2 Diffusion

2.1 Atomic Mechanisms of Diffusion 61
2.2 Interstitial Diffusion 63
 2.2.1 Interstitial Diffusion as a Random Jump Process 63
 2.2.2 Effect of Temperature—Thermal Activation 66
 2.2.3 Steady-State Diffusion 69
 2.2.4 Nonsteady-State Diffusion 69
 2.2.5 Solutions to the Diffusion Equation 71
 Homogenization 71
 The Carburization of Steel 73
2.3 Substitutional Diffusion 75
 2.3.1 Self-Diffusion 75
 2.3.2 Vacancy Diffusion 79
 2.3.3 Diffusion in Substitutional Alloys 82
 2.3.4 Diffusion in Dilute Substitutional Alloys 91
2.4 Atomic Mobility 92
2.5 Tracer Diffusion in Binary Alloys 94
2.6 Diffusion in Ternary Alloys 96
2.7 High-Diffusivity Paths 98
 2.7.1 Diffusion along Grain Boundaries and Free Surfaces 98
 2.7.2 Diffusion along Dislocations 102
2.8 Diffusion in Multiphase Binary Systems 103
 References 106
 Further Reading 106
 Exercises 106

3 Crystal Interfaces and Microstructure

3.1 Interfacial Free Energy 110
3.2 Solid/Vapour Interfaces 112
3.3 Boundaries in Single-Phase Solids 116
 3.3.1 Low-Angle and High-Angle Boundaries 116
 3.3.2 Special High-Angle Grain Boundaries 122
 3.3.3 Equilibrium in Polycrystalline Materials 124
 3.3.4 Thermally Activated Migration of Grain Boundaries 130
 3.3.5 The Kinetics of Grain Growth 139
3.4 Interphase Interfaces in Solids 142
 3.4.1 Interface Coherence 143
 Fully Coherent Interfaces 143
 Semicoherent Interfaces 145
 Incoherent Interfaces 147
 Complex Semicoherent Interfaces 148
 3.4.2 Second-Phase Shape: Interfacial Energy Effects 149
 Fully Coherent Precipitates 149
 Partially Coherent Precipitates 151
 Incoherent Precipitates 152
 Precipitates on Grain Boundaries 153
3.4.3 Second-Phase Shape: Misfit Strain Effects 154
 Fully Coherent Precipitates 154
 Incoherent Inclusions 158
 Plate-Like Precipitates 160
3.4.4 Coherency Loss 160
3.4.5 Glissile Interfaces 163
3.4.6 Solid/Liquid Interfaces 168
3.5 Interface Migration 171
 3.5.1 Diffusion-Controlled and Interface-Controlled Growth 175

References 180
Further Reading 182
Exercises 182

4 Solidification 185
4.1 Nucleation in Pure Metals 185
 4.1.1 Homogeneous Nucleation 186
 4.1.2 The Homogeneous Nucleation Rate 190
 4.1.3 Heterogeneous Nucleation 192
 4.1.4 Nucleation of Melting 197
4.2 Growth of a Pure Solid 197
 4.2.1 Continuous Growth 198
 4.2.2 Lateral Growth 198
 Surface Nucleation 200
 Spiral Growth 201
 Growth from Twin Intersections 202
 4.2.3 Heat Flow and Interface Stability 203
4.3 Alloy Solidification 207
 4.3.1 Solidification of Single-Phase Alloys 208
 Equilibrium Solidification 208
 No Diffusion in Solid, Perfect Mixing in Liquid 208
 No Diffusion in Solid, Diffusional Mixing in Liquid 212
 Cellular and Dendritic Solidification 214
 4.3.2 Eutectic Solidification 222
 Growth of Lamellar Eutectics 223
 4.3.3 Off-Eutectic Alloys 229
 4.3.4 Peritectic Solidification 231
4.4 Solidification of Ingots and Castings 233
 4.4.1 Ingot Structure 233
 Chill Zone 234
 Columnar Zone 235
 Equiaxed Zone 236
 Shrinkage Effects 236
 4.4.2 Segregation in Ingots and Castings 237
 4.4.3 Continuous Casting 238
 Heat Flow in Welding and Continuous Casting 239
Contents

4.5 Solidification of Fusion Welds
- Influence of Welding Speed 245
- Geometry of Crystal Growth 248

4.6 Solidification during Quenching from the Melt 249

4.7 Case Studies of some Practical Castings and Welds 249
- 4.7.1 Casting of Carbon and Low-Alloy Steels 249
- 4.7.2 Casting of High-Speed Steels 251
- 4.7.3 Stainless Steel Weld Metal 256

References 259
Further Reading 260
Exercises 260

5 Diffusional Transformations in Solids 263

5.1 Homogeneous Nucleation in Solids 265

5.2 Heterogeneous Nucleation
- Nucleation on Grain Boundaries 271
- Dislocations 274
- Excess Vacancies 275

5.2.1 Rate of Heterogeneous Nucleation 276

5.3 Precipitate Growth 279
- Growth behind Planar Incoherent Interfaces 279
- Diffusion-Controlled Lengthening of Plates or Needles 283
- Thickening of Plate-like Precipitates 285

5.4 Overall Transformation Kinetics—TTT Diagrams 287

5.5 Precipitation in Age-Hardening Alloys 291
- 5.5.1 Precipitation in Aluminium–Copper Alloys 291
 - GP Zones 291
 - Transition Phases 292
- 5.5.2 Precipitation in Aluminium–Silver Alloys 302
- 5.5.3 Quenched-in Vacancies 303
- 5.5.4 Age Hardening 304
- 5.5.5 Spinodal Decomposition 308
- 5.5.6 Particle Coarsening 314
 - Low γ 316
 - Low X_c 316
 - Low D 317

5.6 The Precipitation of Ferrite from Austenite 317

5.7 Cellular Precipitation 322

5.8 Eutectoid Transformations 326
- 5.8.1 The Pearlite Reaction in Fe–C Alloys 326
 - Nucleation of Pearlite 327
 - Pearlite Growth 330
 - Pearlite in Off-Eutectoid Fe–C Alloys 333
- 5.8.2 The Bainite Transformation 334
Contents

Upper Bainite 334
Lower Bainite 337
Transformation Shears 337

5.8.3 The Effect of Alloying Elements on Hardenability 338
5.8.4 Continuous Cooling Diagrams 344
5.8.5 Fibrous and Interphase Precipitation in Alloy Steels 349

5.9 Massive Transformations 349
5.10 Ordering Transformations 358
5.11 Case Studies 366
5.11.1 Titanium Forging Alloys 366
5.11.2 The Weldability of Low-Carbon and Microalloyed Rolled Steels 372
References 377
Further Reading 378
Exercises 379

6 Diffusionless Transformations 382
6.1 Characteristics of Diffusionless Transformations 383
6.1.1 The Solid Solution of Carbon in Iron 385
6.2 Martensite Crystallography 389
6.2.1 The Bain Model of the fcc \rightarrow bct Transformation 391
6.2.2 Comparison of Crystallographic Theory with Experimental Results 396
6.3 Theories of Martensite Nucleation 397
6.3.1 Formation of Coherent Nuclei of Martensite 398
6.3.2 Role of Dislocations in Martensite Nucleation 401
6.3.3 Dislocation Strain Energy Assisted Transformation 406
6.4 Martensite Growth 409
6.4.1 Growth of Lath Martensite 410
6.4.2 Plate Martensite 412
6.4.3 Stabilization 415
6.4.4 Effect of External Stresses 415
6.4.5 Role of Grain Size 416
6.5 Pre-martensite Phenomena 416
6.6 Tempering of Ferrous Martensites 417
 Carbon Segregation 420
 \(\varepsilon\)-Carbide 421
 Cementite 422
 Alloy Carbides 422
 Effect of Retained Austenite 426
 Recovery, Recrystallization and Grain Growth 426
 Temper Embrittlement 427
6.7 Case Studies 428
6.7.1 Carbon and Low-Alloy Quenched and Tempered Steels 428
6.7.2 Controlled Transformation Steels 430