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Abstract Thermal corrections in classically conformal
models typically induce a strong first-order electroweak
phase transition, thereby resulting in a stochastic gravita-
tional background that could be detectable at gravitational
wave observatories. After reviewing the basics of classi-
cally conformal scenarios, in this paper we investigate the
phase transition dynamics in a thermal environment and the
related gravitational wave phenomenology within the frame-
work of scalar conformal extensions of the Standard Model.
We find that minimal extensions involving only one addi-
tional scalar field struggle to reproduce the correct phase
transition dynamics once thermal corrections are accounted
for. Next-to-minimal models, instead, yield the desired elec-
troweak symmetry breaking and typically result in a very
strong gravitational wave signal.

1 Introduction

The LIGO collaboration has recently observed for the first
time the direct effects of gravitational waves on matter [1],
marking the beginning of gravitational wave astronomy. This
new experimental field pursues the fascinating possibility
that important information as regards the evolution of the
Universe could be encoded in a gravitational wave back-
ground. In light of this, as the boundaries of the observed
gravitational wave spectrum are to be considerably extended
by forthcoming space-based interferometers such as LISA
[2], we can expect that gravitational wave astronomy will
soon produce new important observables and benchmarks
for models of particle physics and gravitation. In this regard,
the possible occurrence of phase transitions in the evolution
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of our Universe is one of the matters within the reach of cur-
rent and next-generation gravitational waves experiments.

The dynamics of phase transitions have been investigated
in connection to a number of different topics, ranging from
the problem of the baryon asymmetry of the Universe [3–
12] to the natural appearance of such phenomena in several
high energy completions of the Standard Model (SM) [13–
29]. Phase transitions which directly or indirectly result in
the generation of the electroweak scale have also been anal-
ysed within the framework of classically conformal (or scale
invariant) models [30,32–37], often in connection to other
open problems of contemporary physics such as the origins of
Dark Matter (DM) and the inflationary dynamics [31,32,38–
57]. An important feature of classically conformal models
is that the phase transition associated to the insurgence of
the electroweak scale is generally of the first order and very
strong. It is then plausible that the related dynamics result in
sizeable gravitational wave signals, which would be nowa-
days encoded in a stochastic background.

Attracted by this possibility, in this paper we focus on
the classically conformal extensions of the SM expanding
on previous analysis [30,32,37] of the topic, accounting for
the impact of thermal corrections on the dynamics of phase
transition and extending the phenomenology of these mod-
els to cover their possible gravitational wave signal. In more
detail, we demonstrate in a general way that scalar conformal
models have indeed the capability to give rise to gravitational
wave signals that current and future dedicated observations
could detect. By applying the developed formalism we then
find that the simplest scalar conformal extension of the SM
is, at best, strongly constrained by the phenomenology asso-
ciated to the phase transition once thermal corrections and
perturbativity arguments are taken into account. The next-to-
minimal models that rely on two new scalar fields, instead,
bypass the shortcomings affecting the minimal scenario once
the phase transition dynamics is relegated to early epochs
in the evolution of the Universe. In this case, we find that
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the scenarios generally give rise to very strong gravitational
wave signals detectable at the current and next-generation
gravitational wave interferometers.

The paper is organised as follows: in Sect. 2 we review the
computation of the phase transition temperature and of the
emitted gravitational wave spectrum for a classically confor-
mal theory with two scalar fields. The results of this simple
model are discussed in relation to the expected sensitivities
of the aLIGO and LISA observatories. In Sect. 3 we apply
our formalism to a conformal scalar singlet extensions of
the SM, extending the work in [32] to scenarios where the
Higgs vacuum expectation value (VEV) is induced by the
new scalar via a portal coupling. The next-to-minimal mod-
els are addressed in Sect. 4, whereas our conclusions are
presented in Sect. 5.

2 Gravitational wave signatures of conformal models

We briefly review here the key steps in the computation of
the potential at finite temperature for a conformal scalar field
model. At zero temperature, the one-loop scalar potential of
n scalar fields φ j , j ∈ {1, . . . , n}, is given by the Coleman–
Weinberg result [58]

V =
n∑

i, j,k,l=1

λi jklφiφ jφkφl+
n∑

k=1

gkM4
k

64π2 log

(
M2

k

μ2

)
+δV,

(1)

where δV contains the counterterms, μ is the renormalisa-
tion scale and Mk and gk are, respectively, the field depen-
dent tree-level mass and the number or intrinsic degrees or
freedom of the particle k. Notice that in our convention gk
assumes positive values for bosons and negative ones for
fermions.

Consider now a direction in the scalar field space defined
by φ = ∑n

j=1 a jφ j , where
∑n

j=1 a
2
j = 1. Along this direc-

tion the tree-level mass of the scalar field φ can be written as
Mk = Wkφ, where Wk depends only on adimensional cou-
plings. The potential in Eq. (1) along the direction φ is then
written as [37]

V = 1

4
(λφ + δλφ)φ4 + Aφ4 + Bφ4 log

(
φ

μ

)
, (2)

where

A =
n∑

k=1

gkW 2
k

64π2 log W 2
k , B =

n∑

k=1

gkW 4
k

32π2 . (3)

We require that the tree-level potential is flat along the direc-
tion φ, λφ = 0, and set the counterterm δλ via the renormal-
isation condition d4V/dφ4|φ=e−11/6vφ

= 0. Here vφ is the
VEV of φ induced in the spontaneous breaking of the sym-
metry via the Coleman–Weinberg mechanism. In this way
the scalar potential along φ finally reads

V = Bφ4
(

log

(
φ

vφ

)
− 1

4

)
, (4)

and for the mass of φ we have M2
φ = 4Bv2

φ .
The one-loop finite temperature corrections to the above

scalar potential are given by [59]

VT =
n∑

k=1

JT (Mk) +
∑

k∈bosons

DT (Mk,�k), (5)

where the thermal integral JT is specified by

JT (Mk) = gkT
∫

d3 p

(2π)3 log(1 ∓ e−E/T ), (6)

and the upper (lower) sign is for bosons (fermions). The
contribution from the re-summed daisy diagrams instead
amounts to

DT (Mk,�k) = gkT

12π

(
M3

k − (M2
k + �k(T ))

3
2

)
, (7)

and depends on the Debye mass �k of the boson k. Notice
that for T � Mk the thermal integral can be approximated
as

JT (Mk � T ) = ckgkM2
k T

2/12 + const., (8)

where

ck =
{

1 (bosons),

−1/2 (fermions).
(9)

In this regime, the one-loop finite temperature effective
potential along the φ direction is then given by

Veff. = V + VT = Bφ4
(

log

(
φ

vφ

)
− 1

4

)
+ CT 2φ2, (10)

where we defined C = ∑
k ckgkW

2
k /12 ≥ 0. Notice that the

second derivative of the scalar potential at φ = 0 matches
CT 2, so the thermal potential has necessarily a local mini-
mum at φ = 0 independently of the specifics of the underly-
ing conformal model.

For the sake of definiteness, consider now a minimal sce-
nario comprising n = 2 scalar fields, φ and σ , with a Z2

symmetry that bars linear terms in the potential. Suppose also
that the scalar field φ, which lies along the flat direction of the
tree-level potential, give a mass M2

σ = λpφ
2/2 to the field σ

via a (positive) portal coupling λp, so that B = λ2
p/128π2.

The one-loop thermal part of the potential is given by

VT = JT (Mσ ) + DT (Mσ ,�σ ), (11)

where �σ = λpT 2/3 and gσ = 1. We find that using the
approximation VT = M2

σ T
2/12 leads to underestimating

the reference phase transition temperatures (Tc and Tn , as
explained later) by a factor of less than 10 but does not alter
the qualitative discussion of the example at hand. The evo-
lution of the total potential VT along the φ direction as a
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Fig. 1 The scalar field potential Ṽeff.(φ, T ) = Veff.(φ, T )−Veff.(0, T )

which accounts for the full one-loop thermal integral and the re-summed
daisy diagrams in the proposed two-scalars toy model plotted for dif-
ferent temperatures

function of temperature is shown in Fig. 1. The temperature
at which the minima at φ = 0 and φ �= 0 are degenerate is
the critical temperature Tc.

2.1 The phase transition

As made clear from Fig. 1, for temperatures of the thermal
bath large enough to lift the minimum of the potential, the
field1 is drawn towards the origin, in a way that vφ = 0
and possible symmetries are restored. The field is stuck at
this point until T < Tc, when the potential develops again
a new global minimum characterised by a non-zero VEV.
As mentioned before, however, thermal corrections in con-
formal models necessarily result in a potential barrier which
separates the origin, a local minimum of the potential, from
the minimum corresponding to the true vacuum of the theory.
Because such potential barrier disappears only for T = 0,
the phase transition from vφ = 0 to vφ �= 0 in conformal
models is always of first order for any finite temperature. We
remark that this is a model independent result which applies
to all classically conformal scenarios, including the confor-
mal extensions of the Standard Model. Consequently to the
abrupt transition, the phase transition proceeds via nucleation
and consequent expansion of bubbles inside of which the field
is in the broken phase of the theory. The bubble nucleation
rate per unit of time and volume is given by [60]

�(T ) � T 4
(

S3

2πT

) 3
2

exp

(
− S3

T

)
, (12)

where

S3 = 4π

∫
r2dr

(
1

2

(
dφ

dr

)2

+ Veff.(φ, T )

)
(13)

1 Or, rather, its expectation value which obeys the classical equations
of motions.

Fig. 2 The phase transition in classically conformal models. The thick
solid lines are the isocontours of the phase transition temperature Tn ,
the thin solid lines are instead those of the critical temperature Tc. The
dashed lines show the temperature corresponding to α(T ) = 1. The
grey region is excluded by the requirement that the phase transition
occur at temperatures above the BBN one

is the three-dimensional Euclidean action for an O(3)-
symmetric bubble.2 The largest contribution to the bubble
nucleation rate arises from the path (in the field space) which
minimizes S3, obtained by solving the equation

d2φ

dr2 + 2

r

dφ

dr
= dVeff.

dφ
(14)

with boundary conditions dφ/dr = 0 at r = 0, and φ → 0
at r → ∞. The bubble nucleation temperature, Tn , is then
defined as the temperature at which the probability of pro-
ducing at least one bubble per horizon volume in Hubble time
approaches unity:

4π

3

�(Tn)

H(Tn)4 � 1. (15)

We plot in Fig. 2 the bubble nucleation temperature as a
function of the portal coupling λp and the VEV vφ . Requiring
that the phase transition occurs above the Big Bang nucle-
osynthesis (BBN) temperature, TBBN � 4 MeV, excludes
values of the portal coupling λp � 0.5. Notice also that for
λp � 2 the bubble nucleation temperature is much lower
than the critical temperature Tc, implying a large amount of

2 We remark that the action is minimised by an O(3)-symmetric solu-
tion rather than an O(4) one. This is expected whenever the potential
barrier arises purely from thermal effects.
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Fig. 3 Plot of α as a function of Tn/Tc for λp = 1 (top lines) and
λp = 5 (bottom lines). The solid lines correspond to the result obtained
with Eq. (16) whereas the dashed lines are for the approximation in
Eq. (17)

supercooling. The transition is then very strong and we can
consequently expect a sizeable gravitational wave signal.

2.2 Gravitational wave production

The ratio of the vacuum energy released during the phase
transition to the energy density of the radiation bath at a
temperature T is given by [61]

α(T ) = 1

ργ

(
�Veff. − T

4
�

(
dVeff.

dT

))
, (16)

where we indicated with �X the difference X (0)−X (vφ) for
a quantity X . As shown in Fig. 3, the value of α for T � Tc
can be very well approximated by

α(T ) � V (0) − V (vφ)

ργ (T )
� 6 × 10−4

λ2
pv

4
φ

g∗T 4 , (17)

where g∗ is the effective number of relativistic degrees of
freedom in the thermal plasma. Given that Tc ∝ vφ , the
curves shown in Fig. 3 do not depend on the value of vφ .

The thin dashed lines in Fig. 2 denote instead the config-
urations of the model for which α(T ) � 1, with increasingly
larger values falling on the right hand side of the lines. We see
that for small λp � 2 the vacuum energy released in the tran-
sition is much larger than the energy density in the radiation
bath, α � 1, as suggested by the large hierarchy between
critical and nucleation temperature. In this regime we then
expect that in classically conformal models the dynamics of
phase transition result in a substantial reheating of the system,
consequent to the scalar field tunnelling through the thermal
potential barrier [62].

For these values of the parameters, it can be shown that
plasma effects do not play an important role in the bubble
expansion [63]. Then, as the bubble wall velocity approaches
the speed of light, the gravitational wave signal arises purely

Fig. 4 The gravitational wave spectrum obtained for the considered
model assuming the values of the relative parameters reported in Table 1.
Theblack andgrey solid lines show the gravitational wave spectra result-
ing from the phase transition dynamics for λp = 1 and λp = 2, respec-
tively. The dashed lines correspond instead to the expected sensitivities
for different configurations of the LISA detector (low frequency region)
[63] and the reach of the LIGO experiment after several phases of run-
ning (high frequency region) [65]

from the scalar field contribution [63,64], yielding

gwh
2 =

4.9 × 10−6
(

f
fenv

)2.8

1 + 2.8
(

f
fenv

)3.8

(
H∗
β

)2 (
100

g∗

) 1
3

. (18)

Here H∗ is the value of the Hubble parameter at T = T∗,
corresponding to the temperature of the radiation bath after
the phase transition, whereas fenv is the redshifted peak fre-
quency of the spectrum as measurable today,

fenv

Hz
= 3.5 × 10−6

(
β

H∗

)(
T∗

100 GeV

) ( g∗
100

) 1
6
. (19)

The parameter β describes instead the duration of the transi-
tion,

β

H∗
= Tn

d

dT

S3

T

∣∣∣∣
T=Tn

. (20)

In Fig. 4 we compare the sensitivity of current and future gen-
eration of gravitational waves observatories with the gravi-
tational wave spectrum obtained in the considered general
model for the benchmark points given in Table 1. As we can
see, these experiments have the capability to detect the grav-
itational echoes of the phase transition in classically confor-
mal models and the results we obtain demonstrate the poten-
tial impact of gravitational wave phenomenology on these
scenarios.
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Table 1 The values of the parameters adopted in the plot of Fig. 4

λp vφ/GeV Tn/GeV T∗/GeV Tc/GeV β/H∗

1 104 5.68 493 1940 23.5

2 104 512 1200 2990 70.1

1 109 6.76 × 104 4.88 × 107 1.94 × 108 13.6

2 109 2.11 × 107 9.00 × 107 2.99 × 108 32.5

3 Minimal conformal extension of the Standard Model

We apply now the formalism we exemplified for our two-
scalars model to scenarios previously considered in the liter-
ature, starting with the minimal conformal scalar extension
of the SM [37,46,47,57]. The tree-level potential is given in
this case by3

V (H, s) = λh(H
†H)2 + λhs

2
(H†H)s2 + λs

4
s4, (21)

where H is the SM Higgs doublet and s is a real scalar which
transforms as a singlet under the gauge symmetry of the
SM. Notice that successful electroweak symmetry breaking
requires λhs < 0.

In order to find the direction in the field space where the
minimum of the one-loop potential lies, we rewrite the phys-
ical Higgs field (in unitary gauge), h, and s in polar coordi-
nates (φ, θ):
{
h = φ cos θ,

s = φ sin θ.
(22)

Then we solve for the angle θ = θ∗ such that dV/dθ |θ∗ = 0,
obtaining

tan2 θ∗ = 2λh − λhs

2λs − λhs
, (23)

and by imposing the condition

λ2
hs − 4λhλs = 0, (24)

the tree-level potential is flat along the θ = θ∗ direction. We
remark that the choice of couplings encoded in Eq. (24) is
meant to guarantee the existence of a direction in the poten-
tial, corresponding to θ = θ∗, along which quantum correc-
tions dominate over the tree-level contribution. In this way
the Coleman–Weinberg mechanism is successfully imple-
mented and the potential acquires the form in Eq. (4) along
such direction. The B parameter is given here by

B = 1

32π2 (W 4
σ + 3W 4

Z + 6W 4
W − 12W 4

t ), (25)

3 The Lagrangian we consider admits a Z2 symmetry that, being pre-
served by the symmetry breaking, could lead to the formation of domain
walls. The issue is avoided in UV completion of the proposed scenario
which explicitly break the Z2 symmetry or extend it to a continuous
gauge group.

where W 2
σ = −λhs is the contribution arising from the

tree-level mass of the eigenstate σ , perpendicular to φ. The
remaining quantities depend instead on the SM parameters
as follows:

W 2
Z

cos2 θ∗ = g2
L + g2

Y

4
,

W 2
W

cos2 θ∗ = g2
L

4
,

W 2
t

cos2 θ∗ = y2
t

2
.

(26)

The expressions for the mass eigenstates in terms of the orig-
inal fields h and s are given by
{

φ = h cos θ∗ + s sin θ∗,
σ = −h sin θ∗ + s cos θ∗,

(27)

whereas the associated masses are

M2
φ = 4Bv2

φ, M2
σ = W 2

σ v2
φ, (28)

with v2
φ = v2

h + v2
s .

3.1 Scenario I: vs < vh

With the above formalism at hand we now investigate the
scenario where φ corresponds to the scalar particle observed
at the LHC [67,68]. The mixing angle θ∗ is constrained by the
LHC Higgs phenomenology to the range cos θ∗ > 0.85 [66],
which can be recast through the relation tan2 θ∗ = v2

s /v
2
h

as an upper bound on the VEV of s: vs < 152 GeV. We
compute λh from M2

φ = M2
h = (126 GeV)2, whereas λs

and λhs are determined through Eqs. (23) and (24) by using
tan2 θ∗ = v2

s /v
2
h . As for the remaining parameters, we take

the Higgs VEV at vh = 246 GeV and the following values for
the SM couplings: gL = 0.648, gY = 0.359, and yt = 0.951.
The portal coupling corresponding to λp in the example of
Sect. 2 is given here by λp = √

2 4πMφ/vφ .
Figure 5 shows the parameters of the model as a function

of vφ . We see that in the region allowed by the LHC λs
and λhs assume very large values: λs � 5 and |λhs | � 4.
As a consequence, the scenario is strongly impaired by the
presence of a Landau pole at relatively low energies. At best,
for the smallest allowed magnitudes of the couplings λs � 5,
λhs � −4 and λh � 0.8, we estimate with 1-loop RGEs
that the Landau pole appears at a scale � ∼ 1 TeV. The
consistency of the scenario then imposes the presence of new
physics below such scale, clashing with the null results of
current LHC searches.

3.2 Scenario II: vh < vs

We analyse next the complementary case in which the
detected Higgs boson corresponds to σ . The mixing angle
imposed by the LHC Higgs phenomenology is then large,
sin θ∗ > 0.85, and consequently vs > 397 GeV. For vh � vs
we obtain λh � M2

h/(2v2) = 0.131 for the Higgs quartic
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Fig. 5 Parameters for the scenario I of the minimal conformal SM
extension as a function of v2

φ = v2
h +v2

s . Here the scalar boson detected
at the LHC corresponds to the flat direction of the tree-level potential,
which develops a minimum via the Coleman–Weinberg mechanism.
The region on the right hand side of the dashed line is excluded by the
LHC Higgs phenomenology as it violates the bound cos θ∗ > 0.85 [66]

coupling, while the s quartic coupling, the portal coupling
and the mixing angle are given by

λs � M2
hv

2
h

2v4
φ

, λhs � −M2
h

v2
φ

, sin2 θ � 1 − v2
h

v2
φ

. (29)

The portal coupling along the φ direction matches here
λp = 2M2

h/v
2
φ and, in the region consistent with the LHC

data, is typically small: λp � 0.14. We plot in Fig. 6 the
values obtained for this parameter against the mixing angle.
By comparing these results to the ones obtained in Sect. 2,
we conclude that this scenario is excluded for reheating tem-
peratures high enough to restore the electroweak symmetry
via thermal effects. The region of the parameter space asso-
ciated to the scenario allowed by the LHC constraints leads
in fact to a bubble nucleation temperature that violates the
lower bound posed by the BBN temperature.

Fig. 6 The scenario II of the minimal conformal extension of the SM.
The observed Higgs boson corresponds here to the direction orthog-
onal to the flat direction of the tree-level potential. The region on the
right hand side of the dashed line is excluded by the LHC Higgs phe-
nomenology. The value of v2

φ = v2
h + v2

s changes along the solid line
as illustrated by the three points

4 Next-to-minimal model

We showed in the previous section that the minimal confor-
mal extension of the SM is strongly disfavoured by the elec-
troweak phase transition phenomenology and perturbativity
arguments. Here we consider instead the next-to-minimal
scenario [38,39,43–45], where two new real scalar fields s
and s′, both singlets under the gauge symmetry of the SM,
couple to the Higgs boson. As customary in this framework,
we assign a Z2 symmetry to exclude terms containing odd
powers of the new fields in the Lagrangian of the model. The
tree-level scalar potential then reads

V (H, s, s′) = λh(H
†H)2+ λhs

2
(H†H)s2+ λs

4
s4

+ λhs′

2
(H†H)s′2+ λss′

4
s2s′2+ λs′

4
s′4. (30)

In this analysis we limit ourselves to the case λss′ , λs′ > 0,
so that vσ ≡ 0, and set λhs′ = 0 for simplicity. As we will
see, this simplified scenario is sufficient to show the potential
impact of gravitational wave experiments.

In fact, although the presence of a new scalar cannot pre-
vent the Landau pole from appearing at relatively low scale
in the setup of the scenario I considered above, the extra por-
tal coupling allows us to recover a correct phase transition
dynamics in the complementary case of scenario II. Sup-
posing that vs � vh , the dynamics of this next-to-minimal
scenario differs from that of the former case only by the def-
inition of B, which includes here the term arising from the
portal coupling between s′ and s:
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Fig. 7 Parameters of the next-to-minimal conformal extension of the
SM as a function of v2

φ = v2
h + v2

s . The region on the left hand side
of the dashed vertical line is excluded by the LHC Higgs boson phe-
nomenology. In the bottom right panel, the solid lines correspond to the
Tn contours of Fig. 2 whereas the dashed contours show the mass of φ

W 2
s′ = λss′

2
. (31)

The BBN constraint that impairs the scenario II can then be
overcome provided that B is dominated by the new contri-
bution above.

By identifying λp � λss′ we can discuss the phenomenol-
ogy of the model by using the results obtained in Sect. 2. In
this regard, we plot in Fig. 7 the parameters of the model
as a function of the VEV vφ , which as usual lies along the
flat direction of the tree-level potential. As we can see, by
considering large values of vφ we can allow for lower val-
ues of λp (i.e. of λss′ ), so that the parameters of the model
retain perturbativity up to the Grand Unified Theory scale (for
λss′ � 1.0) or even Planck scale (in this case λss′ � 0.9).
The BBN constraint, instead, is straightforwardly satisfied
whenever λss′ � 0.5 for the reasons previously explained.

As demonstrated in [45], in absence of effects that break
the Z2 symmetry imposed on the Lagrangian, s′ is a stable
particle which can play the role of DM candidate. A first
rough estimate of the relative relic abundance shows that the
observed value can be matched through the freeze-out mech-
anism4 via annihilations of s′ to the ss final state for a range
of values of the involved parameters. A more careful assess-
ment of the DM relic density in the scenario and the detailed
gravitational wave phenomenology of the considered next-

4 For λss′ ∼ O(1) the dark matter candidate thermalises in the early
Universe provided that λhs � 10−7.

to-minimal conformal extension of the SM will be presented
in a forthcoming analysis.

5 Conclusions

In this paper we studied the phase transition dynamics
of scalar classically conformal scenarios posing particular
attention to their possible gravitational wave signatures. After
having reviewed the basis of the framework and showed that it
necessarily leads to a first-order phase transition at finite tem-
perature, we studied the properties of a general two-scalars
model that captures the gist of the conformal extensions of
the Standard Model. We find that the phase transition is gen-
erally very strong and leads to the production of a stochastic
gravitational wave background which can be observed in cur-
rent and next-generation dedicated experiments.

We then applied the analysis for the minimal classically
conformal scalar extension of the Standard Model, where
the presence of a new scalar field coupled to the Higgs boson
implements a Coleman–Weinberg type of potential. The sce-
nario can be analysed in two limits, depending on the hierar-
chy between the vacuum expectation values of the involved
scalar fields. In the case where the vacuum expectation value
of the singlet scalar field is smaller than that of the Higgs
field, the quartic couplings of the model are very large and
result in a Landau pole at the TeV scale. Although the prob-
lem could be solved by invoking the presence of new physics,
the null result from the LHC disfavour this possibility.

In the complementary regime, where the vacuum expec-
tation value of the new scalar boson is larger than the Higgs
field one, we find that the model retains its perturbativity up
to the Planck scale. In spite of that, the smallness of the por-
tal coupling between the two scalars delays the electroweak
phase transition to temperatures below the Big Bang nucle-
osynthesis one, generally excluding the scenario.

Lastly, we considered a next-to-minimal conformal exten-
sion of the Standard Model involving an additional scalar
field. In this case we showed that the presence of such parti-
cle allows for satisfying the constraint from Big Bang nucle-
osynthesis and perturbativity, which impaired the minimal
extension. We find that, in the considered regime, the next-
to-minimal extension accomplishes a first-order electroweak
phase transition which gives rise to a sizeable gravitational
wave signal, demonstrating the capability of dedicated exper-
iments to explore the scenario.
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