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A general criterion of appearance of slowing down in non·equilibrium stochastic processes 
is proposed. Many examples for this general criterion are shown, in which a phenomenon of 
slowing down occurs at a certain value of the relevant parameter. In particular, a generalized 
scaling treatment of transient phenomena is effectively applied to deriving the relaxation spectra 
of some multiplicative stochastic processes. The concept of asymptotic slowing down for finite 
systems is also proposed. 

§ 1. Introduction 

Recently many authors1)-IO) are interested in non-equilibrium phase transition. 
However, nobody has yet established a general relation between a phase 
transition in non-equilibrium systems and a phenomenon of slowing down of 
relaxation. In this paper, we propose a general criterion of appearance of the 
slowing down to study the above problem. 

The phase transition point yp in a non-equilibrium system is usually defined by 
the point of the relevant parameter y contained in the system at which the profile 
of the stationary distribution function changes drastically, as is shown in Fig. 1. 

That is, yp is a bifurcation poine) in the parameter space of y. 

In the present paper, we consider the general nonlinear Langevin equation or 
stochastic differential equation 

T> Tp 1> Tp 

-x -x 
(0) (b) 

Fig. 1. The probability profile changes drastically at y = YP. 
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Phase Transition and Slowing Down in Non-Equilibrium Processes 829 

Here Tj(t) is a random force and a(x) contains y. For simplicity we assume, 
except in § 7, that Tj(t) is Gaussian and white, that is, 

<Tj( t)Tj( n> = 2EO( t- n, (1·2) 

where the parameter E denotes the strength of the random force and it is a very 
important smallness parameter in our arguments. All the multiplicative noises in 
this paper, unless otherwise specified, are defined as the Stratonovich type. Now 
the corresponding Fokker-Planck equation takes the form 

Then the stationary solution is given by 

[
1 ] _ fX a(y) 

Pst(x) = No exp E"g?(x, y); g?(x, y) - - clog P>(x ) + P>2(y) dy . (1'4) 

Here No is the normalization constant. The phase transition point yp is easily 
obtained from (1·4). Namely, yp is determined by the condition that the most 
probable point Xo begins to change from a stable state to an unstable state. This 
results in 

(1'5) 

and 

For example, in the non-multiplicative case P>(x ) = 1, we obtain 

(1.7) 

That is, a phase transition occurs at the point at which the coefficient in the 
linear term in a(x) changes its sign, as is well-known. 

Now our question is whether or not the slowing down occurs at this phase 
transition point. It is well-knownll )-13) that there always occurs a critical 
slowing down at the phase transition point near the equilibrium state in the 
thermodynamic limit. It is, however, not necessarily so in general open systems. 
In fact, we can show in the present paper examples in which there is a phase 
transition without critical slowing down. 

In § 2, we propose a general criterion of appearance of the slowing down and 
explain its validity intuitively as well as by using some typical examples. In § 3, 
a direct method is applied to obtain formal exact solutions in some specific models. 
The extended scaling method is shown in § 4 to be very powerful in obtaining the 
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exact relaxation spectra of some multiplicative stochastic processes. To explain 
why the extended scaling treatment yields the exact relaxation spectra of some 
specific models, we study in § 5 the scaling property of solutions with the use of 
a linear scale transformation. In § 6, we introduce a concept of asymptotic 
slowing down. The scaling theory is also extended in § 7 to multiplicative 
stochastic processes with the two-level noise. Applications of the Ito type sto­
chastic differential equations are shown in § 8. A discussion is given in § 9. 

The present results were briefly reported in review articles9
).10) by one of the 

present authors. 

§ 2. General criterion of appearance of slowing down 

We explain here a general mechanism of the slowing down of relaxation. By 
the slowing down, we mean here the divergence of the relaxation time, that is, r 
--> 00 at a certain point I' = Yo. 

General criterion of appearance of the slowing down: For a slowing 
down to appear, at least one physical mode Q should exist such that 

at some point Yo , (2'1) 

or the stationary distribution Pst(x) or the initial distribution Pini(X) should 
become unnormalizable at some Point Yo. 

Here, the stochastic variable Q(x) itself is assumed not to contain a trivial 
singularity like (1'- yotl at 1'= Yo, because it is irrelevant to the slowing down. 

The above statement on the slowing down is the summary of our present 
investigation on the critical slowing down in several systems. To explain this 
general criterion, we classify the mechanism of slowing down in the following. 
(i) The case in which the average < Q>st in the stationary state diverges 

For simplicity, we assume here that the lowest non-zero eigenvalue of the 
Fokker-Planck operator in (1,3), .ill, is isolated from other ones. Then, the 
average < Q( t» is expected to have the following asymptotic behavior: 

(2·2) 
or 

(2·3) 

for large t. The stationary value < Q>st is expressed as 

near 1'= Yo , (2·4) 
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Phase Transition and Slowing Down in Non-Equilibrium Processes 831 

if C(y=yo)=t=O. Thus, the divergence of <Q>st is equivalent to AI=O, that is, the 
appearance of slowing down near y= Yo. Conversely, the latter assures that 
<Q>st=±oo, if C(y=yo)=t=O. The condition that C(y==yo)=t=O is the one for a 
phenomenon of slowing down to be classified into the present category (i). 

(ii) The case in which Pst(x) becomes unnormalizable at y= Yo 
It is expected in this case that the approach of P(x, t) to the stationary state 

Pst(x) becomes very slow near y= Yo. That is, the eigenvalue spectra should 
contain a "critical" eigenvalue Al which vanishes at y = Yo. This may be reflected 
in the relaxation of moments <xn( t», and consequently a phenomena of slowing 
down may occur at y = Yo. The simplest example of this case is the following 
linear stochastic process: 

(2-5) 

The solution of (2 -5) is given by 

x (t) = x (0) e- Tt + e- Tt 1t eTST} (s) ds , (2-6) 

as is well-known. The average <x (t» shows the following slowing down: 

<xU» = <xC ° »e- Tt (2-7) 

near y = O. The relaxation time r is given by r = 1/r and r becomes infinite at y 

== O. The stationary distribution function is also given by 

Pst(x) 12;We exp( - 2~:e)' (2-8) 

where 6e = 1/r. Therefore, Pst is unnormalizable for y ~ O. This feature is 
reflected in the appearance of slowing down of moments. It should be also 
remarked that the fluctuation <x 2 >st( == E6e ) diverges at y= 0 in this linear system. 
Namely, the critical slowing down is associated with the divergence of the 
fluctuation in a linear system. 

The following multiplicative stochastic process gives another simple example: . 

d dt x ( t) = - yx + XT} ( t ). 

The solution of (2 -9) is easily given by 

xU)=x(o)exp( -yt+ 1tT}(s)ds). 

Then, the average <xn( 0> shows the following slowing down: 

<x n( t» = <x n( 0) > e-n(T-ne)t 

(2-9) 

(2-10) 

(2-11) 
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near r= nc:. The stationary distribution function is expressed as 5
) 

(2-12) 

This is always unnormalizable. This point r= nE of the slowing down 
corresponds to the divergent behavior of the integral of xnpst(x) for large x. 

(iii) The case in which Pini(X) is "singular", namely unnormalizable at 
some point r= ro 

It is expected in this case that the approach of the singular (or "almost 
divergent" near r= ro) Pini(X) to the finite stationary state becomes very slow 
near r= roo An example of this case will be given later in the Schenzle·Brand 
model5

) near r= E. 

It seems rather difficult to prove the above criterion rigorously. Here, we 
demonstrate how the above general criterion works for typical models. 
(A) The Schenzle·Brand model We consider the following multiplicative 
stochastic processes:5 ),9),IO) 

(2-13) 

Then it is quite easy9),IO) to show that the quantity Q(SB)=X I
-

m is the relevant 

divergent mode, that is, 

< Q(SB)st=--g---->oo at r= ro+O, 
r-ro 

because Pst(x) is given byS) 

P ( )- N ~ -gxm-l/e(m-I) 
st X - oX e e , 

(2-14) 

(2-15) 

where ro = (m -1 )E. The above general criterion states that there is a slowing 
down associated with this quantity Q(SB) and that the relaxation time r should be 
proportional to (r- rotl. In fact, it is shown9),IO) rigorously that 

< QSB)t = « Q(SB)O ___ g __ )e-(m-l)(r-rO)t +--g- . 
r- ro r- ro 

(2-16) 

Thus, there exists, at least, one "critical" mode with slowing down in this model. 
However, Schenzle and BrandS) overlooked this fact and they concluded that there 
is no "critical" slowing down at all. 
(B) A new model (to be referred to as SKS-model) The following model can 
be solved formally: 

(2-17) 

This can be derived, for example, as a model of an autocatalytic reaction, i.e., A 
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+ X-=B+ mX. If B is fluctuating around the average, then we obtain the model 
(2·17). Alternatively, this is also interpreted as a stochastic model of the 
nonlinear system i = yx ~ g( t)x m with a fluctuating nonlinear coupling g( t) == g 
~TJ(t). For this model, the quantity Q(SKs)==xl~mis again the relevant divergent 
mode, that is, 

<Q(SKS»st=--g-->= at y=Yo+O, 
y~Yo 

(2·18) 

where Yo==O. Thus, the relaxation time r should be proportional to y~l. In fact, 
we can show rigorously again that 

(2·19) 

That is, <x(t)I~m> shows a slowing down at y=O irrespectively of the value of the 
strength E of the Gaussian white random force TJ( t). 

(C) Arnold-Horsthemke-Le/ever model (AHL-model) Arnold et al. 14
) 

proposed the following stochastic system whose phase transition is induced purely 
by an external noise: 

(2·20) 

where /3 is a constant. The stationary distribution function is given by 

1 /3 ( 1 ~ x)] "E log -x- . (2·21) 
2EX(1~x) 

The average <x >st is always finite in this system and Pst(x) is normalizable for 
finite E. Thus, from our general criterion, we may conclude that <x(t» shows no 
slowing down in the AHL-model. Kabashima et al. 15) performed an experiment 
corresponding to this model by using electric circuits, and they found no slowing 
down. Our above arguments explain very well this experimental result. 
(D) Non-multiplicative stochastic processes We consider here the following 
non-multiplicative process: 

(2·22) 

It is well-known16
).17) that no fluctuation diverges in the stationary state for E 

* O. Therefore our general criterion concludes that there is no slowing down for E 

*0 in the non-multiplicative stochastic process (2·22). Only in the limit of small 
E, the fluctuation diverges at the critical point and consequently the critical 
slowing down occurs in this limit. Van Hove's theory corresponds to the case E 

=0, that is, to the deterministic system. The critical slowing down is predicted 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/65/3/828/1885161 by guest on 21 August 2022
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in this theory, as is well·known: 

(2·23) 

Here, M denotes the order parameter. Equation (2'23) yields 

(2'24) 

The solution shows the following exponential decay: 

M ( t) = M (0 )exp( - tf r ) (2'25) 

with the relaxation time 

(2'26) 

The fluctuation <M2 >st diverges at T= Tc in this system and this corresponds to 
the case (ji) in the above criterion. 

As is easily seen from the above illustrations, the slowing down is always 
associated with the instability of a certain kind of physical quantity. 

§ 3. Direct method-formal exact solutions 

In this section, we investigate some exactly soluble models to find many kinds 
of slowing down. 

It will be instructive to classify the stochastic processes (1.1) into exactly 
soluble systems and others. Here we restrict ourselves to a special method for it. 
That is, we are interested in the nonlinear transformation ~ = f(x) which 
transforms (1'1) into a linear stochastic process of the form 

d 
dF~( t) =(a+ br;( t))~+ c+ dr;( t). (3'1) 

We can prove easily the following statement. 
Theorem of Solvability: If a(x) and (3(x) in (1.1) satisfy the condition 

d ( a(x) ) _ -1 { (a(x)) } 
dx (3(x) - (3(x) b (3(x) -a (3·2) 

for appropriate constants a and b, then (1.1) can be transformed into a 
linear differential equation and consequently it can be solved formally. 

For the case b=O, see a paper by Sancho and San Migue1. 23
) There are 

several useful examples of exactly soluble models in the above sense. 
(A) Formal solution of Schenzle-Brand model The model (2'13) is the most 
interesting example of the above theorem. With the use of the nonlinear 
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transformation ~=xl-m, Eq. (2'13) is transformed into the linear differential 
equation 

~~ =(l-m)(r+TJ(t»~+(m-1)g. 

The solution of (2 '13) is given by 

x(t)=exp[rt+ l tTJ (ndr] 

x[g(m- ul
t 
exp{(m-U(rt'+ lt~(s)ds)}dt'+x(O)I-mr(l-m) 

(3'3) 

(3'4) 

This yields the result (2'16) immediately. It is, however, rather difficult to 
calculate explicitly· general fluctuations such as <x 2 (t» from the above formal 
solution (3' 4), because we must take the average over the random force TJ (t) in 
the denominator of (3'4). An explicit expression for the first moment <x( 0> will 
be given on the basis of the scaling theory in the next section, to obtain the 
relaxation spectra of this system. 
(B) SKS-model The second example of exactly soluble models is described by 
(2·17). This is also transformed into the linear equation 

~~ =(l-m)r~+(m-U(g-TJ(O), (3'5) 

in terms of the same nonlinear transformation ~=xl-m. Consequently the formal 
solution of (2 '17) is given by 

[ i t ]l/(l-m) 
x( t)~ e 7t (m-1) 0 e(m-l)rt'(g_ TJ( n)dt' + x(O)I-m (3'6) 

This gives the result (2·19). The first moment <x(t» is easily given in the form 

'" <x(t»= ~ ane- Ant , (3' 7) 
n=O 

where {an} are functions of g, E, r, m and x(O), and the spectral eigenvalue An is 
given by 

An=n(m-Ur. (3'8) 

This result is also obatined easily by solving the Schrodinger-type equation 
corresponding to (2 '17). For details, see Appendix A. The stationary solution 
of this model is given by 

Pst(x)= Nox- m exp[~{- r x 2(I-m)+_g_x 1
-

m}] (3'9) 
E 2(m-U m-1 ' 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/65/3/828/1885161 by guest on 21 August 2022



836 M. Suzuki, K. Kaneko and F. Sasagawa 

where No is the normalization factor. Therefore, Pst(x) changes drastically at y 

= 0, as shown in Fig. 1. It should be noted, however, that Pst is not normalizable 
for y<O. The physical region is restricted to y>O. Thus, the "phase transition 
point" y = 0 is different from the ordinary ones, and it is rather artificial. The 
slowing down in this system is classified in the case (ii) of the criterion. 

There are several other models that can be transformed into exactly soluble 
Schrodinger-type equations. We consider the following stochastic processes: 

it x ( t ) = yx I - gx m + X n r; ( t ). (3·10) 

For exactly soluble sets of t, m and n, see Table 1. 

Table I. Spectra for i='1x'-gx m+xn7}U), where V(z) denotes potentials in the corresponding 
Schrodinger-type equations. 

type I m n potential V(z) spectra Ilk 

I 1 m m Az'/2 k'1(m-l) 

II 1 m 1 e-2az _ 2e- az k(m-l)('1-k(m-l)c) and continuum 

III 1 2n-l n A/z'+Bz' 2k'1(n-l) 

IV n 2n-l n A/z+B/z' ('1' / 4E){l-(l + 2Ek( n-l)/ g t'} and continuum 

§ 4. Scaling treatment for multiplicative stochastic processes 

We apply here the extended scaling method9),lO) to the multiplicative stochastic 
process (1.1) to obtain the relaxation spectra. According to the general 
procedure presented in the previous papers,9),lO),19) we make use of the following 

nonlinear transformation: 

(4·1) 

where y= a'(O) >0 and 

F(x )=expl x
-(y ) dy=x + ... 

ao a y 
(4·2) 

with ao to be determined so that F' (0) = 1. Then, we obtain the transformed 

equation 

d dt~= G(~, t)r;(t), (4·3) 

where 
(4·4) 
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If we assume that 

(4·5) 

near x=O (unstable point), for an arbitrary positive number p, then we can 
show20

).21) that G(~, t) in (4·4) is replaced "asymptotically" by 

(4·6) 

By "asymptotically", we mean9
).IO).20).21) that E->O and t->CX) with E exp(2yt) being 

fixed. We call this the scaling limit. Thus, the original multiplicative stochastic 
process (1·1) can be approximated by 

it ~sc(t) = e(P-l)Tt ~fc(t) 7j (t), (4·7) 

in the scaling limit. The solution of this equation is given by 

for p= 1, (4·8) 

[ i t ]1/(1-P) 
~sc(t)= (l-p) 0 e(P-l)TS7j(s)ds+x(O)I-P for p-::f::. 1. (4·9) 

Consequently the scaling solution or renormalized solution 10
) is expressed by 

(4·10) 

In general, the average of any quantity Q(x) IS expressed 10 this scaling 
theory as 

(4·11) 

The average over the random force 7j(t) in (4·11) is easily taken as in Ref. 9). 
That is, for a fixed value of Xo, we expand Q(x) in a power series of 17=f{exp[(p 
-1)ys]}7}(s)ds for P-::f::.1 and we use the Wick theorem to take the average of the 
product 7j(tl )7j(t2)'" 7j(t2m). For this purpose, we consider an arbitrary function 
f( 17) and make a Taylor expansion as 

00 

<f( 17)= ~ an<17n) 
n=O 

00 

= ~ a2n(2n-1)! !<172)n 
n=O 

Here, we have 
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for P::I= 1, and we have 

Thus, we arrive at the following results: 

<Q(x»sc(x(O)) 

=-1-1= d~e~~2/2 Q( F~l( e rt F( [x (0 )l~P + (1- P )~< ij2>1/2r/(l~p)))) 
/'Iii ~= 

for P::I=l, and 

(4'13) 

(4'14) 

(4'15) 

(4'16) 

for p=l. Equation (4'16) is also obtained by taking the limit p ..... 1 in (4·15). 
If we take the average over the initial value x(O), then we obtain 

< Q(x »sc= 1:< Q(x »sc(x(O))Po(x(O))dx(O). (4'17) 

Furthermore if the distribution Po is Gaussian with <x(O»=O, then <Q(x»sc is 
reduced to 

for P = O. This is the result obtained in the previous paper. 9
) 

For the Schenzle-Brand model, we obtain 

xsc( t) = ~sc( t )e rt{l + ga( t )~::'~l( t) p/(l~m) , 

where ~sc(t) is given by (4' 8) and 

1 a( t) =-{exp[r( m-l)t]-l}. 
r 

The average of x( t) is given by 

(4'18) 

(4·19) 

(4'20) 
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(4-21) 

As we are interested in the relaxation spectra and consequently in the long-time 
behavior of the system, we calculate the average <x(t» explicitly in the form of 
the strong-coupling expansion as 

_ ( y )11(m-O no ( y )n 
<x(t»sc- 9 n~o gx(o)m I 

X ( 1 ~ m )(1- e- "'-0') "."" "e '"' I R(t). (4-22) 

Here, R( t) is defined by 

and 

R(t) =_1_100 d~e-~212(~)II(m-l) 
/2ii -00 g 

X ( 1 ~ m )(1- e-"'-o, )-",-,,,,-0(1+ eh\e, t))-">-'"'' ° h( 1', I)"'" , 

(4-23) 

h(~, t) (4-24) 

An = n( m-1)[y- n( m-1)c] (4-25) 

for n= 1,2, ... , no, where 0< B< 1. Here the parameter no should be determined 
so that the separation (4-22) may be meaningful. That is, R(t) should be of 
order higher than the first term. As R( t) is easily shown to be of the order of 
exp( -Ano+d) or of order higher than it for large t, we obtain the condition that 
Ano < Ano+l, namely 

no<[Y-( m-1)c]/ [2( m-1)c]. (4-26) 

Thus, no is given by the maximum integer less than [y-( m-1)c]/ [2( m-1)c]. If 
we are interested in the eigenvalue AI, we obtain the condition no ~ 1. That is, we 
have 

y>3(m-1)c. (4- 27) 

This is a sufficient condition stronger than that obtained by Schenzle and Brand5
) 

using the Schrodinger-type equation. The weakest condition may be the vanish­
ing of R(t) for t->=, that is, Ano+I>O. From this condition, we obtain 
(n~ + 1)( m -1)c< y. If we are interested in AI, we get the restriction y > 2( m-1)c, 
by putting no' = 1 in the above condition. This happens to agree with that 
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obtained by Schenzle and Brand. However, judging from our scaling treatment, 
it seems safer to take the former stronger sufficient condition in our 
approximation. In any case, the average <xU» shows no critical slowing down 
at y=(m-1).s, but there occurs seemingly a slowing down in the region y>2(m 
-l).s, which was obtained first by Schenzle and Brand. 

It should be noted, however, that there exists a critical mode xU )l-m which 
shows a slowing down at y = ( m -1).s, as was shown in § 3. Thus all the 
eigenvalues (4·25) satisfying y> n( m -1).s are necessary to describe various 
situations mentioned above. The above results agree essentially with those 
obtained by Schenzle and Brand.5

) Their discrete eigenvalues are, however, 
restricted to n = 1, 2, ... , no' (which is the maximum integer value less than 
rI [2c(m-1)]), because they have imposed the normalization condition on the 
wave function of the Schrodinger-type equation. The correct normalization con­
dition should be imposed on the probability function of the Fokker-Planck equation. 
For more details, see Appendix B. 

For the SKS-model described by (2 ·17), we obtain similarly the eigenvalue 
spectra 

An=n(m-1)y, n=l, 2, .... 

The spectra of an exactly soluble model described by 

are also obtained by the scaling treatment and they are given by 

An =2n( m-1)y, n=l, 2, .... 

The derivation of this result is given in Appendix C. 

§ 5. Linear scaling transformation 
and scaling property of solutions 

(4·28) 

(4·29) 

(4·30) 

In order to understand why the exact discrete spectra have been obtained in 
§ 4, we study here the scaling property of the spectra by introducing the following 
linear scaling transformation; 

(5·1) 

in the nonlinear Langevin equation 

(5·2) 

It is easily shown that (5·2) is invariant for the following choice of the exponents 
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/3
= m-l+2a(n-l) -(a+l) 

m-2n+l ,y= m-n+l' z 
(l-2n+l)a-(m-l) 

m-2n+l 

Therefore, the eigenspectra Ak should have the following scaling form: 

(5'3) 

This is a generalization of the case that n = 0 and y = 0 discussed by Kubo et a1.22
) 

This scaling property leads to the following arguments: 
(a) If n=l and 1=2n-l=1 (for the Schenzle-Brand model), then we have 

(5'5) 

This means that the eigenvalues Ak have the above scaling property (5'5) for an 
arbitrary value of a and consequently that {Ak} do not depend on g, that is, we 
have Ak = Eik( y/ E). Therefore, the strong coupling expansion or (1/ g)-expansion 
can give the exact spectra. Furthermore, if we assume that Ak is a linear 
function of y, then Ak should be a linear function of E, and consequently the scaling 
treatment which is correct up to the order of E gives the exact result, as is shown 
in § 4. 
(b) For the SKS-model (l=l, m=n), we have Ak=E-2a-lik(YE2a+\ Eag) for any 
value of a. Consequently, Ak should be scaled in the form 

(5'6) 

If {Ad do not depend on g, they do not depend on E, either and they are a linear 
function of Y without a constant term. Conversely, if {Ak} are proportional to y, 

as it is, then they do not depend on g and E. This justifies the scaling derivation 
of (4'28). 
(c) If m = 2 n - 1, then only the case a = - 1 gives the correct scaling property 

(5' 7) 

Clearly the specific results for l = nand l = 1 shown in Table I satisfy this linear 
scaling property. It is quite interesting that {Ak} do not depend on g and E in the 
case l = 1 but that they depend on g in the case l = n and consequently they cannot 
be obtained by the (1/ g)-expansion for this case. 
(d) In this way, it is possible, in general, to argue in what models the spectra do 
not depend on the nonlinearity g, and consequently to what models the 0/ g)­

expansion can be applied to obtain the spectra. 

§ 6. Asymptotic critical slowing down 

As we have discussed in § 2, no critical slowing down occurs III the non-
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multiplicative stochastic process (2'13) for a non-vanishing value of c. We are 
here interested in the asymptotic behavior of the relaxation time or spectra for 
small c. The minimum eigenvalue .-11 takes the scaling form 

(6'1) 

from Eq. (5'4) with a=O. The relaxation time r is given by r=.-1i l . Thus, r 
becomes very large asymptotically as rCX:c-(m-I)/(m+l) for small c at the critical 
point 1=0. This may be called "asymptotic critical slowing down". This 
situation has been also discussed by Dekker and van Kampen l7

) on the basis of 
numerical calculation. 

Experimentally this asymptotic critical slowing down should be observed in 
ordinary situations, because the case c=O is realized only as the mathematical 
limit and because c is small but non-zero in experimental situations. 

§ 7. Slowing down in two-level noise systems 

The extended scaling treatment in § 4 can be applied easily to the following 
two-level noise systems: 

it x (t ) = ( r + I (t ) ) x - gx m , 

where I(t) is a two-level (± Ll) noise7).B) satisfying the relation 

<I(t)I(t'»=Ll2e- A1t-t'l. 

(7'1) 

(7·2) 

The case m = 2 has been studied in detail by Kitahara et al.7).B) in a different 
method. 

U sing the nonlinear transformation x -> ~sc as is described in § 4, we get 

Noting that, for two-level noise 

fa( t) = 1 + a 2 [t dS I [t dS2<I( SI )I( S2» fa( S2) 

and using (7'2), we have 

dft =(aLl)2[tdse-A(t-S)fa(s). 

(7'3) 

(7'4) 

(7'5) 

The above equation is easily solved by Laplace transformation, and this results in 

fa(t)= fL++.-1 e"+t+ fL-+.-1 e"-t, 
fL+ - fL-· fL- - fL+ 

(7'6) 
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where 

(7·7) 

From this, we obtain 

( )
l/(m-ll 

<x(t»sc=; (l_e-(m-J)rt)l/O-ml 

( 
y)n(~) e-(m-llnrt/o _mln ( t) 

x ~ - 1 m (1 (m llrt)n 
n~O g - e 

n 
(7·S) 

Making such considerations as are given in § 4, we obtain the following discrete 
spectra: 

(7·9) 

for n = 1, 2, "', no, where no denotes the maximum integer that satisfies Ana 

<Ano+l. 

§ 8. Applications of the Ito type differential equations 

We have used the Stratonovich-type stochastic differential equations up to 
§ 7. However, it is sometimes useful to make use of the Ito-type stochastic 
differential equations 

dx=/(x, t)dt+g(x, t)dw (Ito) (S·l) 

with (dW)2 = 2Edt, dw· dt = 0 and (dt)2 = O. The well-known transformation 
formula yields 

dx=a(x, t)dt+;3(x, t)dw (S) (S·2) 

in the form of the Stratonovich-type, where 

a(x, t) = /(x, t) - Eg ~~ and ;3(x, 1) = g(x, t). (S·3) 

Consequently there is a possibility that a system can be reduced to an Ito-type 
equation with a linear drift term and consequently that the moment <xU» can be 
obtained explicitly. That is, it happens when /(x, t) = a + Egdg/ dx is linear in x. 

In particular, the following model: 

d dt x ( t) = ax + b + ( ex 2 + dx + e) 1 /2 7J ( t) (S) (S·4) 
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can be transformed into an Ito·type equation with a linear drift term and with the 
use of the Ito formula all the moments <xn(t» are calculated explicitly, by noting 
that <xn( t)7J(t» = O. For example, we consider here the following simple case: 

i = a - bx + IX 7J (t ) (S ). (8·5) 

The corresponding Ito-type equation is given by 

i = ( a + ~ E ) - bx + IX 7J (t ) (Ito). (8·6) 

The average <x(t» is obtained as 

(8·7) 

by using the martingale property <g(x )7J(t» = o. The slowing down occurs only 
at b=O, where <x>st==. This corresponds to the case (i) in the criterion. The 
stationary distribution function Pst(x) is given by 

(8·8) 

Consequently, a phase transition occurs at a=(I/2)E as in Fig. 1. However, there 
occurs no critical slowing down in <xU» at a=(1/2)E in this system. 

§ 9. Discussion 

In this paper we have clarified the general criterion for the appearance of the 
slowing down and we have solved some multiplicative stochastic models with the 
use of the scaling theory as well as the method of formal solution. The strong­
coupling expansion method is shown to be very powerful in some models which 
have a special kind of linear scaling property, to obtain exact relaxation spectra. 

It is remarked that one should be careful about normalization conditions in 
solving stochastic processes or Fokker-Planck equations, as is discussed in 
Appendix B. We also note the appearance of slowing down depends on the initial 
distribution and the variable that we observe. 

The mistake of widely-used normalization conditions is most clarified in the 
following model: 

(9·1) 

This equation is solved easily and we obtain 
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<x(t»=-g-+(x(O)--g-)e-<7-<Jt. (9·2) r-E r-E 

Here, we note that <x>st exists for r>E. We can solve the Fokker-Planck 
equation corresponding to (9·1) just in the same way in Appendix B. As we see 
in Appendix B, the spectrum Al = ( r - E) exists only for r > 2E, when we impose 
Schrodinger-type normalization condition (B·l). Of course, the correct spectrum 
is obtained when we impose the correct normalization condition (B·2). 

Extensions of the present treatment on a single macrovariable to systems of 
infinite degrees of freedom such ;:ts the TDGL model will be reported in a separate 
paper. 
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into 

Appendix A 

--Eigenvalue Problem of the SKS-Model--

Fokker-Planck equation (1·3) is transformed by the variable z=.f/3(xt 1 dx 

ap(z, t) 
at (A·l) 

where r(z) is defined as r(z)=a(x(z))//3(x(z)). This is the Fokker-Planck 
equation for additive noise and is transformed into the Schrodinger-type equation 
for the 'wave-function' rf;=Pst- 1

/
2P 

arf;(z, t) 
-E at (A ·2) 

Applying this method to the SKS-model, we obtain 

arf;( z, t) 
-E at 

(A ·3) 

with the variable z=.x 1
-

m
• This is the Schrodinger equation for the harmonic 

oscilla tor and the spectra are A k = kr( m - 1). 
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Appendix B 

--Normalization Condition of Stochastic Processes--

When we solve the Schrodinger-type equation (A ·3), we have to note that the 
condition for the normalization is not that 

1¢(zW is integrable, (B·l) 

but that 

P(z)=¢(z)Pii2(z)=¢(z)¢o(z) is integrable. (B· 2) 

This difference comes from the fact that the probability of a state is represented 
by 1¢(zW in quantum mechanics and that it is P(z) in Fokker-Planck equations. 
When we take into account the boundary, the condition that the flux vanishes at 
the boundary is necessary. Then we have 

a 
J(z)= -y(z)P(Z)+E az P(z)=O. (B·3) 

We consider the Schenzle-Brand model to discuss this point in detail. The 
Schrodinger-type equation for ¢(z)=¢(ln(gl;<m- iJx )) is obtained in the form 

a _;,_[ 2 a2 +{ 1 ( <m-l)Z)2 m-1 <m-l)Z}]_;, -Eat'Y- -E OZ2 4 y-e --2-Ee 'Y, (B·4) 

In the same way as in Appendix A. This can be reduced to the Schrodinger 
equation in Morse potential. and gives the following eigenfunctions and 
eigenvalues: 

E =_l_e<m-iJz 
<; YE ' 

(B·5) 

and continuous spectra for ,1 > y2 I (46). When we impose the condition (B·n Sn 
must be positive, and Schenzle and Brand's result is reproduced. 5

) However, in 
the correct condition (B· 2) (the condition (B. 3) gives the same condition in this 
model) we obtain Sn+So>O and this condition results in the following condition 
that n = 0, 1, ... , non where non is the maximum integer value less than yl [c( m 
-1)]. 

When there exists a mode that does not satisfy (B·n (which we will call a 
'divergent mode'), the usual method of eigenfunction expansion is not applicable. 
It is formulated as follows: 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/65/3/828/1885161 by guest on 21 August 2022



Phase Transition and Slowing Down in Non-Equilibrium Processes 847 

(B·6) 

and 

as is well-known. This comes from the orthonormality 

(B·n 

However, since f¢n 2(x )dx diverges for divergent modes ¢n, we cannot use this 
method. Of course, we can determine an by defining such inner products that do 
not diverge for all modes, but it is rather difficult in practice, because 
orthogonality is not satisfied for such inner products. 

Here, we remark that appearance of divergent modes depends on initial 
conditions and variables that we observe. If the initial distribution Pini(X) does 
not include divergent modes, then P(x, t) does not include them. Therefore, if 

(B·8) 

holds, we do not need divergent modes. 
However, when we study variables F(x) that violate the condition 

(B'9) 

for divergent modes {¢n}, we need divergent modes to express <F(x »t, even if 
(B·8) is satisfied. This is derived as follows. Since 

(B'lO) 

the contribution of divergent modes {¢n} remains finite even if an = 0, because the 
integration in (B'lO) diverges for such modes. 

For example, we consider the Schenzle-Brand model and put F(x)=x l- m
. 

Then it is easily shown that fF(x)¢o(x)¢I(x)dx diverges for y<2(m-lk 
When we exclude divergent modes, the spectrum Al = (m - 1)( y- (m-l)c) appears 
only if y > 2( m - 1).::5) due to 51> o. However, to describe the relaxation of F(x), 
we always need the mode Al if y > (m - 1).:: (this condition is imposed from the 
requirement <F(x»<oo), as we have already seen in §§ 2 and 3. 

Appendix C 

--Derivation of the Spectra of the Model 
i=yxl_gx2m-l+xmr;(t) forl=l and l=m--
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a) The case that i = rx - gx 2n - 1 + xn7j(t). This equation is transformed into 
the Langevin equation 

z=g(n-1) r(n-l)z+7j'(t); 
Z 

(C'1) 

with Z = f/3-1(X )dx and this is equivalent to the Schrodinger-type equation 

(C'2) 

V(Z)= ! (n-1)g«n-1)g-2c') ;2 

+ ~2 (n-1)2 z 2- ~ (n-1)r«n-l)g+c'). (C'3) 

This is the Schrodinger equation for the three-dimensional harmonic oscillator and 
the spectra of this system are given by Ih = 2kr( n-1). 

These spectra are also obtained by the scaling theory. From (4'?), we get 

(C'4) 

Using (4'10), we have 

(C'5) 

with b(t)=l-exp( -2(n-1)rt). Since <C;sc(t)-2k(n-l» IS expressed by a poly­
nomial of the quantity 

<C;sc( t)-2(n-l» = x( 0 )-2(n-l)+ ~ (n -1)( e 2(n-l)7 t -1), (C· 6) 

we get the exact spectra Ak given by (C·5). 
b) The case that i =rxn_gx2n-l+xn7j(t). Using the same method as in the 
case a), we obtain the following Schrodinger-type equation: 

(C·?) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/65/3/828/1885161 by guest on 21 August 2022



Phase Transition and Slowing Down in Non-Equilibrium Processes 849 

This is the Schrodinger equation for the three-dimensional Coulomb potential and 
we obtain the spectra 

2 

;\k= rc {l-[1+2ck(n-l)/g)]-2}. (C·8) 

Of course, we have to be careful about the difference between the normalization 
of the Fokker-Planck and Schrodinger equations, but the spectra do not change in 
the cases treated in this appendix. 
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