images shown in Figs. 9(b)–9(d).
Soft tissue structures, such as muscle, ligament, skin, and
intervertebral disc (cartilage), were depicted with bones in
the same view although the bones generated some artifacts.
The bones in these views are saturated, but a trabecular
structure was depicted by changing the grayscale, as shown
in Fig. 9(e).

It should be noted that the contrast of the bones does not
include the contribution of absorption, which was eliminated
by the operation in eq. (16). If the information of absorption
is needed, it can be obtained by calculating amplitude
instead of the argument as in the right term of eq. (16).

The X-ray Talbot interferometer functioned using 0.04 nm
X-rays, as suggested by the result shown in Fig. 7. There-
fore, the mouse tail was observed at this wavelength, as
shown in Fig. 10, whose axial positions corresponded to
those of Figs. 9(c) and 9(e). Although Fig. 10 seems to be
slightly noisier than Fig. 9, one reason for which is the lower
visibility of moiré fringes at 0.04 nm, this result fully
suggests that our X-ray Talbot interferometer is available for
X-ray phase tomography at this energy.

4. Discussion

4.1 Resolution
The spatial resolution of an image obtained by XTI is

limited by the period of the grating. Including other factors
such as the resolution of the image detector and noise, actual
spatial resolution is determined. We evaluated spatial
resolution on the basis of the average full width at half
maximum (FWHM) of differential contrast profiles across
boundaries between the sample and surrounding medium
(formalin) in phase tomograms. From Figs. 8 and 10, 14 and
16 mm were obtained, respectively. To improve spatial
resolution, gratings of a smaller period are necessary.

Contrast resolution, which describes the high sensitivity

cancer (VX2)(a) (b)
necrosis

normal

Fig. 8. Rabbit liver tissue with VX2 cancer examined by phase tomog-

raphy with 0.1 nm X-rays. Cancerous lesion was clearly differentiated

from normal tissue in (a), and necrosis in the tumor was revealed. (b) is a

three-dimensional rendering view of a part of reconstructed data.

b
c

d

(a) (b)

(c) (d)

(e) (f)

intervertebral disc

skin

muscle

ligament

bone

Fig. 9. Mouse tail observed by phase tomography with 0.07 nm X-rays. In

the sagital image (a), the positions of the axial images (b), (c), and (d) are

indicated by arrows. The grayscale of (b)–(d) corresponds to the

refractive index difference ranging from 0 to 2� 10�7. A redrawing of

(b) with a grayscale from 0 to 7� 10�7 is shown in (e), where a

trabecular structure of the bone is shown. (f) is a three-dimensional

rendering view of a portion containing an intervertebral disc.

(a) (b)

Fig. 10. Mouse tail identical to sample shown in Fig. 9, observed by

phase tomography with 0.04 nm X-rays. The slice positions of (a) and (b)

correspond to those of Figs. 9(c) and 9(e). The grayscales of (a) and (b)

correspond to the refractive index difference ranging from 0 to 6� 10�8

and to 2� 10�7, respectively.
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of X-ray phase imaging, was evaluated on the basis of the
standard deviation in the tomograms at the region of the
surrounding formalin. In the X-ray energy region, the
refractive index decrement 	, which phase tomography
reveals as explained, is approximately given by

	 ¼
re�

2

2�

; ð21Þ

where re is the classical electron radius and 
 is the electron
density. This implies that the contrast in phase tomograms
corresponds to a map of electron density. Furthermore,
particularly for materials consisting of light elements,
electron density is approximately proportional to mass
density. Therefore, a phase tomogram is considered to be a
mass density map. The standard deviation of voxel values in
a part of the surrounding formalin region of Fig. 8 was 1:9�
10�9. The detection limit of density deviation was therefore
estimated to be 1.3mg/cm3 because the 	 of formalin, which
is almost the same as that of water,39) is 1:5� 10�6 for
0.1 nm X-rays. Similarly, we obtained 2.2 and 5.9mg/cm3

for 0.07 and 0.04 nm X-rays, respectively, from Figs. 9 and
10. Thus, the sensitivity to density deviation is better with
X-rays of longer wavelengths. This result is consistent with
the fact that 	 is proportional to the square of � [eq. (21)].

However, it should be emphasized that errors in the
unwrapping are reduced with decreasing wavelength. This is
because a too strong refraction is suppressed moderately,
therefore, a too rapid change in resultant ’x is reduced. For
samples containing high-density regions such as bone, the
use of higher energy X-rays is significant in this sense.

4.2 Requirements for X-ray beam quality
The experiments reported in this paper were performed

with synchrotron radiation assuming plane-wave monochro-
matic X-rays. However, as mentioned in the Introduction,
XTI functions in principle with spherical-wave (cone-beam)
X-rays with a broad energy band because of the use of
grating optics. Here, the performance of XTI is discussed
when polychromatic X-rays are used.

The change in ’x caused by the spectral change �� is
given using eqs. (9), (12), and (21) by

�’x ¼ ��
re�

�

Z
@


@x
dz: ð22Þ

Because the positions of moiré fringes are determined by the
maximum of cosð2�zT’x=dÞ, as suggested in eq. (11), the
spectral change moves moiré fringes in proportion to

2�

d
zT�’x ¼ 2mre��d

Z
@


@x
dz: ð23Þ

As a result, a finite band width causes a decrease in the
visibility of moiré fringes. An acceptable band width so that
moiré fringes are not smeared out is evaluated using

2mre�� d

Z
@


@x
dz <

�

2
: ð24Þ

Here, let us consider a case of detecting an air bubble in
water. We assume that the pixel size of an image detector is
d, which is the same as the period of the grating, since a
smaller pixel size is meaningless because the spatial
resolution of XTI is limited by d according to its principle.

Then, the maximum gradient that would be measured with a
discrete sampling is

ffiffiffiffiffiffiffiffiffi
D=d

p
, where D is the diameter of the

air bubble, and eq. (24) is rewritten as

4mre�� d


ffiffiffiffi
D

d

r
<

�

2
: ð25Þ

Using the parameters used in this study (d ¼ 8 mm, m ¼
1=2) and 
 ¼ 3:3� 1029 m�3 for water,

��
ffiffiffiffi
D

p
< 2:9� 10�13; ð26Þ

where �� and D are given with the unit of meter. This
implies that �� can be broaden up to 29 pm without
smearing out an air bubble 100 mm in diameter in water.
Thus, X-rays with a bandwidth ��=� 
 0:1 are certainly
available. However, this result suggests at the same time that
a narrower band should be selected so as to satisfy eq. (24)
when a thicker object is observed.

The above discussion was presented neglecting the
degradation of the performance of XTI by band width.
Because zT is inversely proportional to � , the visibility of
moiré fringes should be worse in the case of using
polychromatic X-rays than in the case of using monochro-
matic X-rays. The contrast of the self-image has maxima
along z every d2=� , as suggested by eq. (6). Assuming that
the change in zT induced by the spectral change of ��� is
smaller than ð1=4Þðd2= ���Þ, a condition that moiré fringes are
visible would be given by

��

���
<

1

8
; ð27Þ

where ��� is the central wavelength. Thus, XTI is tolerant of
the broadness of X-ray spectrum.

The above result implies that XTI does not require
temporal coherency for its operation. However, requirement
for spatial coherency should be noted. From the viewpoint
of geometrical optics, the Talbot effect is understood as a
result of interference mainly between neighboring diffrac-
tion orders generated by the grating. The angular difference
between two beams of neighboring orders is �=d, and
therefore an interference fringe pattern, or self-image, with a
period d is formed. Because the two beams are spatially
separated by �zT=d ¼ md at z ¼ zT, the spatial coherence
length should be approximately larger than md, in the case of
presented study d=2.

In general, the spatial coherence length L is defined by

L ¼
�R

2��x
; ð28Þ

at the distance R from an X-ray source with a Gaussian
intensity distribution expð�x2=2�2

x Þ. Figure 11 shows the
fringe visibilities of the self-image of a �=2 phase grating at
z ¼ d2=2� as a function of L=d. The visibility curve is
independent of � , and when the coherence length is larger
than one-half of the grating period, a self-image with a
visibility of more than 0.7 is produced, which is enough for
phase imaging provided the pattern of the second grating is
sufficiently thick. It is noteworthy that a visibility of 0.4 is
attained even L=d 	 1=3.

4.3 Prospects
As presented, phase imaging at 0.04 nm was successful,
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but it is of course necessary to fabricate a thicker pattern to
attain a better imaging quality at this or a higher-energy
region. At the same time, the area of the grating should be
increased for practical imaging applications. The period of
the gratings is also preferred to be shortened because the
system can be compact and the requirement for spatial
coherency is moderated. We consider that such develop-
ments are possible by improving the fabrication technology
used in this study.

Although this study demonstrated XTI with synchrotron
radiation, which can be assumed to be plane-wave X-rays,
the development of cone-beam XTI with a compact X-ray
source is significant for practical applications. The principle
of XTI is common in cone-beam XTI, aside from some
modifications. When a spherical wave is used, the positions
of self-imaging given by eq. (6) for the plane-wave case
must be replaced by

zT ¼
md21R

R� � md21
; ð29Þ

where R is the distance between the source and the first
grating with a period d1.

40) The period d2 of the second
grating is different from d1 and has a relation

d1 : d2 ¼ R : ðRþ zTÞ: ð30Þ

Although the use of spherical gratings would be ideal in this
case, flat gratings are also available for XTI with a spherical
wave, provided that R is sufficiently larger than the size of
the field of view, theoretical considerations on which will be
described elsewhere.41)

As for an image detector, XTI does not require a spatial
resolution as high as that for resolving the self-image.
Therefore, a variety of X-ray image detectors should be
compatible with XTI. Here, it should be noted that an image
detector in combination with the two gratings can be
considered as a phase-sensitive image detector. In this sense,
XTI is a breakthrough for the development of the first X-ray
wavefront sensor.

Because XTI is operated with a cone beam with a broad
energy band, its instrumentation outside synchrotron radia-
tion facilities is highly expected. What types of X-ray source
are available for cone-beam XTI? Normal X-ray generators
used in hospitals are not available because of the lack of
spatial coherency. The source size and source-grating
distance must be selected to produce a spatial coherence
length enough to generate the Talbot effect. It is therefore

preferable to use a small source at a position far from it [see
eq. (28)]. For instance, if d1 ¼ 5 mm, � ¼ 0:04 nm, and
�x ¼ 5 mm (FWHM of the source size is about 12 mm), then
R should be larger than 2m. At the same time, a sufficient
flux is needed for imaging with a practical exposure time.
These two requirements are contrary to each other.

Assuming that 103 photons/s are needed per 50 mm pixel
for phase imaging and that a field of view of 100� 100mm2

is covered with an array of pixels, an X-ray source emitting
2� 1013 photons/s in the entire solid angle is required under
the above conditions with respect to �x and R. Even taking
into account the bandwidth available for XTI discussed
above, the wattage of such an X-ray source should be over
100W, which is much higher than that of commercially
available microfocus X-ray generators. Although the re-
quirement for X-ray sources is moderated using XTI as
discussed above, we need to make an effort as well to
develop a microfocus X-ray source with an improved
brightness for practical phase imaging by XTI.

5. Conclusions

The principle of X-ray phase imaging and phase tomog-
raphy with XTI was described, and successful biological
imaging results with synchrotron radiation were presented.
The key for the construction of an X-ray Talbot interfer-
ometer is the fabrication of an amplitude grating, because a
high-aspect-ratio pattern must be formed. We fabricated a
gold grating by X-ray lithography and electroplating. The
X-ray Talbot interferometer with the gold grating functioned
with synchrotron X-rays down to 0.04 nm wavelength.
Provided that a grating with a higher aspect ratio and a
wider effective area is fabricated, XTI is an attractive
candidate for practical X-ray phase imaging, such as that for
clinical diagnoses, because XTI has an advantage in that
cone-beam X-rays of a broad energy band are available,
allowing its compatibility with a compact X-ray source.
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