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Abstract

An ensemble of stochastic non-leaky integrate-and-fire neurons with global, delayed
and excitatory coupling and a small refractory period is analyzed. Simulations with
adiabatic changes of the coupling strength indicate the presence of a phase transition
accompanied by a hysteresis around a critical coupling strength. Below the critical
coupling production of spikes in the ensemble is governed by the stochastic dynamics
whereas for coupling greater than the critical value the stochastic dynamics looses
its influence and the units organize into several clusters with self-sustained activity.
All units within one cluster spike in unison and the clusters themselves are phase-
locked. Theoretical analysis leads to upper and lower bounds for the average inter-
spike interval of the ensemble valid for all possible coupling strengths. The bounds
allow to calculate the limit behavior for large ensembles and characterize the phase
transition analytically. These results may be extensible to pulse coupled oscillators.

Keywords: phase transition; hysteresis; stochastic neurons; pulse coupled oscillators;
self-organization; synchronization

1 Introduction

The collective dynamics of networks composed of neuron-like elements which interchange
messages have been studied in many areas of science. Several models have been developed
to simulate and analyze phenomena produced by pacemaker cells in heart (Peskin, 1975),
neurons in the brain (Bienenstock, 1995), swarms of fireflies (Buck, 1988; Copeland &
Moiseff, 1995) or hand clapping of opera theater attendants (Néda et al., 2000). Synchro-
nization of the ensemble units is a common characteristic of these phenomena.

The observed synchronization effects are different according to the model characteris-
tics. Most studies consider only instantaneous coupling (i.e no delay in the message ex-
change) between the units which simplifies the analysis of the resulting dynamics. Under
this restriction Mirollo and Strogatz (1990) demonstrated that certain types of identical
leaky oscillators with global coupling synchronize for almost all initial conditions. Their
result has been extended by Senn and Urbanczik (2000) allowing non-identical oscillators
whose intrinsic frequencies, thresholds and couplings are heterogeneous within a certain
range. They showed that non-leaky linear integrate-and-fire neurons synchronize for any
initial condition for almost all parameter values of the system and speculate that, us-
ing perturbative arguments, their results might be still valid in the presence of a small
leakiness. The influence of an absolute refractory period on the Mirollo-Strogatz model
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has been analyzed by Chen (1994) and Kirk and Stone (1997). The authors of these
papers showed that the system approaches synchrony for almost all initial conditions if
the refractory period is below a critical value.

If a delay for the message exchange is added more complex forms of synchronization are
observed. Ernst et al. (1998) showed empirically that for both, excitatory and inhibitory
coupling, the neurons tend to cluster their activities. All neurons within a cluster are
synchronized and fire in unison whereas the clusters are phase-locked with constant phase
differences. The number of clusters of the system was inversely proportional to the length
of the delay for inhibitory coupling. The stability of these clusters was analyzed in (Timme
et al., 2002) and similar phenomena were observed by van Vreeswijk (1996) for coupling
with α functions and have been proposed as a possible mechanism for neural information
coding and processing in the form of synfire chains (Abeles, 1991; Bienenstock, 1995;
Diesmann et al., 1999) and (Ikegaya et al., 2004). The importance of delay for neural
modeling has recently been addressed by Izhikevich et al. (2004) and Izhikevich (2006),
claiming that it allows an unprecedented information capacity, which translates into an
increase of stable firing patterns in more realistic neural populations due to heterogeneous
delays.

In this study we investigate the influence of variations in the coupling strength on
a network of non-leaky integrate-and-fire neurons with delayed, pulsed coupling and a
small refractory period. We show that a system of these characteristics exhibits a phase
transition with a delay-induced hysteresis. Phase transition phenomena are well known in
populations of weakly coupled oscillators, where the onset of synchronization represents
a second order phase transition analogous to the formation of a Bose-Einstein condensate
(Winfree, 1967; Kuramoto, 1984). Interacting chaotic oscillators also exhibit a special
kind of phase transition which closely resembles that seen in spin glasses (Kaneko, 1990).
Recent work analyzes the existence of phase transitions for chains (Östborn, 2002) and
lattices (Östborn et al., 2003) of pulse-coupled oscillators with a particular, biologically
inspired phase response curve.

Contrary to the former mentioned studies the neurons of the network we analyze are
driven by stochastic input, i.e. pulse-coupled oscillators with stochastic frequencies. Such
type of model neurons have been introduced in (Gerstein & Mandelbrot, 1964) and one
possible interpretation of the stochasticity is random input form background neurons that
are not explicitly modeled (Stein, 1967). The units perform a random walk towards a
threshold and, according to the characteristics of the stochastic input, several studies
have analyzed the resulting distributions of the inter-spike intervals of single units for
the case of non-leaky integrate-and-fire (IF) neurons1 (Tuckwell, 1988; Fusi & Mattia,
1999; Salinas & Sejnowski, 2002; Middleton et al., 2003; Lindner, 2004). For a review on
those results and the more biological plausible models of leaky IF neurons see (Burkitt,
2006) and the references therein.

Here we are interested in a network of such units which can be interpreted as a sim-
plified model of a pool of globally coupled neurons with similar properties, which receive
stochastic input form different regions of the brain (Gerstner, 2000). Such networks have
been studied for the cases of inhibitory (Brunel & Hakim, 1999; Brunel & Hansel, 2006)
and excitatory coupled (Gerstner, 2000) leaky IF neurons. The later work mainly concen-
trated on noise in the thresholds or the refractoriness and only makes some comments on
the effect of stochastic inputs. A combination of excitatory and inhibitory coupling, where
noise leaded to enhanced stability of long distance synchronization, has been analyzed in
a realistic heterogeneous neural model (Hodgkin-Huxley) by (McMillen & Kopell, 2003).

A common problem of these more biologically plausible models is that analytical stud-

1Sometimes also referred to as leak-less or perfect integrator neurons.
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ies are hard to perform especially if delay and refractory period are added. To bypass
this problem we base our analysis on a discrete-time model introduced in Rodŕıguez et al.
(2001), of globally coupled, non-leaky integrate-and-fire neurons with a constant transmis-
sion delay and a refractory period, where the stochastic inputs to the units are provided
by a Bernoulli process. This model allows efficient simulations and a detailed analytical
study and is an extension of the discrete model presented in (van Vreeswijk & Abbott,
1993).

The use of a stochastic model allows to observe that the nature of the dynamics
changes abruptly from a regime where the units show noisy, irregular spiking behavior at
low coupling to a regime with deterministic, self-sustained and repetitive spiking behavior
if the coupling is increased to values greater than the critical coupling strength. There
the units organize into several clusters, have all the same inter-spike interval (ISI), fire in-
phase with the units of their own cluster and phase-locked with constant time differences
to the neurons of other clusters. The clusters are robust to modifications of the rate of the
stochastic input. If the coupling strength is increased even more, the number of clusters
and the length of the ISI decrease since some clusters merge, but the system continues
with the phase-locked firing. If, on the contrary, the coupling is decreased, the units of
the population remain firing phase-locked without an increase of the ISI or the number of
clusters until the critical coupling strength is reached, where the clusters start to dissolve.
Thus a hysteresis effect can be observed.

The phase transition and the hysteresis can be described in detail. Upper and lower
bounds for the ISI as well as an approximation for the mean ISI are obtained and the sys-
tem’s behavior for large ensemble sizes (i.e. at its thermodynamic limit) is characterized.

We conjecture that the observed phenomena can potentially occur in rather different
models with a refractory period and delayed coupling. The results may be useful to
explain certain aspect of animal behavior e.g. synchronized and non-synchronized flashing
of North American fireflies (Copeland & Moiseff, 1995), create a simple working-memory
(Wang, 2001) and may be applied in information processing.

The rest of this work is organized as follows: We first give an overview over the model
in section 2 and explain the methodology we used for the experiments in section 3. In
section 4 we present experimental and analytical results for homogeneous networks which
are extended to heterogeneous networks in section 5. Section 6 shows the results can be
obtained using either parallel or sequential updating. Finally, the findings are discussed
in section 7 and some derivations of formulas will be presented in the appendix.

2 Description of the model

The discrete neural model studied in this work is based on the one introduced by Rodŕıguez
et al. (2001) which is an extension of the work of van Vreeswijk and Abbott (1993). It
is composed of a globally coupled network of N non-leaky stochastic integrate-and-fire
units. Unlike the model of Rodŕıguez et al. (2001), where only a finite number of states is
allowed, each unit i is at time t in a continuous state ai(t) ∈ [1,∞). Transitions between
states can take place only at discrete time-steps and are limited by a threshold L. L is
a positive real number and limits the range of excitations in the sense that every state
ai(t) ≥ L is meta-stable since it absorbs any further state transitions or incoming messages
and relaxes to 1 after the end of a refractory period tref .
We have two types of state transitions:

1. Stochastic state transitions:
At every discrete time-step t a single unit can increase its state variable by 1 with
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probability p if the state of the neuron is below threshold L.

ai(t + 1) =

{

ai(t) + 1 with probability p
ai(t) with probability (1 − p)

if ai(t) < L,

ai(t + tref) = 1 with probability 1 if ai(t) ≥ L.
(2.1)

2. State transitions due to coupling between units:
A unit j that reaches the threshold L at time t emits a spike and increases the
continuous state variable of an unit i by an amount ǫij at time t+ δ, where δ stands
for the synaptic delay. Rodŕıguez et al. (2001) only allowed positive integer values
for ǫij . We will not use this restriction and allow any non-negative real number. The
total amount of change of a single unit at time t + δ is obtained by summing over
all neurons which had reached the threshold at time t. This gives us the following
transition function due to messages of other units (we have to consider three cases
depending on the threshold situation and the relation of tref and δ):

ai(t + δ) =































ai(t) +
N
∑

j=1

ǫijΘL(aj(t)) if ai(t) < L,

1 +
N
∑

j=1

ǫijΘL(aj(t)) if ai(t) ≥ L and δ ≥ tref ,

1 if ai(t) ≥ L and δ < tref .

(2.2)

Notice that ΘL(x) = Θ(x − L) where Θ(x) is the Heaviside step function whose
value is 0 for negative inputs and 1 elsewhere. We use this function to sum only
over the neurons which reached threshold L in the previous time-step.

We restrict our analysis to the case of δ ≥ tref . Consequences of other choices are discussed
at the end of the paper. To keep the simulations simple we set both tref and δ equal to
1, which allows us to combine these two types of evolution (2.1) and (2.2) into a single
equation and we get the following dynamics:

ai(t + 1) =























ai(t) +

N
∑

j=1

ǫijΘL(aj(t)) + 1 with probability p

ai(t) +

N
∑

j=1

ǫijΘL(aj(t)) with probability (1 − p)

if ai(t) < L,

ai(t + 1) = 1 +

N
∑

j=1

ǫijΘL(aj(t)) with probability 1 if ai(t) ≥ L.

(2.3)
Rodŕıguez et al. (2001) set all ǫij = ǫ for i 6= j and all ǫii = 0. With these prerequisites
the parameter

η =
L − 1

(N − 1)ǫ
(2.4)

was introduced to characterize the strength of the interactions among the units. The
parameter η gives the ratio between the total change in activation needed for a neuron to
fire and the one provided by the the coupling with the rest of the population. For η ≫ 1
the following expressions approximate well the mean and standard deviation of the ISI of
a neuron in the ensemble:

τmf = tref +
L − (N − 1)ǫ − 1

p
, σmf =

η − 1

η

√

(L − (N − 1)ǫ − 1)(1 − p)

p
. (2.5)
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Details and derivations of these equations, which are based on a mean-field approach,
replacing the state transitions due to coupling between units by their average, can be
found in (Rodŕıguez et al., 2001)2. Equations (2.5) fail to describe the behavior of the
system in regions of high coupling. At η = 1 they predict one giant cluster containing
all the units with an ISI of 1. This would only be true for a system without delay and
refractory period. In our system, however, the more important correlations due to the
delayed message exchange become (i.e. the smaller becomes η), the bigger is the difference
between τmf and the ISI of the units. This was first reported by Rodŕıguez et al. (2002),
who found that for η = 1 after an initial transient the system reaches one of a large
number of periodic firing patterns, composed of several clusters. The same is true for
η < 1, as can be observed in Figure 1, where raster plots of spikes of a system consisting
of 100 neurons are shown. The irregular behavior of the system at η = 1.2 (Figure 1a)
changes into a regular repetitive spiking pattern at η = 1 (Figure 1b) if the coupling is
increased. If increased further some clusters merge but the system continues with the
phase-locked clustered firing as shown in Figure 1c for η = 0.9.

2Note that (Rodŕıguez et al., 2001) used tref = 1 in their analysis, which can be easily extended to
the general case of tref variable.
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Figure 1: Raster plot of spikes (firing patterns) of 100 neurons (noise rate p = 0.9 and
threshold L = 100) for different values of η. Simulation started with a random initial
state for every neuron. Coupling strength is slowly increased every 100 time-steps and
time was set to 0 after a transient of 50 time-steps. For clarity in the visualization the
neurons are re-labeled according to their spike-time at η = 1. (a) We observe irregular
firing at η = 1.2. (b) At η = 1 the neurons organize into 9 phase-locked clusters (labeled
by the boxed numbers). (c) At η = 0.9 the number of phase-locked clusters is reduced to
5 since clusters number 1, 2; 4, 5; 6, 7 and 8, 9 merged into new bigger clusters. Note that
the length of the ISI coincides with the number of clusters for η = 1 and η = 0.9.
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3 Experimental Setup

To analyze the system described in section 2 we use the following experimental proce-
dures. The phase transition and the hysteresis are best understood observing how the
system reacts to adiabatic3 changes of the coupling strength. A simple analogy is useful
to understand the procedure. Consider a cloud of particles that is slowly concentrated or
diluted by increasing or decreasing the volume. We begin with a very dispersed cloud with
little interaction between the particles and start to concentrate it in a stepwise manner.
At every concentration step the interaction among the particles increases. At some point
the process is inversed and the cloud is diluted again until reaching the original state.
We therefore distinguish two different processes in our experiments, to which we refer as
concentration process and dilution process. The particles are in our case the spiking units
and the interaction can be measured via the relation of the threshold L and the coupling
strength ǫ multiplied by the number of units N . As explained above (see equation (2.4))
this relation is reflected in the parameter η, which in our analogy represents the volume
of the system.
In our experiments we choose a fixed set of N neurons with fixed threshold L. The only
parameter allowed to change is the global interaction strength ǫ. We start with units at
random initial states and at regions of high η (usually η = 2) where the system can be
described with high accuracy by equations (2.5) and is ergodic in the sense that all acces-
sible micro-states are visited over a long period of time. The units in these regions can be
viewed as nearly independent with a threshold lowered by the mean activity induced by
messages received from other units. The only difference to real independence is a period
focusing effect described by Rodŕıguez et al. (2001). This results in a slightly lower (by
a factor (η − 1)/η standard deviation than the one of an independent unit with lowered
threshold.
Once an experiment is started we let the system evolve enough time-steps to avoid depen-
dence on unnatural initial conditions (i.e. conditions that are not typical of the system)
and let the ISI stabilize. Now we can start the concentration process by decreasing η
in a stepwise manner. We achieve this via adapting ǫ. Notice that, although we change
η by a constant ∆η, the changes of ǫ are not constant due to the inverse relation of η
and ǫ. After every decrease of η we let the system evolve enough time-steps until the ISI
stabilizes again. This procedure is repeated until a value of η in the range between 1 and
0.5 is reached. Then we reverse the procedure and start the dilution process. We increase
η in a stepwise manner until we reach again the starting value of η.
To analyze the results we calculate two types of statistics of the ISIs of the units for every
value of η.

1. The statistics of the ISI of the units just before the parameters of the system are
changed (i.e. ǫ is increased or decreased). We call the first two moments of these
statistics τ and σ (τ denotes the mean ISI of the ensemble and σ their standard
deviation).

2. The statistics of τ and σ of different experiments: We call 〈τ〉 the mean and σexp the
standard deviation of the ensemble’s mean ISI τ . In the case of σ we only calculate
its mean value, which we denote 〈σ〉.

The value of 〈σ〉 gives us an idea of the likelihood to end up firing with phase-locked
clusters for the given parameter values. The closer 〈σ〉 is to 0 the bigger is this likelihood.

3We use the term adiabatic as it is used in quantum mechanics, meaning a “sufficiently slow” change
of the system.
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If the units in one experiment have all the same ISI their standard deviation σ equals 0.
σmf of equation (2.5) estimates 〈σ〉.
On the other hand, σexp measures the influence of the initial conditions and variations in
the stochastic state transitions on the mean ISI τ of the ensemble.

4 Results

In this section we first present the outcome of several experiments that reveal the existence
of a phase transition phenomenon of the system described in section 2 around a critical
value of the coupling parameter η. This phenomenon is accompanied by a hysteresis effect
which will also be described. We then give analytical bounds for the mean ISI 〈τ〉. This
description allows us to calculate the behavior of the observed phenomena for N → ∞.
We will refer to this limit behavior as thermodynamic limit in the rest of this work.
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Figure 2: Mean ISI: Values of the ISI 〈τ〉 over all neurons and 1000 experiments for
increasing ǫ (i.e. decreasing η). Number of neurons N = 1000 equals threshold L in
all cases. (a) Dependence of 〈τ〉 on η for two different noise levels p. Inset shows the
difference of both curves in the interesting region around η = 1. (b) Same as (a) but in
logarithmic scale. (c) Dependence of 〈τ〉 on N for different values of η and p = 0.9. (d)
Same as (c) but in logarithmic scale. We can see a linear dependence of 〈τ〉 on N for
η = 1.15, a square root dependence for η = 1 and nearly no dependence for η = 0.9.
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4.1 Experimental Results

4.1.1 Dependence of the ISI on the coupling strength ǫ

As explained in the model section one of the quantities we are interested in this work is
the ISI. Especially we want to know how it is modified by small changes of the coupling
parameter η. We therefore performed several experiments for different ensemble sizes as
described in section 3 and observed the dependence of the mean value of the ISI 〈τ〉 on
the coupling parameter η for different values of the rate p of the stochastic evolution.
First we analyze only the concentration process, where we slowly increase the amount of
coupling between the neurons. Since the coupling parameter η is inverse proportional to
the coupling strength an increase of the coupling strength indicates a decrease of η.

Figure 2a and 2b show the results for 1000 such concentration experiments for noise
rates of p = 0.9 (solid line) and p = 0.6 (dashed line). We used an ensemble size of
N = 1000 neurons and can observe how the mean ISI 〈τ〉 decreases as we increase the
coupling. Initially at high values for η there is a clear dependence on the noise rate p

0.5 1 1.5 2
0

2

4

6

8

10

12

η

 〈 
σ 

〉

N=1000(a)

p=0.9
p=0.6

1 1.1 1.2
0

0.5

1

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

η

 σ
ex

p
N=1000(b)

p=0.9
p=0.6

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

N

〈 σ
 〉

p=0.9(c)

η=1.15
η=1.05
η=1.0

200 400 600 800 1000
0

0.2

0.4

0.6

N

σ ex
p

p=0.9(d)

η=1.15
η=1.0
η=0.9

Figure 3: Standard Deviations: Values of the deviations of 〈σ〉 and σexp of the experiments
with increasing ǫ (e.g. decreasing η) presented in Figure 2. Number of neurons N equals
threshold L in all cases. (a) Dependence of 〈σ〉 on η for two different values of p. Inset
shows a zoom on the interesting region around η = 1. (b) Same as (a) but for σexp (c)
Dependence of 〈σ〉 on N for different values of η and p = 0.9. 〈σ〉 = 0 for all η < 1 due
to synchronization. (d) Dependence of σexp on N for different values of η and p = 0.9.
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which seems to disappear as we reach η = 1. A closer examination of the mean ISIs of
both experiments in this region reveals that their difference for η close to 1 and below
decays exponentially to 0 with decreasing η. (Shown in the insets of Figures 2a and 2b).
We will see later in the theoretical analysis that the greater N the faster is this decay and
at the thermodynamic limit the mean ISI is independent of p for all values of η < 1.

When we analyze the deviation of the ISIs we also notice a change in the behavior
of the system if we approach η = 1. The mean deviation 〈σ〉 of several experiments
drops to 0 when the critical value of η is reached, indicating that the units organize into
clusters and fire phase-locked, all with the same ISI. Figure 3a shows this effect for the
concentration experiments with the two different noise rates analyzed before. In the inset
we notice that for a noise level of p = 0.9 (solid line) the onset of phase-locking already
happens at η ≈ 1.04. This can also be observed in the deviation σexp of the experiments
ISIs. Figure 3b shows the corresponding value of σexp. Here the onset of phase-locking is
marked by an increase of σexp.

If the units are not phase-locked, σexp is low since it is the deviation of averages.
Although there may be great differences between the ISIs of the units as is reflected by
the value of 〈σ〉, once the mean ISI τ of the ensemble is calculated, these fluctuations
are just averaged out. But as the units start to organize into phase-locked clusters the
ensemble dynamics starts to govern the system. The deviation of the ensemble, σ, equals
0 but the deviation of the experiments, σexp, increases. The mean ISI τ of the ensemble is
now an integer value, which depends on the evolution of all the units since the beginning
of the experiment. This gives rise to a broader shape of the ISI distribution. Small fluc-
tuations in the evolution of some units can lead to a different ISI of the whole system.
Therefore the averaging effect observed before is lost and different experiments, although
started with the same initial conditions, can lead to systems with different τ .

The maximum of σexp is reached when the rate p of the stochastic evolution looses
most of its influence on the size of the ISI (Compare with Figure 2). In this sense the
interval between the local minimum at η > 1 and maximum at η < 1 of σexp marks the
transition between an ensemble governed by the stochastic evolution to an ensemble with
self-sustained activity where the stochastic evolution does not have much influence on the
statistics of the system. We can see that once the local maximum is reached the curves
for p = 0.9 and p = 0.6 are practically identical if the system is further concentrated.
(i.e the coupling strength is increased). σexp reaches a value of 0 at η = 0.5 when the
system consists only of one giant cluster which spikes at every time-step. The strange
bump at η ≈ 0.7 can be explained by a probability of nearly 80% of having an ISI of 2
for this value of η. The value of σexp experiences thus an important decrease, but starts
to increase again when the concentration continues and the probability of having an ISI
of 1 increases.

4.1.2 Dependence of the ISI on the ensemble size N

Once the properties of the deviations have been described, our analysis focuses again on
the mean ISI 〈τ〉. The strange shape of the curves in the logarithmic scale of Figure 2b
suggests that apart from the elimination of the dependency on the noise rate p something
else is going on around the value of η = 1. To investigate this point further we observed
the dependence of the ISI 〈τ〉 on the ensemble size N .

Figures 2c and 2d reveal a quite different kind of dependence for different values of
the coupling parameter η. For η = 1.15 (line with circles) we observe a linear dependence
of 〈τ〉 on N , whereas for η = 0.9 (line with crosses) the value of the ISI stabilizes once a
certain number of neurons is in the ensemble (N ≥ 300) and does not show any dependence
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on the ensemble size. At η = 1 (line with diamonds) another type of relationship is
observed. The slope in the double logarithmic scale of Figure 2d has nearly exactly a
value of 0.5 indicating a relationship of type

√
N ∼ 〈τ〉.

The corresponding values of the deviations 〈σ〉 and σexp for p = 0.9 can be seen in
Figures 3c and 3d. As expected for η ≤ 1 the mean deviation 〈σ〉 = 0 since the units
fire phase-locked. We omit for clarity the line for η = 0.9 and only show the values for
η = 1 (line with diamonds). For η = 1.15 (line with circles) we get a linear dependence
of 〈σ〉 on

√
N as predicted by Eq. (2.5). The additional curve for η = 1.05 (line with

squares) allows to observe that the smaller the ensemble the earlier happens the onset of
phase-locking in the concentration process. Here the units are phase-locked already for
ensemble sizes of N > 500.

The dependence of σexp on N can be observed in Figure 3d. For η = 1.15 (line with
circles), where the stochastic state transitions govern the ensemble, σexp slightly decreases
since an increase of N implies an increase of the number of samples taken for every ISI τ
and due to the central limit theorem a decrease of the deviation. For η = 0.9 (solid line
with crosses) and η = 1.0 (solid line with circles) the σexp increases as N increases. This
behavior changes in the case of η = 0.9, where σexp stabilizes for higher values of N and
becomes independent of the ensemble size (data not shown).

4.2 Characterization of the Phase Transition

The results of the dependence of the mean ISI 〈τ〉 on the ensemble size N for different
values of η presented in Figures 2c and 2d motivate us to investigate if there exists a
relation of type

αN c = 〈τ〉 (4.1)

and analyze the dependence of c and α on the coupling parameter η. Equation (4.1) can
be transformed into a linear equation with slope c and y-intercept α

ln(α) + c ln(N) = ln(〈τ〉). (4.2)

This allows us to calculate c and α by least squares fits of the simulation data.
The results of these fits are shown in Figures 4 and 5. In both we see two curves, each

represents a set of 10 different values of N . For every value of N the mean ISI 〈τ〉 of
1000 concentration processes was calculated. For the solid line N takes values from 100
to 1000 in steps of 100 and for the dashed line values from 103 to 104. We can see that
both c and α experience a sharp change of their value around η = 1. The higher the value
of N the sharper this change is. We can therefore speak of a phase transition around a
critical value of η = 1. We expect that for N → ∞ the value of c should jump from 1 for
η > 1 via 0.5 at η = 1 to 0 for η < 1.

The gray areas represent bounds obtained from theoretical analysis and will be dis-
cussed in section 4.3.

4.2.1 Hysteresis effect

After having analyzed the concentration process experimentally and characterized a phase
transition phenomenon we are interested in what happens if we invert the process. Instead
of increasing the coupling strength we decrease it in a stepwise manner. As described in
section 3 we call this type of experiment dilution process. If we combine concentration
and dilution process to obtain a cyclic process we notice a hysteresis effect comparing the
mean ISIs 〈τ〉 of both processes for values of η close to 1 and below.
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N=102−103: Experiment
N=103−104: Experiment
N=102−103: Theoretical Limits
N=103−104: Theoretical Limits
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Figure 4: Comparison between experimental and theoretical results for the parameter
c of the assumption that 〈τ〉 = αN c. 10 sets of 1000 experiments with p = 0.9 and
different values for N were carried out. (Solid line: N ∈ {100, 200, . . .1000}. Dashed line:
N ∈ {1000, 2000, . . .10000}). The values of c have been obtained by a least squares fit of
the experiments with the linear equation ln(〈τ〉) = ln(α)+c ln(N). The shaded areas show
the region of possible values of c obtained by least squares fits of the theoretical bounds for
〈τ〉 of equations (4.10) and (4.11)) and the assumption. For N ∈ {105, . . . 106} (darkest
area), the value of c is already very close to its thermodynamic limit. The difference
between the values of c of the two bounds is very low.

Figure 6 shows this effect for 3 different starting points of the dilution process. The
dotted line represents the mean ISI 〈τ〉 of the concentration process of 1000 experiments.
When the concentration process stops and the dilution process is started, τ and therefore
also 〈τ〉 remain constant until a dilution of η > 1 is reached. The solid line with circles
represents a dilution process stating at η = 0.5 and the dashed line with + markers one
starting at η = 0.9. In both cases the ISI remains unchanged until η = 1 where it jumps
then to a value slightly higher than the one predicted by the formulas (2.5) for this case.
If we start the dilution process already at η = 0.99 we observe that 〈τ〉 remains constant
even for η = 1.01. Only if we dilute further 〈τ〉 increases and starts to coincide with 〈τ〉 of
the other two dilution processes. Approximately at η = 1.08 the ISI of the dilution process
coincides with the one of the concentration process. To understand this phenomenon in
detail we carry out a theoretical analysis which will be presented in the next section.
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4.3 Theoretical Description

Once identified the phenomena occurring in the model in experiments we make some theo-
retical observations to gain further insight. We base these observations on a deterministic
approximation of the model where the stochastic evolution (2.1) of a neuron i is simplified
into the following deterministic iterative rule:

ai(t + 1) = ai(t) + p if ai(t) < L,
ai(t + tref) = 1 if ai(t) ≥ L.

(4.3)

The random walk performed by the units is replaced by their average behavior: a deter-
ministic motion with constant homogeneous velocity p. An equivalent continuous time
system but with heterogeneous velocities (frequencies) and without delay and refractory
period has been studied by Senn and Urbanczik (2000). In the following we will restrict
our analysis to the case where the delay δ of the message exchange is greater than or
equal to the refractory period tref .

η=1/ε

α

p=0.9

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

1

2

3

4

5

6

7

8 N=102−103

N=103−104

N → ∞: Theoretical Limits

Figure 5: Comparison between experimental and theoretical results for the value α under
the assumption that 〈τ〉 = αN c. 10 sets of 1000 experiments with p = 0.9 and different
values for N were carried out. (Solid line: N ∈ {100, 200, . . .1000}. Dashed line: N ∈
{1000, 2000, . . .10000}). The values of α have been obtained by a least squares fit of the
experiments with the equation ln(〈τ〉) = ln(α) + c ln(N). The shaded areas show the
regions of possible values of α for N → ∞ according to equations (4.20).
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Figure 6: Hysteresis effect in the comparison of the dependence of 〈τ〉 on η between
the concentration and dilution process of the experiments. The y-axis shows 〈τ〉 of 1000
experiments in logarithmic scale. Four curves are shown: η ↓ till 0.5: shows the results
of the concentration process till η = 0.5. η ↑ from 0.5 is the corresponding part of 1000
dilution processes starting from η = 0.5. η ↓ from 0.9 shows the result for the dilution
process starting after a concentration till η = 0.9. And η ↓ from 0.99 the same for a
concentration until η = 0.99. The inset shows a zoom on the interesting region around
η = 1 in linear scale. The number of neurons N = 1000 equals threshold L and p = 0.9
in all cases.

After an initial transient the deterministic system shows a periodic pattern of spikes.
The period of a pattern is the ISI of the ensemble (Figure 1b and 1c illustrate such
patterns). If we take an arbitrary neuron and start the pattern at a spike of this unit, all
units will spike exactly once until the next spike of the same unit. The sequence of these
spikes will then start again with exactly the same time differences between the spikes,
and this pattern will repeat itself forevermore if the parameters of the system are not
changed. One can derive the following condition the system fulfills if it shows a periodic
firing pattern.

Periodic pattern condition. A system that consists of κ clusters, where every cluster i
consists of ki elements, shows a periodic firing pattern with ISI τ if for every i ∈ {1, . . . , κ}

ki > kmin(τ) =

{

(N − 1)(1 − η) +
p(τ−1−tref )

ǫ
if τ ≥ 1 + tref

(N − 1)(1 − η) if τ < 1 + tref

(4.4)
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is fulfilled.

For derivation of this rule see Appendix A. Condition (4.4) simply tells us that every
cluster (i.e. units that reach the threshold at the same time-step) has to be greater than
a certain minimum cluster size which depends on the system’s parameter and its ISI.

Before we continue our analysis we make some comments on the validity of this rule
for the stochastic system. The firing patterns of the deterministic system may also occur
in the stochastic system as can be seen in Figure 1b and 1c. According to the robustness
of these patterns against variations in the stochastic evolution we can distinguish between
three types of patterns.

Robust firing patterns are totally insensitive to variations of stochastic state transi-
tions in the sense that, no matter how they evolve, even if they are totally sup-
pressed, the system cannot change its periodic pattern.

Semi-robust firing patterns remain unchanged if one or more units evolve slower than
with their mean velocity p, but if they evolve much faster the spiking pattern may
change. Since such changes are rare, as will be explained subsequently, and the
patterns are robust against at least half of the possible stochastic events, we choose
the name semi-robust.

Variable firing patterns may change due to very slow or very fast evolution of one or
more units.

At η ≤ 1 we can find only robust and semi-robust patterns. Condition (4.4) gives
us the rule for a semi-robust pattern in the stochastic system. To get the condition of a
robust pattern in this case we would have to replace p with 1.

A change of a semi-robust pattern of phase-locked clusters implies that one or more
units change from one cluster to the one firing directly before it. This increases the
robustness of the resulting new firing pattern since the smallest cluster has the highest
probability of receiving a neuron and leads to a certain balancing of the sizes of the
clusters. Only if we have two small clusters spiking one directly after the other a merge of
these two clusters might occur, which would imply a decrease of the ISI. Every decrease of
the ISI enhances the robustness of the resulting firing pattern, since it implies a decrease
of the minimum cluster size kmin(τ). Such events however are rare especially for large
populations and their influence is far below the standard deviation of the experiments.
Since we are mainly interested in the ISIs of our system we can neglect them in our
analysis. Although we have to state that for an infinite simulation time all semi-robust
patterns would transform into robust ones.

For η > 1 we only find variable firing patterns (Figure 1a). In the stochastic system,
the higher the value of η the lower is the probability to observe between three consecutive
spikes of a certain single unit the same two spiking patterns of the rest of the neurons. It
is not even granted that the two ISIs of this unit have the same length. But now, unlike
the case of η ≤ 1, the fluctuations of the noise cannot create irreversible effects on the
ISI of the system. The mean ISI of the system coincides therefore with the one of the
deterministic system, which makes the following analysis valid in this region as well.

Every time the coupling strength is increased, after a short transient, the deterministic
system fulfills again condition (4.4). This allows us to make some observations on the ISI
of the system. Since the cluster sizes have to be integer numbers we define

k̂min(τ) = ⌊kmin(τ) + 1⌋ (4.5)

and have the condition ki ≥ k̂min(τ). This definition guarantees that k̂min(τ) ≥ 0 and is
necessary for technical reasons in the derivation of the lower bound we will see later. A
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system with ISI τ consists of κ = τ/δ clusters since a spiking cluster at time t provokes
the spiking of the next one at time t+δ. With this we calculate another quantity we need
to describe our system, the mean cluster size given a certain ISI τ :

k̄(τ) =
Nδ

τ
. (4.6)

We then introduce a new function g(τ) which gives us the ratio between k̄(τ) and k̂min(τ).

g(τ) =
k̄(τ)

k̂min(τ)
. (4.7)

Intuitively this quantity can be seen as the frequency a system consisting only of clusters
with the minimum cluster size k̂min(τ) has to fire with, to achieve the same ISI as the
system with cluster-size k̄(τ). Note that g(τ) > 0 since k̂min(τ) ≥ 0.

Using equation (4.5) of the minimum integer cluster size k̂min(τ) we arrive after some
manipulation to the following inequality (See equation (B.15) in Appendix B for details).

Nδ

〈τ〉 ≤ 〈g〉 (kmin(〈τ〉) + 1) . (4.8)

〈g〉 denotes the expectation of g(τ) with respect to the probability distribution of τ . We
will call 〈g〉min from now on the minimum value, which 〈g〉 can take to fulfill inequality
(4.8). Using 〈g〉min inequality (4.8) can be written as

1

〈τ〉 = 〈g〉minζ , (4.9)

when we replace (kmin(〈τ〉) + 1)/(Nδ) with ζ . If we plot 〈τ〉 and ζ in double logarithmic
scale we notice a nearly linear dependence between 1/〈τ〉 and ζ . This is the reason why
by replacing 〈g〉min with a constant one can get a good approximation of 〈τ〉 as we will see
later. Two examples for this nearly linear relation can be seen in Figure 7a for noise rates
of p = 0.9 and p = 0.6. The inset shows a comparison between ζ and η for p = 0.9. If we
take a closer look on 〈g〉min however, we notice that the hypothesis of a linear relationship
does not hold. In Figure 7b we can observe the exact value of 〈g〉min for the corresponding
two sets of experiments. From empirical evidence we can suppose, that for the values of
p and η of our simulations 2 is an upper bound of 〈g〉min, which allows us to replace 〈g〉
with 2 in inequality (4.8).

4.3.1 Bounds for τ and 〈τ〉
With the results of the last section we can derive upper and lower bounds for τ and the
mean ISI 〈τ〉. Both bounds of 〈τ〉 can be used to approximate 〈τ〉.
First we derive a lower bound for 〈τ〉 using definition (4.7) and condition (4.8). 4

〈τ〉min =
(N − 1)ǫ(η − 1) − ǫ

2p
+

1 + tref

2
+

√

(

(N − 1)ǫ(η − 1) − ǫ

2p
+

1 + tref

2

)2

+
Nǫδ

p〈g〉
(4.10)

In the following we will use (if not stated differently) the empirical upper bound 2 of
〈g〉min as explained in the previous section to substitute 〈g〉 in (4.10) and to calculate the

4Note that if 〈g〉 is replaced by 〈g〉min in (4.10) we get an expression for 〈τ〉.

15



numerical values of 〈τ〉min.
To get an upper bound for all possible ISIs we use (4.4) and (4.6):

τmax =
(N − 1)ǫ(η − 1)

2p
+

1 + tref

2
+

√

(

(N − 1)ǫ(η − 1)

2p
+

1 + tref

2

)2

+
Nǫδ

p
(4.11)

and have that (See Appendix B for details):

〈τ〉min ≤ 〈τ〉 ≤ τmax . (4.12)

Note that τmax is an upper bound for all ISIs τ whereas 〈τ〉min is only a lower bound for
〈τ〉 but not for τ . Because of this fact 〈τ〉min is much closer to 〈τ〉 than τmax, as we can
observe in the Figures 7c and 7d which show the quality of these bounds. The solid line
in Figure 7c represents 〈τ〉 for 1000 concentration processes in logarithmic scale. It lies
within a gray area that indicates the interval limited by the two bounds 〈τ〉min and τmax.
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Figure 7: (a) Relation of 〈τ〉 and ζ = (kmin(〈τ〉) + 1)/(Nδ) for two different values
of p. (b) Dependence of parameter 〈g〉min on η for two different values of p. We can
observe 〈g〉min ≤ 2. (c) The empirical outcome 〈τ〉 of the concentration processes of 1000
experiments compared to its theoretical limits τmax and 〈τ〉min (gray area). (d) Difference
between the theoretical limits τmax and 〈τ〉min (gray area), 〈τ〉 and 〈τ〉min (dashed line),
τmax and 〈τ〉 (black solid line), 〈τ〉 and τmf (gray solid line with circles). τmax has been
calculated using equation (4.11) and 〈τ〉min substituting 2 for 〈g〉 in equation (4.10).
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In Appendix B.2 we derive a lower bound τmin ≤ τ . τmin = tref for η < 1 and coincides
with the approximation τmf (see equation (2.5)) for η ≥ 1. We have therefore that

τmf ≤ τ ≤ τmax. (4.13)

The exact difference between 〈τ〉 and its bounds is shown in Figure 7d. The difference
〈τ〉 − 〈τ〉min is indicated by the dashed line, and τmax − 〈τ〉 by the solid line. The gray
area shows the width of the interval bounded by 〈τ〉min and τmax. The quantity 〈τ〉min

is, for a wide range of values of η, not only a bound but an excellent approximation for
〈τ〉. It beats by far the approximation τmf , whose difference to 〈τ〉 is shown by the gray
solid line with circles in Figure 7d. In spite of this fact the importance of 〈τ〉min and τmax

does not only lie in their quality as approximations, but rather in the fact that they are
bounds and both experience a similar phase transition effect as 〈τ〉. This allows us to
derive the thermodynamic limit of 〈τ〉.

4.3.2 Thermodynamic Limit

The thermodynamic limits (i.e. the behavior for infinite N and L and finite η) of the
bounds from equation (4.10) and (4.11) can be derived after some calculations (See Ap-
pendix C for details) and allow to set bounds for the thermodynamic limit of 〈τ〉.

lim
N→∞

〈τ〉 = δ if η < 0.5 ,

δ

〈g〉(1− η)
≤ lim

N→∞
〈τ〉 ≤ δ

(1 − η)
if 0.5 ≤ η < 1 ,

√

ǫδ

p〈g〉 ≤ lim
N→∞

〈τ〉√
N

≤
√

ǫδ

p
if η = 1 ,

lim
N→∞

〈τ〉
N

=
ǫ(η − 1)

p
if η > 1 . (4.14)

The upper bound at 0.5 ≤ η < 1 coincides with the one obtained for a model without
stochastic input similar to (van Vreeswijk & Abbott, 1993). To characterize the quality
of these bounds we examine the quantity ∆τ = τmax −〈τ〉min, especially at its thermody-
namic limit. The gray area in Figure 7d shows ∆τ for the case of N = 1000 and p = 0.9.
From (4.10) and (4.11) we can derive after some algebra that

lim
N→∞

∆τ =























































0 for η < 0.5 ,

δ

1 − η

(

1 − 1

〈g〉

)

for 0.5 ≤ η < 1 ,

lim
N→∞

(

1 − 1
√

〈g〉

)
√

Nǫδ

p
for η = 1 ,

ǫ

p
+

δ

η − 1

(

1 − 1

〈g〉

)

for η > 1 .

(4.15)

Since from τmax ≥ 〈τ〉min follows ∆τ ≥ 0, we have that 〈g〉 and 〈g〉min have lower bounds:

lim
N→∞

〈g〉 ≥ lim
N→∞

〈g〉min ≥







1 for η ≤ 1 ,
pδ

pδ + (η − 1)ǫ
for η > 1 .

(4.16)
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If we compare ∆τ with the difference of τmf and τmax we get

lim
N→∞

(τmax − τmf ) = 1 +
δ

η − 1
for η > 1 . (4.17)

For high values of η the limit of this difference tends to 1. Therefore the formulas (2.5) of
Rodŕıguez et al. (2001) really represent a good approximation of the dynamics for η ≫ 1.

Approximation with 〈τ〉min however is always closer to 〈τ〉 if p ≥ ǫ. In the case of
p < ǫ we can derive using 〈τ〉 ≥ τmf an upper bound for 〈g〉min.

lim
N→∞

〈g〉min ≤ pδ

(η − 1)(ǫ − p)
if η > 1 and p < ǫ . (4.18)

As long as we use a value lower than the right hand side of inequality (4.18) to replace
〈g〉 in (4.10), the approximation of 〈τ〉 with 〈τ〉min beats τmf also for η > 1 and p < ǫ,
and is therefore an improvement to earlier studies for all values of η.

4.3.3 Application of the Thermodynamic Limit

If we suppose a dependence of 〈τ〉 on N as in (4.1) ( αN c ∼ 〈τ〉) we can now derive the
thermodynamic limits for α and c from the above results. See appendix C for details.
The value of c is rather straightforward.

lim
N→∞

c =







0 for η < 1 ,
0.5 for η = 1 ,
1 for η > 1 .

(4.19)

This observation coincides with the experimental results presented in Figure 4 and in-
dicates a linear dependence between the ISI and the number of neurons N for η > 1,
whereas for η < 1 the ISI does not depend on the amount of units in the ensemble at all.
In between at η = 1 the mean value of the ISI distribution 〈τ〉 depends on

√
N .

The thermodynamic limit of α follows straightforward from (4.14). We get:

lim
N→∞

α = δ if η < 0.5 ,

δ

〈g〉(1 − η)
≤ lim

N→∞
α ≤ δ

(1 − η)
if 0.5 ≤ η < 1 ,

√

ǫδ

p〈g〉 ≤ lim
N→∞

α ≤
√

ǫδ

p
if η = 1 ,

lim
N→∞

α =
ǫ(η − 1)

p
if η > 1 . (4.20)

Since we can replace 〈g〉 with 〈g〉min and 1 ≤ 〈g〉min ≤ 2 for η ≤ 1 we get an excellent
approximation for α at the limit of large N . We can observe this in Figure 5. The shaded
area shows the possible regions of α. Already for low N the experimental data fits well
into the theoretical results for the thermodynamic limit, which give an idea what ISI to
expect for η < 1.

4.3.4 Hysteresis

Condition (4.4) for a periodic spiking pattern gives us also the explanation of the hysteresis
phenomena. In the dilution process we always start from a robust or semi-robust pattern
at η ≤ 1 and condition (4.4) is not altered by an increase of η. The inequality gets even

18



sharper, which means that the probability of changing a semi-robust pattern is even lower
the more we increase η. In other words: the semi-robust patterns tend to be robust during
the dilution process. This changes once we reach η = 1, since now the stochastic state
transitions are needed again to maintain the ISIs. But even for η > 1 the ISI may remain
constant as long as the following condition is fulfilled. (See Appendix B.2 for details and
derivation)

τ ≥ tref +
(N − 1)ǫ(η − 1)

p
. (4.21)

This inequality reflects that the approximations (2.5) of Rodŕıguez et al. (2001) are a lower
bound for the ISI in the dilution process, which have to be fulfilled by the deterministic
system. Only when a value of η violating this condition is reached, the system leaves
the ISI it has fired with since the beginning of the dilution process and changes to a new
ISI which does fulfill the condition. We can observe this in the dashed-dotted line with
⋄ markers of Figure 6 which shows a dilution process started already at η = 0.99. In
this case 〈τ〉 remains constant even for η = 1.01 since inequality (4.21) is still fulfilled at
this point. Only if we dilute further 〈τ〉 increases to values fulfilling condition (4.21) and
starts to coincide with 〈τ〉 of the other two dilution processes. Approximately at η = 1.08
the mean ISI of dilution processes coincides with the one of the concentration processes,
since then the equations (2.5) start to approximate 〈τ〉 well again.

5 Heterogeneous networks

In this section we show that the results described in section 4 for homogeneous networks
can be extended to networks consisting of neurons with heterogeneous coupling strengths
and thresholds.

5.1 Generalization of the model

To be able to simulate heterogeneous networks we have to apply the following extensions
to the model presented in section 2.

• Instead of setting all coupling strengths ǫij equal to an homogeneous coupling
strength ǫ we take the ǫij from a Gaussian distribution with mean 〈ǫ〉.

• We allow heterogeneous thresholds Li for every unit. Each Li is taken form a
Gaussian distribution with mean 〈L〉.

• The relation (denominated s) between standard deviations and means of both dis-
tributions is fixed.

• To characterize the new extended system we calculate the parameter η in the same
way as before but use the mean values 〈ǫ〉 and 〈L〉 of the distributions instead of L
and ǫ of a homogeneous network. We call this parameter ηext.

ηext =
〈L〉 − 1

(N − 1)〈ǫ〉 . (5.1)

With this model of a heterogeneous network we perform the same type of experiments as
described in section 3. In the concentration process we start in regions with high ηext and
increase the connection strengths of the system adiabatically. As in the experiments with
homogeneous networks we increase it by resting a constant value ∆ηext from ηext. We
have to calculate the corresponding values of ǫij after the change by multiplying them by
ηext/(ηext − ∆ηext). Thus we achieve that after every change equation (5.1) is still valid.
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5.2 Results for heterogeneous networks

We compare experiments with the generalized model with the results of section 4 for
homogeneous networks. Figure 8 shows this comparison for the values of α (Figure 8a)
and c (Figure 8b) of equation (4.1).

The only noticeable difference between experiments with homogeneous networks (solid
black line) and the corresponding heterogeneous equivalents with deviations of 10% (dash-
dotted line) and 30% of the mean value (gray solid line with circles)

is that for η ≤ 1 the curves show some irregular bumps which differ from the expected
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Figure 8: (a), (b) and (c) compare the results of 1000 experiments with homogeneous and
heterogeneous networks. (a) shows α and (b) c under the assumption that 〈τ〉 = αN c for
N ∈ {100, 200, . . .1000}. Coupling strengths and thresholds where taken from Gaussian
distributions with deviations of 10% (dash-dotted line) and 30% (gray solid line with
circles) of their means. The black solid lines (homogeneous network) coincide with the
results shown in Figures 4 and 5, as well as the the shaded areas, which represent in (a)
the regions of possible values of α for N → ∞ according to equations (4.20) and in (b)
the region of possible values of c obtained using equations (4.10) and (4.11) for finite N as
in the experiments. (c) Comparison only of the results for N = 1000. The mean ISIs 〈τ〉
of the heterogeneous experiments lie within the gray area bounded by 〈τ〉min (Eq. (4.10))
and τmax (Eq. (4.11)). Compare with Figure 7c. We notice that the results obtained for
the theoretical bounds of the ISI are also valid for heterogeneous networks. (d) Hysteresis
in a heterogeneous network with s = 30%. Compare with Figure 6. Hysteresis does also
occur in heterogeneous networks, but vanishes there already at η slightly lower than 1.
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values (gray areas) of the theoretical analysis. A closer examination of the ISIs at η < 1
reveals that this bumps are provoked by jumps between integer values of the ISI, as can be
observed in Figure 8c, which shows 〈τ〉 for N = 1000. Contrary to intuition the smooth
change of the mean ISI in the homogeneous case (black solid line) is more step-like in
heterogeneous networks, meaning that for certain intervals of the coupling strength (i.e.
the plateaus in Figure 8c) nearly all the experiments (with different networks) end up
with the same ISI. The observed behavior, which is reproducible and robust despite the
stochastic inputs and the heterogeneity of the network, is not fully understood, but might
be of biological relevance and will be subject of future research. The locations of the steps
depend on the ensemble size N, which causes the bumps in Figures 8a and 8b. In the
thermodynamic limit, however, these bumps should disappear.

In spite of this effect, the upper and lower bounds for 〈τ〉, given by equations (4.10)
and(4.11) and represented by the gray area in Figure 8c, are valid even for high devia-
tions of the underlying probability distributions. Also the hysteresis effect is present in
the heterogeneous networks (Figure 8d), although it vanishes slightly before the critical
coupling strength is reached at η = 1 (compare with Figure 6). This is caused by some
neurons which receive less input compared with their threshold than the others. They
need stochastic input to reach the threshold already slightly below η = 1, which can cause
the end of self-sustained firing and an increase in the ISI of the ensemble.

6 Sequential versus Parallel Dynamics

The results presented so far have been obtained using parallel updating of the units,
meaning that at every time-step all units are updated. Sometimes sequential dynamics,
where only a reduced number of neurons is updated at every time-step, are used to simu-
late neural dynamics instead (Herz & Marcus, 1993). It has been shown that sequential
and parallel updating can lead to different behavior of the Hopfield model (Fontanari &
Köberle, 1988) and multi-state Ising-type ferromagnets (Bolle & Blanco, 2004), which
motivates us to investigate the dependence of our results on the type of updating. We
will use the most simplest case of sequential updating, where only one neuron is updated
at each time-step and modify the model presented in section 2 in the following way:

• One time-step of the original model is split up into N time-steps and at each new
time-step only one neuron is updated. A specific neuron i is updated at every
time-step t which fulfills i ≡ t mod N .

• Given a synaptic delay δseq and a refractory period tseqref , the neuron which is updated
at time t receives all the spikes which have been sent within the interval [t − N −
δseq, t− δseq) by the other neurons. In the case that neuron i made spike in the last
time-step, the interval narrows to [t − N − δseq + tseqref , t − δseq).

This modification implies that the synaptic delay is no longer homogeneous. An update
of a post-synaptic unit occurs now the next time it is updated instead of the precise
time-step when the spike would reach the unit. Therefore the effective delay is uniformly
distributed between δseq and δseq + N , leading to an average delay of

〈δseq〉 = δseq + N/2. (6.1)

To compare simulations with sequential and parallel dynamics we have to set δseq ac-
cordingly to fulfill Nδ = 〈δseq〉 where δ is the delay of the parallel dynamics. This leads
to

δseq = N

(

δ − 1

2

)

. (6.2)
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Figure 9: Comparison of 1000 experiments with parallel dynamics (continuous lines) and
their equivalent with sequential updating (dashed lines with circles). Number of neurons
N = 1000 equals threshold L and p = 0.9. The results for the sequential dynamics are
rescaled by the factor 1000. (a) The mean ISIs 〈τ〉 of both type of dynamics nearly
coincide and lie within the gray area bounded by 〈τ〉min (Eq. (4.10)) and τmax (Eq.
(4.11)). (b) The sequential dynamics show a slightly higher mean of deviation 〈σ〉 of the
units ISIs with the same experiments as the parallel dynamics for η ≥ 1 but also end
up in phase-locked clusters at η < 1. The inset shows a zoom on the interesting region
around η = 1.

The equations for upper (Eq. (4.11)) and lower bounds (Eq. (4.10)) obtained for the
parallel dynamics are valid only if tref ≤ δ, which means that the only noticeable effect
of tref on the ensemble dynamics is that the threshold L acts as an absorbing barrier. To
achieve the same effect in the sequential model we have to set tseqref = 1. A greater tseqref

would lead to absorption of more spikes than in the corresponding parallel experiments
and in consequence a greater ISI of the ensemble.

If we consider these two constraints we obtain similar results for both type of dynamics,
as shown in Figure 9, where we compare simulations with increasing coupling strength for
N = 1000 neurons and a noise rate p = 0.9. Since the delay δ of the parallel simulations
equals 1, δseq was set to 500. This implies a mean delay 〈δseq〉 of N , which is coherent
with the rescaling of t to t/N . We observe in Figure 9a that after rescaling (i.e. dividing
the ISI by the ensemble size) the mean ISI of the sequential dynamics (dashed line with
circles) nearly coincides with the result of the parallel simulations (continuous line), and
the bounds obtained in section 4.3 are valid also for this type of dynamics. Hysteresis
can also be observed (data not shown). Units with sequential updating show due to the
inhomogeneous delays a slightly greater deviation of their ISIs than their equivalents with
parallel updating (see Figure 9b). This effect causes that phase-locked clusters, although
observable also at η = 1, appear as a general phenomena (i.e. 〈σ〉 = 0) for couplings
slightly greater than the critical coupling strength as we can observe in the inset of Figure
9b.

Despite these small differences due to the enhanced dispersion of the ISIs we can
conclude that the results derived in the previous section are also valid if sequential instead
of parallel updating is used.
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7 Discussion

We analyzed, by varying its coupling strength ǫ, the behavior of an ensemble of stochastic,
non-leaky integrate-and-fire neurons with delayed, excitatory global coupling and a small
refractory period. Around a critical value of the coupling strength the behavior of the
system undergoes a phase transition (Figure 4), which has three main consequences on
the dynamics of the ensemble:

Transition from irregular to clustered spiking behavior: The units of the ensem-
ble are homogeneous but show, due to a stochastic component in their evolution
towards threshold, irregular spiking behavior if they are weakly coupled (Figure
1a). The coupling strength ǫ is inversely proportional to the parameter η (see equa-
tion (2.4)), which describes the system and allows to fixate the phase transition at
η = 1. For coupling greater than or equal to the coupling at η = 1 the population
splits into several clusters. All neurons within a cluster spike in unison, although
they still might show different trajectories towards the threshold. The clusters are
phase-locked (Figure 1b) and have all exactly the same ISI, which is proportional to
the number of clusters. This number decreases if the coupling is increased further
(Figure 1c), but usually remains greater than 1 until a trivial case of only one cluster
is reached at latest at η < 0.5. The activity at η ≤ 1 is self-sustained in the sense
that the stochastic inputs are not needed to maintain the clustered spiking activity.

Hysteresis: The phase transition is accompanied by a hysteresis effect (Figure 6). We
applied a cyclic process to our system which consisted of two subprocesses: a con-
centration process where we increased ǫ and a dilution process where ǫ is decreased.
Starting at an initial configuration with low coupling the process is reversible as long
as we do not reach (at values of η slightly greater than 1) the onset of phase-locking.
If we increase the coupling strength further the ISI τ of the concentration process
decreases following rules explained below, whereas if we inverse the process (start
the dilution process) the ISI remains frozen as long as η ≤ 1. Then it jumps up to a
value fulfilling condition (4.21) and coincides again with the ISI of the concentration
process at η slightly greater than 1.

Change in the dependence of the ISI on ensemble size and noise rate: For low
coupling the mean ISI 〈τ〉 of the ensemble in the concentration process depends
linearly on the ensemble size N , at η = 1 there is a square root dependence on N ,
whereas for coupling greater than at η = 1 the mean ISI 〈τ〉 does not depend on N
nor on the rate of the stochastic component, which governs the dynamics for low
coupling. Between η = 1 and η = 0.5 the ISI only depends on the coupling strength
itself. For a coupling greater than at η = 0.5 the influence of ǫ on the ISI is also
lost. The length of the time delay determines the length of the ISI in this regime.

To obtain analytical results we used a deterministic approach to the model dynamics
which allowed us, using a simple condition (4.4), to derive upper and lower bounds (τmax

and 〈τ〉min) for the mean ISI 〈τ〉 of the ensemble in the concentration process. The lower
bound 〈τ〉min is also an excellent approximation for 〈τ〉, as can be observed in Figure 7d.
Using the bounds we can calculate the behavior of the system at its thermodynamic limit
(i.e. for N → ∞) and characterize the phase transition analytically.

These theoretical results are also valid if sequential instead of parallel updating (Herz
& Marcus, 1993) is used to simulate the dynamics (Figure 9). In this case the synaptic
delay is no longer homogeneous, leading to a slightly higher deviation of the unit’s ISIs
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and in consequence a slightly later onset of clustered spiking behavior in the concentration
process.

The above explained effects could also be observed if, instead of an increase or decrease
of the coupling strength, positive or negative external input were be added to the system.
To calculate the critical point in this case we would have to add the external input to the
denominator of equation (2.4) to get the appropriate value of η.

Using the hysteresis effect one can generate a simple memory by stimulating the system
with a strong input, which leads the system to a value below η = 1. If the input is then
substituted by a smaller one, which is just big enough to maintain the system below
the critical couping strength and could represent the will to remember the first input,
the ISI and the firing pattern of the ensemble will still be the same as if the strong
input were still present. Once the system receives a short erase signal (e.g. in form of
a negative input, or the absence of the small input), which allows it to reach a state
corresponding to η > 1, the firing pattern produced by the strong input will disappear
(i.e. the memory will be deleted). Such a mechanism might be a novel way to represent
working memory functions (Wang, 2001), which are often modeled in the form of bistable
dynamical attractor networks (Durstewitz et al., 2000). In our case it seems that we
have multi-stability for coupling greater than the critical coupling strength, but further
analysis is needed to verify this claim.

The main difference of our model to those used in earlier studies is the use of discrete
time dynamics and that we combine delayed coupling with an implicit refractory period.
Setting delay δ and refractory period tref identical and equal to 1 in the experiments does
not represent a critical restriction on the presented results as can be seen in the theoretical
analysis, which is valid in the general case as long as δ ≥ tref and both are positive. We
can observe as well from equations (4.15) and (4.17) that in a system with no delay, i.e.
δ = 0, the upper and lower bounds nearly coincide, leaving no space for clustering with
more than one cluster and hysteresis. For a delay lower than the refractory period some
of the inter-population messages would get absorbed, leading to different upper and lower
bounds for the ISIs. Such a pair of bounds has been calculated for a system without
stochastic input in (van Vreeswijk & Abbott, 1993) for the case of δ slightly lower than
tref . We expect those results to be valid for our system at η < 1 in the thermodynamic
limit. In the case of sequential dynamics the condition δ ≥ tref translates into setting the
refractory period to a minimum value.

It is straightforward to transfer the discrete time dynamics onto the continuous domain
replacing the stochastic state transitions with a continuous increase of the state variable.
This leads to continuous oscillators similar to the ones analyzed by Senn and Urbanczik
(2000), but with the add-ons of delayed coupling and refractory period, which are both
crucial to observe the reported phase transition and clustering phenomena. One can even
maintain the stochastic dynamics using a continuous extension of the ISI distribution of
a single uncoupled unit, a negative binomial distribution in our case (Rodŕıguez et al.,
2001). Two different possibilities for such an extension have been presented by Gómez et
al. (2006), leading both to gamma distributions. The length of delay and refractory-period
remain untouched by these extensions. An analysis of these models is object of current
research using a novel event-driven modelling technique (Gómez et al., 2006) allowing
to simulate such extended models (also with non-integer values for delay and refractory
period) without precision errors and without determining the exact trajectories of the
states of the units in the ensemble. The derived formulas for upper and lower bounds
should, apart from some minor modifications, be valid in these extended systems as well.

For models with a leaky term (Mirollo & Strogatz, 1990) clustering phenomena have
been reported by Ernst et al. (1998) if a delay is added, but these clusters turned out
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to be unstable for excitatory coupling if noise was added to the coupling strength. We
conjecture that this behavior would change if a positive refractory period were included
in the system. During the refractory period the threshold acts as an absorbing barrier
allowing the system a certain tolerance against noise which is the higher the greater the
amount of absorption is. The fact that Ernst et al. (1998) reports stability for inhibition
is a clear evidence for this conjecture, since the reset state is a reflecting barrier in their
model, allowing to absorb noisy negative coupling. It would also be interesting to observe
the effect of delay and refractory period for a model with a biological inspired phase
response curve (PRC). For this type of PRC the existence of a phase transition in the
case of one (Östborn, 2002) and two dimensional (Östborn et al., 2003) oscillator lattices
has been reported.

Our study shows that synaptic delay changes significantly neural dynamics. It is cru-
cial for the observed hysteresis effect and the appearance of several phase-locked clusters.
Without it we would get a totally synchronized ensemble at the critical coupling strength.
The lack of a leaky term makes our model biologically plausible only at the limit of high
coupling where integration of synaptic inputs occurs over a time scale much shorter than
the decay constant (Burkitt & Clark, 1999), which is exactly where we find the phase
transition and hysteresis. We therefore conjecture that the phenomena described could
be found as well in more complex, realistic neural models with delay. Even in a system
with inhomogeneous delays we can find similar results as shown for the case of sequential
dynamics, which demonstrates the robustness of the findings.

In a network consisting of heterogeneous neurons with different coupling strengths and
thresholds drawn from Gaussian distributions the reported phenomena are also present
(Figure 8). This may be of great importance if synaptic dynamics are added to the
model. We conjecture that in this context, plasticity may act as a homeostatic mech-
anism to maintain the system in the regime around the critical coupling strength if it
experiences perturbations. In the neighborhood of the critical state the system explores
all possible clusters one after the other. Clusters that are phase-locked after crossing this
point are then transient states and the system is ready to set in any of the phase-locked,
periodic firing patterns as a reaction to an increase in the number of received messages.
This could have potential applications in a wide range of engineering applications like
image segmentation (Campbell et al., 1999; Rhouma & Frigui, 2001) or large scale sensor
networks (Hong & Scaglione, 2005), where clustering might be useful to optimize the in-
formation throughput. The application of the results to information processing in natural
systems is the subject of current research.

As a final aspect we would like to highlight the application of our model (interpreted
as a network of pulse-coupled oscillators with stochastic frequencies) to describe animal
behavior, e.g. populations of flashing fireflies (Buck, 1988). For the North American firefly
several types of synchronization have been reported (Copeland & Moiseff, 1995) and it
seems that a certain number of flashing flies within a certain area is needed to observe
synchronization. This would be in consonance with our model, where an increase in the
number of units (fireflies) would decrease the coupling parameter η. For a certain number
of units we would reach the critical point, where synchronization would appear. Apart
form unison synchrony, wave synchrony has been observed, which might be explained by
the clusters we report.

Appendix A Proof of Periodic Pattern Condition 4.4

In the following analysis we use the deterministic rule (4.3) instead of the stochastic state
transitions (2.1) and restrict ourself to the case of δ ≥ tref . A unit with ISI τ can make
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τ − 1 − tref transitions due to this rule before reaching the threshold. The term tref

corresponds to the refractory period where no increase of the state of an unit is allowed
and the −1 to the last time-step when the threshold is reached. We have therefore a
contribution of p(τ − 1 − tref)Θ(τ − 1 − tref) because of rule (4.3) to the total evolution
of a neuron before its threshold is reached5.

With this result we can calculate the mean minimum cluster size of a system of κ
clusters. We call the clusters Ki (i ∈ {1, . . . , κ}) and set the number of elements of every
cluster |Ki| = ki. The clusters are ordered according to their spiking time. At every
time-step one cluster reaches threshold starting with cluster K1. After cluster Kκ spikes
the cycle starts again with cluster K1. When cluster Ki reaches threshold, the elements
of cluster Ki+1 (or of K1 in case of i = κ) have received the inputs of all clusters except
cluster Ki and an increase of p(τ − 1− tref) due to rule (4.3). This leads to the following
condition:

1 +
(

− 1 +
κ
∑

j=1
j 6=i

kj

)

ǫ + p(τ − 1 − tref )Θ(τ − 1 − tref) < L. (A.1)

Which due to
∑κ

j=1 kj = N is equivalent to

ki > kmin = N − 1 +
1 + p(τ − 1 − tref)Θ(τ − 1 − tref) − L

ǫ
for all i ∈ {1, . . . , κ}.

(A.2)
Written in terms of η this is equal to

ki > kmin(τ) = (N − 1)(1 − η) +
p(τ − 1 − tref)Θ(τ − 1 − tref)

ǫ
. (A.3)

We have proved the periodic pattern condition (4.4).

Appendix B Bounds for τ

In this appendix we derive bounds for the ISI τ of the ensemble and the mean ISI 〈τ〉 of
several experiments. Again we will use the deterministic rule (4.3) instead of the stochastic
dynamics (2.1). We will obtain two absolute bounds such that τmin ≤ τ ≤ τmax for all
possible ISIs of the system, and a lower bound for the mean value 〈τ〉 over all possible
initial conditions which we call 〈τ〉min. We get thus

〈τ〉min ≤ 〈τ〉 ≤ τmax . (B.1)

B.1 Maximum ISI τmax

First we derive the maximum possible ISI τmax of the system. It is obvious that the mean
cluster size k̄(τ) ≥ kmin, which can be written using equations (4.6) and (A.3) as

k̄(τ) =
Nδ

τ
≥ (N − 1)(1 − η) +

p(τ − 1 − tref)Θ(τ − 1 − tref)

ǫ
. (B.2)

This results in an inequality of degree 2 for τ which has the only solution

τ ≤ τmax =
(N − 1)ǫ(η − 1)

2p
+

1 + tref

2
+

√

(

(N − 1)ǫ(η − 1)

2p
+

1 + tref

2

)2

+
Nǫδ

p
.

(B.3)

5Note the use of the Heaviside step function to have a valid formula also for the case of τ < tref + 1.
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compatible with the condition τ ≥ 0. We omitted the Θ(τ − 1 − tref) term to calculate
(B.3). This can be done if τ ≥ 1 + tref . Inequality (B.2) permits us to calculate the
minimum value of η for which a certain ISI τ is possible. We get

η ≥ ηmin(τ) =
p(τ − 1 − tref)Θ(τ − 1 − tref )

(N − 1)ǫ
+ 1 − Nδ

(N − 1)τ
. (B.4)

It is sufficient to calculate ηmin(2δ) since we assume that δ ≥ tref ≥ 1 and the system will
be fully synchronized (τ = δ), i.e. it consists of only one cluster, for values of η below
this limit, which we call ηsync. We get

η ≥ ηsync = 0.5 − 1

2(N − 1)
+

p(2δ − 1 − tref)Θ(2δ − 1 − tref)

(N − 1)ǫ
. (B.5)

For the limit of large N this transforms into

lim
N→∞

ηsync = 0.5 . (B.6)

Condition (B.3) is therefore valid if η ≥ 0.5.

B.2 Minimum ISI τmin

If, instead of looking at the state of a neuron before the threshold is reached as in the proof
of the periodic pattern condition in appendix A, we observe the state of a neuron just
after it has passed the threshold, we can derive a condition for the minimum possible ISI.
We use that a neuron with an ISI of length τ increases its state due to the deterministic
rule (4.3) by p(τ−tref ) during every ISI. Since all neurons are equal we expect that during
an ISI of a single neuron every other neuron fires once and therefore a contribution of
(N − 1)ǫ to due the ensemble dynamics. Combining the two terms we get

L ≤ 1 + (N − 1)ǫ + p(τ − tref), (B.7)

which we can transform into a condition for τ

τ ≥ τ̂min = tref +
L − 1 − (N − 1)ǫ

p
= tref +

(N − 1)ǫ(η − 1)

p
. (B.8)

Comparing this result with equation (2.5), we observe that τ̂min = τmf and have thus
found that the formulas (2.5) are a lower bound for the ISI τ . This bound of course can
be improved for for η < 1, since there τ̂min is negative, although τ can never be smaller
than tref . We use therefore the Heaviside step function and get

τmin = tref + Θ

(

(N − 1)ǫ(η − 1)

p

)

, (B.9)

which is a lower bound for τ valid for all values of η.

B.3 Minimum mean ISI 〈τ〉min

To derive a lower bound for 〈τ〉 we start with

Nδ

τ
= g(τ) ⌊kmin(τ) + 1⌋

≤ g(τ)

(

(N − 1)(1 − η) +
p(τ − 1 − tref)Θ(τ − 1 − tref)

ǫ
+ 1

)

, (B.10)
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which can be obtained from (4.6), (4.7) and (A.3). We calculate the mean of the left and
right hand side according to the probabilities P (τ), which denominate the probability of
the system ending up in a system with ISI τ .

τmax
∑

i=1

Nδ

i
P (i) ≤

τmax
∑

i=1

g(i)

(

(N − 1)(1 − η) +
p(i − 1 − tref)Θ(i − 1 − tref)

ǫ
+ 1

)

P (i) .

(B.11)
We set 1/τ = f where f is the spiking-frequency, use P (τ) = P (f) = P (g(τ)), eliminate
the terms of the summation which equal 0 and get

N〈f〉δ ≤ 〈g〉
(

(N − 1)(1 − η) + 1 − (1 + tref)p

ǫ

)

+

+
p

ǫ





1+tref
∑

i=1

g(i)P (i) +
τmax
∑

i=2+tref

g(i)iP (i)



 . (B.12)

Using the following identity 〈XY 〉 = 〈X〉〈Y 〉 + Cov(X, Y ) for two random variables X
and Y we achieve

N〈f〉δ ≤ 〈g〉
(

(N − 1)(1 − η) + 1 − (1 + tref)p

ǫ

)

+

+
p

ǫ

(

〈g〉〈τ〉 + Cov(g(τ), τ) −
1+tref
∑

i=2

g(i)(i − 1)P (i)

)

. (B.13)

From (B.10) it is easy to see that Cov(g(τ), τ) ≤ 0 since an increase of τ translates into
a decrease of g(τ) and vice versa. Because of this fact and g(τ) ≥ 0 we can eliminate the
two leftmost terms of inequality (B.13) by weakening the inequality.

N〈f〉δ ≤ 〈g〉
(

(N − 1)(1 − η) + 1 +
p(〈τ〉 − 1 − tref)

ǫ

)

. (B.14)

The mean frequency 〈f〉 is equal to the inverse of the harmonic mean h(τ). Since for a set
of positive numbers its harmonic mean is never greater than its arithmetic mean (Bullen,
2003) we have 1

〈τ〉
≤ 1

h(τ)
= 〈f〉. Applying this on inequality (B.14) leads to

Nδ

〈τ〉 ≤ 〈g〉
(

(N − 1)(1 − η) + 1 +
p(〈τ〉 − 1 − tref )

ǫ

)

. (B.15)

We can transform this into a quadratic inequality of 〈τ〉 since 〈τ〉 > 0. It has the only
positive solution

〈τ〉 ≥ 〈τ〉min =
(N − 1)ǫ(η − 1) − ǫ

2p
+

1 + tref

2
+

+

√

(

(N − 1)ǫ(η − 1) − ǫ

2p
+

1 + tref

2

)2

+
Nǫδ

p〈g〉 . (B.16)

We have found a lower bound for the mean value of our ISI distribution.

Appendix C Thermodynamic limits of 〈τ〉min and τmax

In this appendix we will calculate the thermodynamic limit (i.e. the behavior for N →
∞) of 〈τ〉 for the different regions of η. We first calculate the thermodynamic limits
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of the bounds 〈τ〉min and τmax of 〈τ〉 calculated in appendix B and then situate the
thermodynamic limit of 〈τ〉 between the limits of the bounds.
We start with the limit for 〈τ〉min using (B.16):

• η > 1

lim
N→∞

〈τ〉min

N
= lim

N→∞

ǫ(η − 1)

2p
− ǫ(η − 1)

2pN
+

1 + tref

2N
+

+

√

(

ǫ(η − 1)

2p
− ǫ(η − 1)

2pN
+

1 + tref

2N

)2

+
ǫδ

p〈g〉N

=
ǫ(η − 1)

2p
+

∣

∣

∣

∣

ǫ(η − 1)

2p

∣

∣

∣

∣

, (C.1)

which for η > 1 is

lim
N→∞

〈τ〉min

N
=

ǫ(η − 1)

p
. (C.2)

This coincides with the limit of τmf/N (See equation (2.5)).

• η = 1
Setting η = 1 in (B.16) leads to

lim
N→∞

〈τ〉min√
N

= lim
N→∞

1 + tref

2
√

N
− ǫ

2p
√

N
+

√

1

4N

(

1 + tref − ǫ

p

)2

+
ǫδ

p〈g〉 =

√

ǫδ

p〈g〉 .

(C.3)

• η < 1
Equation (C.1) for η < 1 leads to limN→∞ 〈τ〉min/N = 0, but we can improve this
result. We transform (B.16) slightly and calculate

lim
N→∞

〈τ〉min = lim
N→∞

1 + tref

2
− (N − 1)ǫ(1 − η) + ǫ

2p
+

+

√

(

(N − 1)ǫ(1 − η) + ǫ

2p
− 1 + tref

2

)2

+
Nǫδ

p〈g〉 .

Applying −a + b = −a2+b2

a+b
we get

lim
N→∞

〈τ〉min = lim
N→∞

Nǫδ
p〈g〉

(N−1)ǫ(1−η)+ǫ

2p
− 1+tref

2
+

√

(

(N−1)ǫ(1−η)+ǫ

2p
− 1+tref

2

)2

+ Nǫδ
p〈g〉

= δ

(〈g〉(1 − η)

2
+

∣

∣

∣

∣

〈g〉(1 − η)

2

∣

∣

∣

∣

)−1

(C.4)

and have therefore for η < 1

lim
N→∞

〈τ〉min =
δ

〈g〉(1− η)
. (C.5)

The limits for τmax can be calculated analogously from equation (B.3). Combining the
limits for both bounds with the result of equation (B.6) that the system has an ISI of δ
for η < 0.5 we obtain
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lim
N→∞

〈τ〉 = δ if η < 0.5 ,

δ

〈g〉(1− η)
≤ lim

N→∞
〈τ〉 ≤ δ

(1 − η)
if 0.5 ≤ η < 1 ,

√

ǫδ

p〈g〉 ≤ lim
N→∞

〈τ〉√
N

≤
√

ǫδ

p
if η = 1 ,

lim
N→∞

〈τ〉
N

=
ǫ(η − 1)

p
if η > 1 . (C.6)
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