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and we find that the scalar curvature in the Weinhold metric is always vanishing, while in

the Ruppeiner metric the divergence of the scalar curvature is related to the divergence of
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1 Introduction

The thermodynamical properties of black holes in anti-de Sitter (AdS) space are quite dif-

ferent from those of black holes in asymptotically flat or de Sitter space. The main reason

is that the AdS space acts as a confined cavity so that black holes in AdS space can be

thermodynamically stable. In particular, there exists a minimal Hawking temperature for

a Schwarzschild black hole in AdS space, below which there does not exist any black hole

solution, instead a stable thermal gas solution exists. For a given temperature above the

minimal one, there exist two black hole solutions. The black hole with smaller horizon is

thermodynamically unstable with a negative heat capacity, while the black hole with larger

horizon is thermodynamically stable with a positive heat capacity. And Hawking and Page

find that a phase transition, named Hawking-Page phase transition, will happen between

the stable large black hole and thermal gas in AdS space [1]. According to AdS/CFT

correspondence, which says that there is an equivalence between a weakly coupled grav-

itational theory in d-dimensional AdS spacetime and a strongly coupled conformal field

theory (CFT) in a (d − 1)-dimensional boundary of the AdS space [2–5] (for a review,

see [6]), thermodynamical properties of black holes in AdS space can be identified with

those of dual strongly coupled CFT. The Hawking-Page phase transition for black holes

in AdS space is interpreted as the confinement/deconfinement phase transition in gauge

theory [5]. Thus it becomes quite interesting to study thermodynamics and phase structure

of black holes in AdS space. Indeed, in the past few years there have been a lot of works

on thermodynamics and phase transition for black holes in AdS space.

In ordinary thermodynamic systems, a divergence of heat capacity is usually associated

with a second order phase transition. For Kerr-Newmann black holes in Einstein-Maxwell

theory, some heat capacities diverge at some black hole parameters. Based on this, Davies

argued that some second order phase transitions will happen in Kerr-Newmann black

holes [7–9]. For a Reissner-Nordström AdS (RN-AdS) black hole, such a phase transi-

tion was studied in some details in [10, 11]. In a canonical ensemble with a fixed charge, it

was found that there exists a phase transition between small and large black holes. This
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phase transition behaves very like the gas/liquid phase transition in a Van der Waals sys-

tem [10, 12]. However, an identification between RN-AdS black hole and Van der Waals

system was recently realized in [13], where the negative cosmological constant plays the

role as pressure, while its conjugate acts as thermodynamic volume of the black hole in the

so-called extended phase space [14, 15] (for a recent review, see [16]). Recently, thermo-

dynamics and phase transition in the extended phase space for black holes in AdS space

have been extensively studied in the literature (for an incomplete list see [17–44].)

In the framework of AdS/CFT correspondence, the negative cosmological constant

is related to the degrees of freedom of dual CFT. Thus it is an interesting question as

to whether the interpretation of the cosmological constant as pressure is applicable to the

boundary CFT. Very recently, it was argued that it is more suitable to view the cosmological

constant as the number of colors in gauge field and its conjugate as associated chemical

potential [45–47]. This interpretation was examined in the case of AdS5 × S5, for N = 4

supersymmetric Yang-Mills theory at large N in [45]. The chemical potential conjugate

to the number of colors, is calculated. It is found that the chemical potential in the

high temperature phase of the Yang-Mills theory is negative and decreases as temperature

increases. For spherical black holes in the bulk the chemical potential approaches zero as

the temperature is lowered below the Hawking-Page temperature and changes its sign at

a temperature near the temperature at which the heat capacity diverges.

On the other hand, applying the geometrical ideas to ordinary thermodynamical sys-

tems gives us an alternative way to study phase transition in those systems. Weinhold [48]

first introduced a sort of metric defined as the second derivatives of internal energy with

respect to entropy and other extensive quantities of a thermodynamic system. Soon later,

based on the fluctuation theory of equilibrium thermodynamics, Ruppeiner [49] introduced

another metric which is defined as the minus second derivatives of entropy with respect

to the internal energy and other extensive quantities of a thermodynamic system. It was

argued that the scalar curvature of the Ruppeiner metric can reveal the micro interaction

behind the thermodynamic system and its divergence is related to some phase transition

in the thermodynamical system [50]. In addition, it was shown that the Weinhold metric

is conformal to the Ruppeiner metric [51]. However, both of the Weinhold metric and

Ruppeiner metric are not invariant under Legendre transformation and sometimes con-

tradictory results will be produced [52, 53]. In order to solve this puzzle, Quevedo et

al. [54–57] proposed a method to obtain a new formulism of Geometrothermodynamics

whose metric is Legendre invariant in the space of equilibrium states. To the best of our

knowledge, applying the thermodynamical geometry to black hole thermodynamics was ini-

tiated in [58], there it was found that the Weinhold metric is proportional to the metric on

the moduli space for supersymmetric extremal black holes, whose Hawking temperature is

zero, and the Ruppeiner metric governing fluctuations naively diverges, which is consistent

with the argument that near the extremal limit, the thermodynamical description breaks

down. Applying the thermodynamical geometry approach to phase transition of black

holes was followed in [59–61], and for more relevant references see the recent review [62]

and references therein. In particular, refs. [63, 64] has investigated the relation between

the divergence of the scalar curvature of thermodynamical geometry in different ensembles

and the singularity of heat capacities.
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In this paper, we will study thermodynamics and thermodynamical geometry for a five-

dimensional Schwarzschild AdS black hole in AdS5×S5 by viewing the number of colors as

a thermodynamical variable from the view of point of dual CFT. In next section, we will

review some basic thermodynamic properties of a black hole in AdS5 × S5 spacetime by

treating the cosmological constant in the bulk as the number of colors [45]. In section 3 we

will calculate the thermodynamical curvatures of the Weinhold metric, Ruppeiner metric

and Quevedo metric, respectively, for the thermodynamical system, in order to see the

relations between the thermodynamical curvature and phase transition. Note that such

calculations can not be done if one views the cosmological constant as a true constant, or

even in the case of the extended phase space in the sense [14, 15], because in the latter case,

the heat capacity CV always vanishes. We end the paper with conclusions in section 4.

2 Thermodynamics of Schwarzschild AdS black hole in AdS5 × S5

In this section, we will review the main results obtained by Dolan in ref. [45]. In AdS5×S5

spacetime, the line element for a five-dimensional Schwarzschild AdS black hole reads [10]

ds2 = −fdt2 +
1

f
dr2 + r2hijdx

idxj + L2dΩ2
5, (2.1)

where dΩ2
5 is the metric of a five-dimensional sphere with unit radius, hijdx

idxj is the

line element of a three-dimensional Einstein space Σ3 with constant curvature 6k, and the

metric function f is given by

f = k − m

r2
+
r2

L2
, (2.2)

where L is the AdS radius and m is an integration constant. The cosmological constant

is Λ = −6/L2. Without loss of generality, one can take the scalar curvature parameter k

of the three-dimensional space Σ3 as k = 1, 0, or −1, respectively. The ten-dimensional

spacetime (2.1) can be viewed as the near horizon geometry of N coincident D3-branes in

type IIB supergravity. In that case, the AdS radius L has a relation to the number N of

D3-branes [2]

L4 =

√
2N`4p
π2

, (2.3)

where `p is the ten-dimensional Planck length. According to AdS/CFT correspondence,

the spacetime (2.1) can be regarded as the gravity dual to N = 4 supersymmetric Yang-

Mills theory. Then N is nothing, but the rank of the gauge group of the supersymmetric

SU(N) Yang-Mills Theory. In the large N limit, the number of degrees of freedom of the

N = 4 supersymmetric Yang-Mills theory is proportional to N2 (in fact, it is that of 8N2

massless bosons and fermions in the weak coupling limit [65]).

The event horizon rh of the black hole is determined by the equation f = 0. Then

according to eq. (2.2), the mass of the black hole can be expressed as

M =
3ω3

16πG5
m =

3ω3rh
2

16πG5L2
(kL2 + r2h), (2.4)

– 3 –



J
H
E
P
0
2
(
2
0
1
5
)
1
4
3

where ω3 is the volume of Σ3. Using the Bekenstein-Hawking entropy formula of the black

hole, we have

S =
A

4G5
=
ω3r

3
h

4G5
. (2.5)

Note that G5 = G10/(π
3L5) and G10 = `8p. Therefore, the mass of the black hole can be

rewritten as a function of N and S

M(S,N) =
3m̃p

4

[
k

(
S

π

) 2
3

N
5
12 +

(
S

π

) 4
3

N−
11
12

]
, (2.6)

where m̃p =
√
π`7p/(2

1/8G10) is associated with the 10-dimensional Planck mass. According

to the standard thermodynamic relation dM = TdS + µdN2, the temperature can be

obtained

T =
∂M

∂S

∣∣∣∣
N

=
m̃p

2π

[
k

(
S

π

)− 1
3

N
5
12 + 2

(
S

π

) 1
3

N−
11
12

]
, (2.7)

which is nothing but the Hawking temperature of the black hole. The chemical potential

µ conjugate to the number of colors is

µ =
∂M

∂N2

∣∣∣∣
S

=
m̃p

32

[
5k

(
S

π

) 2
3

N−
19
12 − 11

(
S

π

) 4
3

N−
35
12

]
, (2.8)

which is the measure of the energy cost to the system when one increases the number of

colors.

The Gibbs free energy can be calculated as

G(T,N2) = M − TS =
m̃p

4

[
k

(
S

π

) 2
3

N
5
12 −

(
S

π

) 4
3

N−
11
12

]
. (2.9)

For the cases of k = 0 or k = −1, it is easy to see from eq. (2.7) for a fixed N2 that the

Hawking temperature increases monotonically with the entropy S. Besides, we see from

eq. (2.8)and eq. (2.9) that when k = 0 or k = −1, the chemical potential is always negative,

no phase transition happens. However, when k = 1, the situation is quite different.

In the case of k = 1, the Hawking temperature is not a monotonic function but has a

minimum at

S1 = N2π/23/2 , (2.10)

or equivalently, at rh = L/
√

2. We plot the behavior of temperature with respect to

entropy in figure 1. The corresponding minimal temperature is T∞ =
√

2m̃p/(πN
1/4) =√

2/(πL). Namely under the minimal temperature there is no black hole solution. Above

the minimal temperature, there exist two branches, as we will see shortly, the branch with

small entropy (horizon radius) is thermodynamically unstable, while the branch with large

entropy (horizon radius) is thermodynamically stable.

One can see easily from the Gibbs free energy eq. (2.9), the Hawking-Page phase

transition happens at rh = L with the phase transition temperature T∗ = 3m̃p/(2πN
1/4) =

– 4 –
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Figure 1. The temperature with respect to entropy. Here we take `p = 1, k = 1 and N = 3. The

temperature arrives at the minimal value when S = S1 = N2π/23/2 ≈ 9.9965.

3/(2πL), which is larger than T∞. And the corresponding entropy at the Hawking-Page

transition is

S2 = N2π . (2.11)

We can see that S2 > S1. In figure 2, we show the Gibbs free energy with respect to the

Hawking temperature T for some fixed N .

In figure 3 we show the chemical potential as a function of entropy S for a fixed N . We

see that the chemical potential is positive when S is small, while it changes to be negative

when S is large. The chemical potential changes its sign at

S3 = N2π(5/11)3/2 . (2.12)

We see that

S3 < S1 < S2. (2.13)

As we will see that the vanishing of the chemical potential appears in the unstable branch.

This implies that the vanishing of the chemical potential does not make any sense from the

point of view of dual supersymmetric Yang-Mills theory. In figure 4 we plot the chemical

potential as a function of temperature T for a fixed N , while in figure 5 the chemical

potential is plotted as a function of N in the case with a fixed entropy S.

In the following section, we will study thermodynamical geometry of the Schwarzschild

AdS black hole in the extended phase space by viewing the cosmological constant as the

number of colors. We pay attention to the case of k = 1, since the cases of k = 0 and

k = −1 are trivial.

3 Thermodynamical geometry of the Schwarzschild AdS black hole

When the corresponding number of colors N2 is kept fixed, this corresponds to the case in

a canonical ensemble. In this case, the heat capacity for a fixed N2 can be obtained as

CN2 = T

(
∂S

∂T

)
N2

=
3S(N4/3π2/3 + 2S2/3)

2S2/3 −N4/3π2/3
. (3.1)
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N
2
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N
2
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N
2
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2
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Figure 2. The Gibbs free energy as a function of the temperature for various numbers of colors.

Here we take `p = 1 and k = 1. The down branch Gibbs free energy for a fixed N changes its sign

at the point S = S2 = N2π, which corresponds to the Hawking-Page transition point.

2 4 6 8 10 12 14

S

-0.04

-0.02

0.02

Μ

Figure 3. The chemical potential as a function of entropy for a fixed N = 3. Here we take `p = 1

and k = 1. The chemical potential changes its sign at S = S3 = N2π(5/11)3/2 ≈ 8.6648.

The heat capacity diverges at the point of S1 = N2π/23/2 (i.e., rh = L/
√

2) which just

coincides with the point corresponding to the minimal Hawking temperature for a fixed N2.

When S < S1, the heat capacity is negative, indicating the thermodynamical instability,

while it is positive as S > S1. We show the behavior of CN2 as a function of S in figure 6.
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Figure 4. The chemical potential as a function of temperature T for a fixed N = 3. Here we take

`p = 1 and k = 1. Note that the upper dot denotes the minimal temperature T∞ and the lower dot

denotes the Hawking-Page transition temperature T∗.
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0.010

0.015
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Μ

Figure 5. The chemical potential as a function of N for a fixed S = 4. Here we take `p = 1

and k = 1. The maximum of the chemical potential corresponds to the point with S = S5 =

N2π193/2/773/2, namely, N ≈ 3.2230.

In the grand canonical ensemble with fixed chemical potential µ, corresponding heat

capacity can be obtained as

Cµ = T

(
∂S

∂T

)
µ

=
−95N8/3π4/3S + 195N4/3π2/3S5/3 + 770S7/3

15N8/3π4/3 − 45N4/3π2/3S2/3 − 66S4/3
. (3.2)

The heat capacity is plotted in figure 7. We see that the heat capacity diverges at

S = S4 =
5
√

2πN2√
1665 + 67

√
665

(3.3)

which corresponds to the horizon radius rh ≈ 0.49515L. Clearly S4 < S1, namely the

divergence happens in the small black hole branch. There exists only a very limited region

– 7 –
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Figure 6. The heat capacity in the case with a fixed N = 3 as a function of entropy S. Here we

take k = 1 and `p = 1. The divergence corresponds to the point S = S1 = N2π/23/2 ≈ 9.9965.
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-80

-60

-40

-20

20
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Μ

Figure 7. The heat capacity for a fixed µ vs entropy S for N = 3,k = 1 and `p = 1. The

divergence corresponds to the point S = S4 = 5
√

2πN2/
√

1665 + 67
√

665 ≈ 3.4324. The heat

capacity vanishes at a nontrivial point S = S5 = N2π193/2/773/2 ≈ 3.4657. Note that there is a

trivial zero heat capacity at S = 0, which will not be considered here.

with a positive heat capacity between S4 < S < S5, where

S5 = N2π

(
19

77

)3/2

, (3.4)

namely, rh ≈ 0.49674L, which has a vanishing heat capacity. Note that S5 is also less than

S1. This is quite different from the classical gas with negative chemical potential. When

the chemical potential approaches zero and becomes positive, quantum effects should come

into playing some role [45].

Now we turn to the thermodynamical geometry of the black hole and want to see

whether the thermodynamical curvature can reveal the singularity of these two heats ca-

pacities. The Weinhold metric [48] is defined as the second derivatives of internal energy
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with respect to entropy and other extensive quantities in the energy representation, while

the Ruppeiner metric [49] is related to the Weinhold metric by a conformal factor of tem-

perature [51]

ds2R =
1

T
ds2W . (3.5)

The Weinhold metric and Ruppeiner metric, which are dependent on the choice of ther-

modynamic potentials, are not Legendre invariant.

Quevedo et al. [54–57] proposed a method to obtain a thermodynamical metric from

a Legendre invariant thermodynamic potential. This method allows one to obtain a new

formulism of Geometrothermodynamics whose metric is Legendre invariant in the space

of equilibrium states. In what follows, we will first briefly review the formulism of Ge-

ometrothermodynamics. Define an (2n + 1)-dimensional thermodynamic phase space T
which can be described by the coordinates of {φ,Ea, Ia}, a = 1, . . . , n, where φ denotes the

thermodynamic potential, Ea and Ia respectively represent the set of extensive variables

and the set of intensive variables. Then the fundamental Gibbs 1-form can be defined on

the space T as Θ = dφ − δabIadEb with δab = diag(1, 1, . . . , 1). Under the assumption

that T is differentiable and Θ satisfies the condition of Θ ∧ (dΘ)n 6= 0 , the pair (T ,Θ)

defines a contact manifold. Considering G as a non-degenerate Riemannian metric on the

space T , especially, the geometric properties of metric G do not depend on the choice

of thermodynamic potential in its construction because of Legendre invariance, then the

set (T ,Θ, G) can define a Riemannian contact manifold or the phase manifold. As a re-

sult, an n-dimensional Riemannian submanifold ε ⊂ T can be defined as the space of

thermodynamic equilibrium states (equilibrium manifold) by a smooth map ϕ : ε → T ,
i.e., ϕ : (Ea) 7→ (φ,Ea, Ia) where the pullback of the map should satisfy the condition

ϕ∗(Θ) = 0. Furthermore, Quevedo metric g can be induced on the equilibrium manifold ε

by using ϕ∗(G). The non-degenerate Riemannian metric G can be chosen as [56]

G = (dφ− δabIadEb)2 + (δabE
aIb)(ηcddE

cdId), ηcd = diag(−1, 1, . . . , 1). (3.6)

Then Quevedo metric reads

g = ϕ∗(G) =

(
Ec

∂φ

∂Ec

)(
ηabδ

bc ∂2φ

∂Ec∂Ed
dEadEd

)
. (3.7)

Now we calculate the thermodynamical curvature for the Schwarzschild AdS black

hole. The Weinhold metric is given by

gW =

(
MSS MSN2

MN2S MN2N2

)
, (3.8)

where ρij stands for ∂2ρ/∂xi∂xj , and x1 = S, x2 = N2. The scalar curvature of this metric

can be calculated directly. Substituting eq. (2.6) and eq. (2.7) into eq. (3.8), we can see

that the scalar curvature of the Weinhold metric is always vanishing.

On the other hand, considering eq. (3.5), the Ruppeiner metric can be written as

gR =
1

T

(
MSS MSN2

MN2S MN2N2

)
, (3.9)

– 9 –
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Figure 8. The scalar curvature vs entropy for the Ruppeiner metric case with N = 3, k = 1 and

`p = 1. The scalar curvatures diverge at S = S4 = 5
√

2πN2/
√

1665 + 67
√

665 ≈ 3.4324.

and the corresponding curvature of this metric is

RR =
7(5N8/3π4/3S−1/3 + 2N4/3π2/3S1/3)

15N4π2 − 15N8/3π4/3S2/3 − 156N4/3π2/3S4/3 − 132S2
. (3.10)

From eq. (3.10), we can conclude that the scalar curvatures of the Ruppeiner metric possess

a positive singularity at S = S4 = 5
√

2πN2/
√

1665 + 67
√

665, i.e., rh ≈ 0.49515L (see

figure 8). This singularity just coincides with the divergence of the heat capacity Cµ for

fixed chemical potential (comparing figure 7 with figure 8). Therefore, we may conclude

that the Ruppeiner metric can reveal the phase transition of the Schwarzschild AdS black

hole in AdS5 × S5 in grand canonical ensemble, while the Weinhold metric cannot here.

The Quevedo metric reads

gQ = (ST +N2µ)

(
−MSS 0

0 MN2N2

)
. (3.11)

Calculating its scalar curvature gives

RQ = A1/B1, (3.12)

where A1 and B1 are given by

A1 = 256N19/6π10/3
(

3982S2 − 1741N4π2 + 2372N8/3π4/3S2/3 + 17311π2/3N4/3S4/3
)
,

B1 = 105m̃2
pS

2/3
(
N4/3π2/3 + S2/3

)3 (
19N8/3π4/3 − 115N4/3π2/3S2/3 + 154S4/3

)2
.

The scalar curvature is plotted in figure 9, we see that there exist two divergent points at

S1 =
N2π

2
√

2
and S5 = N2π

(
19

77

)3/2

, (3.13)
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Figure 9. Scalar curvature vs entropy S for the Quevedo metric with N = 3, `p = 1 and k = 1.

There exist two divergences at S = S5 = N2π193/2/773/2 ≈ 3.4657 and S = S1 = N2π/23/2 ≈
9.9965, respectively.

respectively. The first one just coincides with the divergent point of CN2 , while the second

one corresponds to Cµ = 0. This result is consistent with the recent study in [67, 68] that

the divergences of scalar curvature for the Quevedo metric correspond to divergence or zero

for heat capacity. These results are meaningful to further understand the relation between

phase transition and thermodynamical curvature.

4 Conclusions

In this paper, we have studied thermodynamics of a Schwarzschild AdS black hole in

AdS5×S5 spacetime in the extended phase space where the cosmological constant is viewed

as the number of colors in the dual supersymmetric Yang-Mills theory. We calculated and

discussed the chemical potential associated with the number of colors, and found that the

chemical potential is always negative in the stable branch of black hole thermodynamics.

The chemical potential has a chance to be positive, but it appears in the unstable branch.

The heat capacities with fixed number of colors CN2 and with fixed chemical poten-

tial Cµ have been calculated, respectively. It is found that CN2 diverges at the minimal

temperature of the black hole, while Cµ diverges at a smaller horizon radius.

In the extended phase space, we have a chance to study the thermodynamical geometry

associated with the Schwarzschild AdS black hole. By calculating scalar curvatures of the

Weinhold metric, Ruppeiner metric and Quevedo metric, we see that in the Weinhold met-

ric the scalar curvature is always zero, no singularity is found. However, in the Ruppeiner

metric the scalar curvature diverges at same divergent point of Cµ, and in the Quevedo met-

ric, the scalar curvature diverges at the divergence of CN2 , besides at the point of Cµ = 0.

These results indicate that the divergence of thermodynamical curvature indeed is related

to some divergence of heat capacities, but the divergence of thermodynamical curvature

may be also related to the vanishing points of the thermodynamic potential, temperature,

– 11 –
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heat capacity, etc. [67, 68]. This is helpful to further understand the relation between

phase transition and divergence of thermodynamical curvature. For a further study of this

relation, it should be of great interest to discuss thermodynamics and thermodynamical

curvature for other black holes in AdS space in the extended phase space.
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