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We present a global payoff-based strategy updating model for studying cooperative behavior of a networked
population. We adopt the Prisoner’s Dilemma game and the snowdrift game as paradigms for characterizing the
interactions among individuals. We investigate the model on regular, small-world, and scale-free networks, and
find multistable cooperation states depending on the initial cooperator density. In particular for the snowdrift
game on small-world and scale-free networks, there exist a discontinuous phase transition and hysteresis loops
of cooperator density. We explain the observed properties by theoretical predictions and simulation results of
the average number of neighbors of cooperators and defectors, respectively. Our work indicates that individuals
with more neighbors have a trend to preserve their initial strategies, which has strong impacts on the strategy
updating of individuals with fewer neighbors; while the fact that individuals with few neighbors have to
become cooperators to avoid gaining the lowest payoff plays significant roles in maintaining and spreading of
cooperation strategy.
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I. INTRODUCTION

Understanding the dynamics of complex systems in the
perspective of networks has drawn growing interests re-
cently. Systems composed of interacting individuals can be
mapped into complex networks with individuals occupying
nodes and connections representing interactions among indi-
viduals. From this viewpoint, networks are ubiquitous in na-
ture and human society. Many reported observations indicate
that real network topologies are neither regular nor purely
random, but somewhere in between �1,2�. There is an obvi-
ous need to model dynamical processes on complex net-
works to better mimic and understand plentiful dynamical
behaviors of natural and social systems �3,4�.

Social dilemma games, as general metaphors for studying
cooperative behaviors, have received much attention in the
past decades �5,6�. In particular, the combination of tradi-
tional iteration games and network theory has provided new
access to investigate varieties of social and economical dy-
namics as well as biological behaviors �7�. Games on net-
works usually abandon the well-mixed population, so that
interactions only exist among neighboring individuals. Two
simple games, the Prisoner’s Dilemma game �PDG� and
snowdrift game �SG�, have been studied on regular lattices
�8�, small-world and scale-free networks �9�. The last two
networks possess short average distances with high cluster-
ing and high heterogenous degree distributions, respectively.
It is found that structures in populations play surprisingly
positive roles in the organization and domination of coopera-
tive behaviors, compared to the well-mixed case. Very re-
cently, evolutionary games on finite-size networks have
drawn growing interests, since in this case stochastic effects

cannot be overlooked �10,11�. In this framework, some un-
derlying mechanisms have been investigated, such as the
death-birth updating �12,13�, asymmetry between interaction
and replacement �14�, and coevolution of strategy and struc-
ture �15�, to better explore the dynamics of network games.
Besides, the influences of unequal interactions on the dynam-
ics of games have been considered �16�.

In most game models, interactions of playing games and
information collection for updating the strategy of each indi-
vidual are restricted to its neighborhood, and the interaction
and strategy updating networks are the same. However, as
pointed out in Ref. �14�, the two networks may be different
in some cases. Furthermore, in social and economical sys-
tems, the communication, i.e., exchange of strategy and pay-
off information can occur not only through playing games,
but also through many other ways in the modern society,
such as broadcasting, the Internet, and other communication
tools. In other words, information for making decisions and
updating is often much more global than the interaction re-
striction of playing games. In this point of view, we propose
a structured game model with a global strategy updating pro-
cess, i.e., the individual with the poorest payoff in the net-
work will switch their strategy. We aim to explore the coop-
erative behavior influenced by the global updating
mechanism, which has not been considered so far. We adopt
PDG and SG as typical paradigms on different network
structures, including regular, small-world, and scale-free net-
works. Interestingly, we find multistable states, discontinu-
ous phase transition, and hysteresis loops of cooperator den-
sity in the networks. We also provide some analysis and
explanations for the obtained results. Hysteresis behaviors
have been found in other dynamics, such as the ferromag-
netic dynamics, but have not been reported in game dynam-
ics. Our work may shed some new light in understanding the
cooperative behaviors in the structured games.
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II. MODEL

PDG and SG, with two strategies, C and D, played by two
players �individuals� can be described by a payoff matrix:

C D

C R S

D T P

,

where the entities represent the payoffs for the row players,
R is the reward for mutual cooperation, P is the punishment
for mutual defection, T is the temptation to defect, and S is
the sucker’s payoff. PDG and SG mainly differ in the order-
ings of payoff values, i.e., for PDG, T�R� P�S and for
SG, T�R�S� P. For simplicity in investigation, an equiva-
lent rescaled payoff matrix for the two games is introduced.
For PDG, R=1, S=0, T=b, and P=0. For SG, R=1, S=1
−r, T=1+r, and P=0. Hence each game is controlled by a
single parameter, b for PDG and r for SG.

Consider that N individuals are placed on nodes of a cer-
tain network. In each round, all pairs of connected individu-
als play the game simultaneously. The total payoff of each
player is the sum over all its encounters. Assume that in each
round, one individual with the lowest total payoff will
change its strategy, which can also be regarded as the death
of the individual together with the birth of a new individual
with reverse strategy on the same node. �If the new indi-
vidual is born with the same strategy, it will as well die next
time, since it has the same lowest total payoff as the dead
individual.� If there is more than one individual with the
same lowest total payoff, then one of them is randomly
picked to change its strategy. By repeating the above pro-
cesses, the system will finally reach a steady cooperator den-
sity. We have checked that the steady state can be achieved
with only a few flicker individuals, who always have the
poorest total payoff, no matter what strategy they adopt. In
the following, we focus on the properties of networked
games in the steady state.

III. REGULAR NETWORKS

We first study the above model on some regular struc-
tures, including fully connected networks �mean-field�, two-
dimensional �2D� lattices, and star networks, as shown in
Fig. 1. Here, �c, as the density of cooperators, turns out to be
the most important quantity for characterizing cooperative
behaviors. For the fully connected network, we can provide
analytical results for �c. Assume N individuals with a given
game parameter r or b. If the system is stable, namely, no
individuals change their strategies anymore, the payoff of
any individual with C should be equal to that with D �Here-
after, C and D denote C strategy and D strategy, respec-
tively�. Hence for SG, we have

�N�c − 1� + N�1 − �c��1 − r� = N�c�1 + r� , �1�

where the left side is the payoff of C individuals, and the
right side is for D individuals. From Eq. �1�, �c=1−r−1 /N
�1−r. For PDG, one can write a similar equation, N�c−1
=N�cb, which gives �c=1 / �N�1−b��. For very large N and
b�1, �c�0. Simulation results are displayed in the left col-

umn of Fig. 1, which are exactly the same as the analytical
results, independent of the initial cooperator density �c�0�.
These results are consistent with previously reported results
on games in the mean-field case. On 2D lattices, �c shows
initial-cooperation-dependent behaviors, as shown in the
middle column of Fig. 1. The stable values of �c in the case
of �c�0�=1 is much higher than that with �c�0�=0 for both
PDG and SG. Moreover, SG with �c�0�=0 shows some step
structures for different r, while PDG is insensitive to b. On
star networks, �c is insensitive to the game parameters for
both PDG and SG, but for SG it is sensitive to �c�0�. On star
networks, the hub node plays a dominant role in the organi-
zation of strategies. Suppose that in SG, the hub adopts C. In
the case of infinite size, if r�0, the hub’s payoff tends to �,
regardless of others’ strategies. Consequently, the leafs with
D have higher payoffs than those with C. As a result, �c tends
to be 0. On the other hand, if the hub is D, all leafs have to
adopt C to avoid being eliminated, leading to �c=1. In PDG,
the hub with C is unstable, since after all leafs adopt D, the
hub has the lowest payoff. Thus the final steady state exhibits
a D hub and leafs with random strategies, reflected by �c
=0.5.

IV. COMPLEX NETWORKS

In this section, we investigate the model on more realistic
networks, including Newman-Watts �NW� small-world �17�
and Barabási-Albert �BA� scale-free networks �19�. The NW
model is a modified version of the Watts-Strogatz small-
world network model �18�. The NW network is constructed
by randomly adding edges to a regular ring network. CNW is
the coordination number of the regular ring network and PNW
is the probability of each node to receive a new edge. In the
BA model, there are m nodes initially. At each time step, a
new node with m edges is added and preferentially attached
to m existing nodes with probability proportional to the de-
grees of existing nodes. The minimum degree kmin is m. In
PDG, similar to the case of regular networks, �c is insensi-

FIG. 1. �Color online�. Cooperator density �c for SG and PDG
on fully connected networks �left column�, 2D lattices �middle col-
umn�, and star networks �right column�. The results of SG and PDG
are shown in two rows. �c�0� is the initial cooperator density. The
network size is 10 000.
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tive to the parameter b, but has a strong correlation with
�c�0�, as shown in Fig. 2, which indicates that there exist
multistable states in the system. Cooperative behaviors on
SG are displayed in Fig. 3. Compared to PDG, �c in SG
exhibits not only multistable states but also discontinuous
phase transition with varying r. The critical phase transition
points are marked by rc in Fig. 3. Some steps are divided by
the phase transition points and the values of rc are indepen-
dent of �c�0�. Within each step, �c is independent of r, while
the value of each step depends on �c�0�: the higher the �c�0�,
the higher the �c. Analogous to the analysis of star networks,
for inhomogeneous networks, high-degree nodes play a sig-
nificant role in the organization of cooperation. We thus pro-
vide a prediction for rc by considering hub effects from a
simple all-D initial state. In the initial state, all individuals’
payoffs are zero, so they have the same death probability. For

BA networks, small-degree nodes are the majority, so small-
degree individuals have high probabilities to change their
strategies. Moreover, most neighbors of hubs are small-
degree nodes. Hence after a small-degree individual turns to
cooperator, hub nodes gain payoffs from it and their strate-
gies will keep unchanged. As a result, hub individuals are
more inactive than small-degree individuals, and the strategy
changes of small-degree individuals mainly contribute to the
change of �c. Assume that the number of C neighbors of D
individuals is mc and the minimum degree is kmin. When r
approaches 1, the local pattern that all neighbors of a C in-
dividual with degree kmin are D individuals is steady. The
payoff value of the C individual �1−r�kmin is the second least
and if the individual with C switches to D, its payoff is zero,
the least payoff value. Thus it will return to C. When some
individuals with kmin adopt C, high-degree individuals of D
will keep unchanged, since they have one or more small
degree C neighbors and therefore gain payoffs. As r de-
creases from 1, C individuals of degree kmin with only D
neighbors according to the payoff matrix will gain more pay-
offs, which may be larger than the payoffs of D individuals
with only one or more C neighbors �1+r�mc. Thus the D
individuals will change to C and the cooperator density will
turn to another level, which is expressed as kmin�1−r�
�mc�1+r�. This gives

r �
kmin − mc

kmin + mc
. �2�

As one can see, when kmin−mc�0, i.e., mc�kmin, the high-
degree D individuals always survive. At the critical values
rc= �kmin−mc� / �kmin+mc�, a discontinuous phase transition
occurs. mc can be 1,2 , . . . ,kmin−1, so that the number of
steps is equal to kmin. These results are confirmed by simu-
lations, as shown in Fig. 3. For the NW networks, kmin is
determined by the coordination number CNW of the initial
regular ring since the NW network is constructed by ran-
domly adding new edges to a regular ring. Thus kmin
=2CNW and the number of steps is 2CNW, as displayed in the
right column of Fig. 3. We also notice that although the
number of steps is independent of the small-world parameter
PNW, the parameter can influence the value of each step.

To better understand the effects of degree heterogeneity
on the game dynamics, we investigate the average strategy
degrees �ks� of both C and D individuals for different values
of r. As shown in Fig. 4, �ks� has similar step structures and
the sharp transition points are exactly the same as �c. As r
decreases from 1, the average defector degree �kD� of D in-
dividuals increases, which shows the same trend as �c. On
the contrary, the average cooperator degree �kc� of C indi-
viduals displays a decreasing trend with the decrease of r.
These findings are consistent with our analysis. For very
large r, D individuals with small degrees are easier to switch
to C. As r reduces to another step, more small-degree D
individuals will switch to C, which enlarges �kD� and simul-
taneously reduces �kc�. When r approaches 0, most individu-
als become C together with a few high-degree individuals
adopting D. From our analysis, high-degree individuals tend
to preserve their initial strategies because they usually gain
more payoffs from many neighbors; while small-degree in-

FIG. 2. �Color online�. �c as a function of r of SG on BA and
NW networks. �a� BA networks with kmin=3, �b� BA networks with
kmin=6, and �c� NW networks with CNW=2, PNW=0.2. For BA, kmin

is the number of edges of the new nodes being added to the existent
network at each time step. For NW, CNW is the coordination number
of the initial ring network and PNW is the probability of each node
to receive a new edge. �c�0� is the initial cooperator density. C and
D are randomly distributed initially. Each data point is obtained by
averaging over 100 simulations for each of ten different network
realizations. The network size is 5000.

FIG. 3. �Color online�. �c as a function of r of SG on NW and
BA networks. The phase transition points are marked by rc. Other
parameters are the same as those in Fig. 2.

PHASE TRANSITION AND HYSTERESIS LOOP IN … PHYSICAL REVIEW E 77, 046109 �2008�

046109-3



dividuals change strategies more easily and have to choose C
to gain payoff 1−r from their D neighbors. Therefore it is the
passive decision-making of small-degree nodes that leads to
the domination of cooperation in the model, even when in-
dividuals are all defectors initially.

V. HYSTERESIS LOOPS

Due to the trend of high-degree individuals preserving
their initial strategies, the existence of multistable states in
the system is indeed resulted from the difference of high-
degree individuals’ initial strategies. Interestingly, we found
hysteresis loops of �c under some special conditions, which
is partially due to the existence of multistable states. As
shown in Fig. 5, there are two branches in each subset. The
red-circle branch is the stable values of �c along the direction
from r=0, while the black-square branch comes from very
high values of r. These directions of varying r are marked by
arrows in Fig. 5. For each branch, after the system reaches a
steady state under an r value, the value of r will be changed

by a small amount �r following the varying direction, and
the strategies of individuals in the steady state are preserved
as the initial state of the system for the new parameter value
�for the increase branch the parameter value is r+�r and for
the decrease branch is r−�r�. In the cases of small and large
values of r, these two branches overlap, indicating that the
system has the same dynamical properties along two differ-
ent directions. In the region of medium values of r, a hyster-
esis loop can be traced out �arrows in Fig. 5�, indicating that
the system is bistable there. Moreover, the lower branch
shows similar discontinuous phase transitions and step struc-
tures, where the phase transition points are the same as those
shown in Fig. 3. The hysteresis loops and bistable states have
been reported in magnetic systems and traffic systems �20�
before, but as far as we know, they have not been found in
network games prior to the present work.

In order to understand the existence of bistable states and
the occurrence of hysteresis loops, we explore the average
strategy degrees �ks� of cooperators and defectors depending
on the strategy density �s of cooperators and defectors for
two branches, respectively. As shown in Fig. 6, for each
branch, �kc� versus �c and �kD� versus �D display different
behaviors, as reflected by two curves in Fig. 6. However, �ks�
versus �s of both branches shows a similar property for C
and D, respectively, since the data points for the two
branches overlap in the same curves. This result indicates
that although varying the parameter along different direc-
tions results in different cooperative behaviors, the internal
correlation, i.e., the behavior of �ks� versus �s, remains un-
changed for two distinct branches. The major factor that
plays the key role for the emergence of bistable states and
hysteresis loops is the “memory effect.” As shown in Fig. 3,
the steady values of �c is determined by the initial cooperator
density �c�0�, and the higher the �c�0�, the higher the steady
�c. In Fig. 5, for a value of r on the increase branch, after the
steady value �c is achieved, this steady cooperator density is
then used as the initial state �c�0� for achieving a steady
cooperative state under the condition r+�r. In other words,
the system’s cooperative behavior for a value of r has a
dependence on the former cooperator density along the di-
rection of varying the parameter, i.e., the “memory effect.”
Since the increase and decrease branches are obtained from

FIG. 4. Average strategy degrees �ks� of C and D individuals for
NW and BA networks. Symbol denotations and other parameters
are the same with those in Fig. 2.

FIG. 5. �Color online�. Hysteresis loops of �c for BA and NW
networks. The initial cooperator density is �c�0�=0. Arrows denote
the directions of varying parameter r for two branches. Symbol
denotations and other parameters are the same as those in Fig. 2.

FIG. 6. �Color online�. Average strategy degrees �ks� depending
on strategy density �s of C and D individuals for two different
branches, respectively. �a� for BA network with kmin=3 and �b� for
NW network with CNW=2 and PNW=0.9. Symbol denotations and
other parameters are the same as those in Fig. 5.
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high and low cooperator densities initially, there exists a
bistable range and in the range, �c of the increase branch is
higher than that of the decrease branch due to the positive
correlation between �c�0� and steady �c.

VI. CONCLUSION

In summary, we have studied the Prisoner’s Dilemma
game and snowdrift game with the global strategy updating
mechanism on regular, small-world, and scale-free networks.
We found that on these networks there exist multistable
states for both the Prisoner’s Dilemma game and snowdrift
game, closely related with the initial cooperator density. In
the snowdrift game, discontinuous phase transition occurs at
some critical values of r, and step structures are divided by
these phase transition points, which have been explained
with respect to the significance of high-degree individuals in

the system. The death of defectors with small degrees under
the influence of high-degree individuals leads to the persis-
tence and domination of cooperation. Finally, we have shown
hysteresis loops of the cooperator density, obtained by vary-
ing parameter r along two directions. Besides, we found
similar internal correlation between strategy degrees and
strategy densities of both branches in the hysteresis loops.
The observed hysteresis property indicates that the dynamics
of our game model in a certain region rely considerably on
the historical cooperation behaviors.
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