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1 Introduction

It is conventionally believed that dark matter (DM) originates from thermal production
at the early Universe [1–3]. Thus, the DM relic abundance would be determined by the
annihilation cross section at the freeze-out epoch. The relic abundance observation suggests
that the natural strength of the DM couplings to standard model (SM) particles should
be close to the weak interaction strength. This motivates the worldwide establishment
of various direct detection experiments searching for nuclear recoil signals induced by DM
scattering. Nonetheless, no DM signal is robustly found in these experiments so far, leading
to stringent constraints on the DM-nucleon scattering cross section [4–6]. Therefore, the
thermal production paradigm faces a serious challenge.

Such a situation can be circumvented if one can effectively suppress DM-nucleon scat-
tering at zero momentum transfer without reducing DM annihilation at the freeze-out
epoch. An appealing approach to achieve this is provided by Higgs-portal pseudo-Nambu-
Goldstone boson (pNGB) DM models [7–20], where the DM candidate is a pNGB protected
by a global symmetry which is softly broken by quadratic mass terms. The pNGB na-
ture makes the tree-level DM-nucleon scattering amplitude vanish in the zero momentum
transfer limit [7]. Although loop corrections give rise to a nonzero scattering cross section,
one-loop calculations show that near future direct detection experiments would not be able
to probe the pNGB DM [8, 9, 19]. Therefore, other experimental approaches are crucial
for exploring these models.

There are various ways to experimentally test DM models, including direct and in-
direct DM detection, collider searches, etc. The discovery of gravitational waves (GWs)
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by LIGO [21] provides a new path. DM fields could be relevant to strong first-order elec-
troweak phase transitions (EWPTs) that produce detectable stochastic GW signals in the
proposed future GW experiments [22–49]. Such stochastic GWs typically peak around the
mHz frequency band [50], to which ground-based laser interferometers are not sensitive.
Nonetheless, future space-based GW interferometer plans, e.g., LISA [51], TianQin [52–54],
Taiji [55, 56], DECIGO [57, 58], and BBO [59, 60], are able to probe sub-Hz bands and
look for the stochastic GW signals.

The minimal setup of the pNGB DM involves a complex scalar singlet with a global
U(1) symmetry and a quadratic term that softly breaks U(1) into Z2 [7]. The singlet and
the SM Higgs doublet together could induce two-step phase transitions. Nevertheless, a
study [12] showed that such phase transitions can only be of second order and impossible to
produce stochastic GWs. Further studies tried to introduce extra terms to break the U(1)
symmetry, e.g., the soft cubic terms [36], or the most general breaking terms [45]. These
efforts successfully achieved first-order phase transitions (FOPTs) and stochastic GWs, but
the essential merit of the vanishing tree-level DM-nucleon scattering in the zero momentum
transfer limit is sacrificed.

It would be rather interesting if we can find out a pNGB DM setup that allows both
the vanishing DM-nucleon scattering and detectable stochastic GW signals. Inspired by
the notable GW signals from the strong FOPTs obtained in the two-Higgs-doublet mod-
els [61–63], we study the possibility of extending the minimal pNGB DM setup with an addi-
tional Higgs doublet [15], which is expected to involve more phase transition patterns. The
corresponding phase transitions and stochastic GWs will be studied in this paper in detail.

In the following section 2, we briefly introduce the model and the particle masses.
Existed experimental bounds are described in section 3. The effective potential at finite
temperature is constructed in section 4. We analyze key properties of the EWPT in
section 5, which are relevant to the GW spectra discussed in section 6. Section 7 give
numerical analyses of GW signals based on random parameter scans. We summarize the
paper in section 8.

2 The model

In this section, we briefly describe the model we are interested in. More details can be
found in ref. [15]. This model involves two SU(2)L Higgs doublets Φ1 and Φ2, both carrying
hypercharge 1/2, and a complex scalar S which is a SM gauge singlet. The Lagrangian
respects a global U(1) symmetry S → eiαS explicitly violated into a Z2 symmetry S → −S
by soft breaking quadratic terms. The U(1) symmetry is further spontaneously broken after
S develops a vacuum expectation value (VEV). Then the imaginary part of S becomes a
pNGB, acting as a DM candidate.

As in the simplified versions of the two-Higgs-doublet models [64], we assume that the
scalar potential respects a Z2 symmetry Φ1 → −Φ1 or Φ2 → −Φ2 which is only softly
broken by quadratic terms. Moreover, CP conservation is assumed in the scalar sector,
leading to only real coefficients. The potential satisfying these two assumptions and the
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global U(1) symmetry reads

VΦi,S = m2
11|Φ1|2 +m2

22|Φ2|2 −m2
12(Φ†1Φ2 + Φ†2Φ1) + λ1

2 |Φ1|4 + λ2
2 |Φ2|4

+ λ3|Φ1|2|Φ2|2 + λ4|Φ†1Φ2|2 + λ5
2 [(Φ†1Φ2)2 + (Φ†2Φ1)2]

−m2
S |S|2 + λS

2 |S|
4 + κ1|Φ1|2|S|2 + κ2|Φ2|2|S|2. (2.1)

The U(1) soft breaking terms

Vsoft = −m
′2
S

4 S2 + H.c. (2.2)

are further introduced in the potential. Thus, the total scalar potential is V = VΦi,S+Vsoft.
We can always make the soft breaking parameter m′2S real and positive through a phase

redefinition of S. Consequently, the potential respects a dark CP symmetry S → S∗. For
m′2S > 0, the VEV of S developed must be real, and the dark CP symmetry remain
unbroken, ensuring that the imaginary part of S acts as a stable DM candidate [7].

If the charged component of Φ1 or Φ2 gains a nonzero VEV, the photon would become
massive, and the theory is unacceptable. If the neutral component of Φ1 or Φ2 develops
an imaginary VEV, CP would be spontaneously broken. Detailed discussions on vacuum
configurations and parameter relations in general two-Higgs-doublet models can be found
in ref. [65]. Here we are particularly interested in the case that only the neutral real parts
of Φ1, Φ2, and S develop nonzero VEVs v1, v2, and vs, respectively. Thus, at the zero
temperature, these scalar fields can be expanded as

Φ1 =
(

φ+
1

(v1 + ρ1 + iη1)/
√

2

)
, (2.3)

Φ2 =
(

φ+
2

(v2 + ρ2 + iη2)/
√

2

)
, (2.4)

S = vs + s+ iχ√
2

. (2.5)

The potential is minimized at (v1, v2, vs), leading to three stationary point conditions,

m2
11 = m2

12 tan β − 1
2(λ1v

2
1 + λ345v

2
2 + κ1v

2
s), (2.6)

m2
22 = m2

12 cotβ − 1
2(λ2v

2
2 + λ345v

2
1 + κ2v

2
s), (2.7)

m2
S = 1

2(κ1v
2
1 + κ2v

2
2 + λSv

2
s −m′2S ), (2.8)

where

β ≡ arctan v2
v1
, (2.9)

λ345 ≡ λ3 + λ4 + λ5. (2.10)
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The VEVs contribute to a 3× 3 mass-squared matrix for the CP -even neutral scalars
ρ1, ρ2, and s. The eigenvalues m2

h1
, m2

h2
, and m2

h3
of this matrix are the masses squared

for the mass eigenstates h1, h2, and h3, respectively. One of hi must behave as a SM-like
Higgs boson with a mass of ∼ 125 GeV, satisfying the experimental observations. After
rotations with the angle β, the CP -odd neutral scalars η1 and η2 are transformed into the
mass eigenstates G0 and a, while the charged scalars φ+

1 and φ+
2 are transformed into the

mass eigenstates G+ and H+. G0 and G± are the Nambu-Goldstone bosons eaten by the
Z and W± gauge bosons. a and H± are extra Higgs bosons, whose masses squared are
given by

m2
a = 1

sin β cosβ
(
m2

12 − λ5v1v2
)
, (2.11)

m2
H± = 1

sin β cosβ

[
m2

12 −
1
2(λ4 + λ5)v1v2

]
. (2.12)

For m′2S = 0, the neutral boson χ is a massless Nambu-Goldstone boson due to the global
U(1) symmetry. The soft breaking terms endow the pNGB χ with a mass of

mχ = m′S . (2.13)

Besides, χ only appears in pairs in the interaction terms, guaranteeing its stability to
become a DM candidate. The pNGB feature also eliminates the tree-level χ-nucleon scat-
tering amplitude in the zero momentum transfer limit without any parameter tuning [7, 15].
Thus, this model is hardly constrained by DM direct detection experiments.

The masses of the W and Z gauge bosons are given by

mW = gv

2 , mZ = v

2

√
g2 + g′2, (2.14)

where v ≡
√
v2

1 + v2
2, and g and g′ denote the SU(2)L and U(1)Y gauge couplings, respec-

tively. Thus, we observe that v is equivalent to the Higgs VEV in the SM and can be
expressed as v = (

√
2GF)−1/2, where GF is the Fermi constant.

For the two Higgs doublets, four types of Yukawa couplings without tree-level flavor-
changing neutral currents (FCNCs) can be constructed [64, 66, 67]. In this paper, we
only focus on the type-I and type-II Yukawa couplings, whose Lagrangians are respectively
given by

LY,I = −ỹijd Q̄iLd
′
jRΦ2 − ỹiju Q̄iLu′jRΦ̃2 − ỹ`iL̄iL`iRΦ2 + H.c., (2.15)

LY,II = −ỹijd Q̄iLd
′
jRΦ1 − ỹiju Q̄iLu′jRΦ̃2 − ỹ`iL̄iL`iRΦ1 + H.c., (2.16)

where LiL ≡ (νiL, `iL)T, QiL ≡ (u′iL, d′iL)T, Φ̃2 ≡ iσ2Φ∗2, and i, j = 1, 2, 3. The Yukawa
coupling matrices ỹijd and ỹiju can be diagonalized by unitary matrices, which transform the
gauge eigenstates u′i and d′i into the mass eigenstates ui and di. We remark that due to
the similarity of the Yukawa couplings in the quark sectors and the smallness of the ones
in the leptonic sectors, many of the following analyses for the type-I (type-II) case can be
cast to the lepton specific (flipped) case.
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3 Experimental bounds

In our analyses, we carry out random scans in the parameter space. The following 12
parameters are adopted as the free parameters:

λ1, λ2, λ3, λ4, λ5, λS , κ1, κ2, tan β, mχ, vs, m2
12. (3.1)

Each parameter point in the scans should be tested by existed experimental bounds.
Firstly, we require that m2

hi
(i = 1, 2, 3), m2

a, and m2
H+ should be positive to guarantee

physical scalar masses. Moreover, in order to ensure that the scalar potential is bounded
from below, the following conditions from copositivity criteria [68, 69] should be satisfied:

λ1 ≥ 0, λ2 ≥ 0, λS ≥ 0, (3.2)
a12 ≡ λ3 +

√
λ1λ2 ≥ 0, a′12 ≡ λ3 + λ4 − |λ5|+

√
λ1λ2 ≥ 0, (3.3)

a13 ≡ κ1 +
√
λ1λS ≥ 0, a23 ≡ κ2 +

√
λ2λS ≥ 0, (3.4)√

λ1λ2λS + λ3
√
λS + κ1

√
λ2 + κ2

√
λ1 +

√
2a12a13a23 ≥ 0, (3.5)√

λ1λ2λS + (λ3 + λ4 − |λ5|)
√
λS + κ1

√
λ2 + κ2

√
λ1 +

√
2a′12a13a23 ≥ 0. (3.6)

Furthermore, we require one of hi acting as the SM-like Higgs boson with a mass
within the 3σ range of the measured value mh = 125.18 ± 0.16 GeV [70]. The numerical
tool Lilith 2 [71, 72] is used to test whether the SM-like Higgs boson is consistent with
LHC run 1 and run 2 Higgs measurements from ATLAS and CMS. Parameter points
excluded by the data at 95% confidence level (C.L.) are abandoned.

Although FCNCs have been forbidden at tree level, they can arise from loop correc-
tions. In particular, the loops involving the charged Higgs boson H± significantly con-
tribute to the FCNC B-meson decays, depending on mH± and tan β. The analysis by
the Gfitter Group [73] shows that the strongest constraint on the type-I (type-II) Yukawa
couplings comes from the measurement of the FCNC decay Bd → µ+µ− (Bs → µ+µ− and
B → Xsγ). We further reject the parameter points that are excluded at 95% C.L. by these
flavor physics constraints.

Then we impose the constraints from DM phenomenology. We utilize FeynRules 2 [74]
and the MadGraph5_aMC@NLO [75] plugin MadDM 3 [76] to calculate the prediction of the DM
relic abundance. The observed value of the relic abundance from the Planck experiment
is given by ΩDMh

2 = 0.1200 ± 0.0012 [77], where ΩDM is the ratio of the DM energy
density to the critical density of the Universe and h is the Hubble constant in unit of
100 km s−1 Mpc−1. Only the parameter points predicting the observed relic abundance are
preserved. MadDM 3 is also used to compute the DM annihilation cross section 〈σannv〉d
with an average velocity of 2× 10−5, which is corresponding to DM annihilation processes
at dwarf spheroidal galaxies. The 95% C.L. upper limits on 〈σannv〉 in the bb̄ channel from
the γ-ray observations of dwarf galaxies by the Fermi-LAT satellite experiment and the
MAGIC Cherenkov telescopes [78] are employed to test the parameter points.

Below, we study the effective potential, cosmological phase transitions, and gravita-
tional waves for the parameter points surviving from all the experimental bounds above.
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4 Effective potential

In order to investigate the cosmological phase transitions in the model, we need to construct
the effective potential. We assume that only the CP -even neutral scalar fields ρ1, ρ2, and
s can develop VEVs in the cosmological history. The effective potential is then expressed
as a function of the classical background fields ρ̃1, ρ̃2, and s̃.

The tree-level effective potential in terms of the classical fields derived from eqs. (2.1)
and (2.2) is

V0(ρ̃1, ρ̃2, s̃) = m2
11

2 ρ̃2
1 + m2

22
2 ρ̃2

2 −
2m2

S +m′2S
4 s̃2 −m2

12ρ̃1ρ̃2

+ λ1
8 ρ̃

4
1 + λ2

8 ρ̃
4
2 + λS

8 s̃4 + λ345
4 ρ̃2

1ρ̃
2
2 + κ1

4 ρ̃
2
1s̃

2 + κ2
4 ρ̃

2
2s̃

2. (4.1)

Here, m2
11, m2

22, and m2
S should be expressed as in eqs. (2.6), (2.7), and (2.8), respectively.

At zero temperature, the one-loop effective potential V1 receives the Coleman-Weinberg
terms [79] in the MS renormalization scheme [80],

V1(ρ̃1, ρ̃2, s̃) = 1
64π2

∑
i

nim̃
4
i

(
ln m̃

2
i

µ2 − Ci

)
, (4.2)

where the sum runs over all the particles i coupling to the classical fields, and m̃2
i are the

corresponding particle masses squared in terms of the classical fields. For the SM fermions,
we only take into account the top and bottom quark contributions, and neglect all the other
much smaller Yukawa couplings. Hence, all the particles we include in the calculations are

h1, h2, h3, a, H
±, G0, G±, χ, W±, Z, γ, t, b. (4.3)

Although the photon γ would not contribute to eq. (4.2), its longitudinal mode can con-
tribute to the daisy potential VD, which will be discussed below. µ is the renormalization
scale. For transverse gauge bosons, Ci = 1/2, while for longitudinal gauge bosons, scalar
bosons and fermions, Ci = 3/2. ni count the degrees of freedom of the particles, given by

nhi
= na = nG0 = nχ = nZL = nγL = 1, (4.4)

nH± = nG± = nZT = nγT = nW±L
= 2, (4.5)

nW±T
= 4, nt = nb = −12, (4.6)

where the minus signs for nt and nb characterize the feature of fermion loops. The subscripts
L and T denote the longitudinal and transverse polarizations of the gauge bosons.

In terms of the classical background fields ρ̃1, ρ̃2, and s̃, the elements of the symmetric
mass-squared matrix M̃2

h for the CP -even neutral scalar bosons are derived as

M̃2
h,11 = m2

11 + 1
2(3λ1ρ̃

2
1 + λ345ρ̃

2
2 + κ1s̃

2), (4.7)

M̃2
h,22 = m2

22 + 1
2(λ345ρ̃

2
1 + 3λ2ρ̃

2
2 + κ2s̃

2), (4.8)

M̃2
h,33 = −m2

S −
1
2(m′2S − κ1ρ̃

2
1 − κ2ρ̃

2
2 − 3λS s̃2), (4.9)

M̃2
h,12 = −m2

12 + λ345ρ̃1ρ̃2, M̃2
h,13 = κ1ρ̃1s̃, M̃2

h,23 = κ2ρ̃2s̃. (4.10)
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The mass-squared matrix for the CP -odd neutral scalar bosons is

M̃2
0 =

(
m2

11 + (λ1ρ̃
2
1 + λ̂345ρ̃

2
2 + κ1s̃

2)/2 −m2
12 + λ5ρ̃1ρ̃2

−m2
12 + λ5ρ̃1ρ̃2 m2

22 + (λ2ρ̃
2
2 + λ̂345ρ̃

2
1 + κ2s̃

2)/2

)
, (4.11)

with λ̂345 ≡ λ3 + λ4 − λ5, while the mass-squared matrix for the charged scalar bosons is

M̃2
+ =

(
m2

11 + (λ1ρ̃
2
1 + λ3ρ̃

2
2 + κ1s̃

2)/2 −m2
12 + (λ4 + λ5)ρ̃1ρ̃2/2

−m2
12 + (λ4 + λ5)ρ̃1ρ̃2/2 m2

22 + (λ2ρ̃
2
2 + λ3ρ̃

2
1 + κ2s̃

2)/2

)
. (4.12)

The eigenvalues of these matrices give the masses squared of the scalar bosons, i.e.,

eigenvalues(M̃2
h) =

{
m̃2
h1 , m̃

2
h2 , m̃

2
h3

}
, (4.13)

eigenvalues(M̃2
0 ) =

{
m̃2
G0 , m̃2

a

}
, (4.14)

eigenvalues(M̃2
+) =

{
m̃2
G± , m̃

2
H±

}
. (4.15)

The masses squared of the DM candidate χ is obtained as

m̃2
χ = −m2

S + 1
2(m′2S + κ1ρ̃

2
1 + κ2ρ̃

2
2 + λS s̃

2). (4.16)

The mass squared of the W± boson is given by

m̃2
W±L

= m̃2
W±T

= g2

4 (ρ̃2
1 + ρ̃2

2). (4.17)

The mass-squared matrix of the B and W 3 gauge fields is

M̃2
W 3,B = 1

4(ρ̃2
1 + ρ̃2

2)
(
g2 −gg′

−gg′ g′2

)
. (4.18)

After diagonalization, the masses squared of the Z boson and the photon are

m̃2
ZL = m̃2

ZT = 1
4(g2 + g′2)(ρ̃2

1 + ρ̃2
2), (4.19)

m̃2
γT = m̃2

γL = 0. (4.20)

For the type-I Yukawa couplings, the masses squared of the top and bottom quarks are

m̃2
t = y2

t

2 sin2 β
ρ̃2

2, m̃2
b = y2

b

2 sin2 β
ρ̃2

2, (4.21)

where the couplings yt =
√

2mt/v and yb =
√

2mb/v are defined the same as in the SM.
For the type-II Yukawa couplings, the masses squared become

m̃2
t = y2

t

2 sin2 β
ρ̃2

2, m̃2
b = y2

b

2 cos2 β
ρ̃2

1. (4.22)

Notice that loop corrections generally shift the values of the VEVs as well as the
renormalized mass-squared matrix of the CP -even neutral scalar bosons. To keep them
intact, we introduce the following counterterms [81, 82],

VCT(ρ̃1, ρ̃2, s̃) = δm2
1ρ̃

2
1 + δm2

2ρ̃
2
2 + δm2

s s̃
2 + δλ1ρ̃

4
1 + δλ2ρ̃

4
2 + δλss̃

4

+ δλ12ρ̃
2
1ρ̃

2
2 + δλ1sρ̃

2
1s̃

2 + δλ2sρ̃
2
2s̃

2. (4.23)
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The nine counterterm coefficients are determined by the following nine equations at
(ρ̃1, ρ̃2, s̃) = (v1, v2, vs),

∂VCT
∂ρ̃1

= −∂V1
∂ρ̃1

,
∂VCT
∂ρ̃2

= −∂V1
∂ρ̃2

,
∂V1
∂s̃

= −∂V1
∂s̃

, (4.24)

∂2VCT
∂ρ̃2

1
= −∂

2V1
∂ρ̃2

1
,

∂2VCT
∂ρ̃2

2
= −∂

2V1
∂ρ̃2

2
,

∂2VCT
∂s̃2 = −∂

2V1
∂s̃2 , (4.25)

∂2VCT
∂ρ̃2∂ρ̃1

= − ∂2V1
∂ρ̃2∂ρ̃1

,
∂2VCT
∂s̃∂ρ̃1

= − ∂2V1
∂s̃∂ρ̃1

,
∂2VCT
∂s̃∂ρ̃2

= − ∂2V1
∂s̃∂ρ̃2

. (4.26)

The masses of the Nambu-Goldstone bosons G0 andG± vanish at (ρ̃1, ρ̃2, s̃) = (v1,v2,vs)
in the Landau gauge, inducing logarithmic IR divergence terms in eqs. (4.25) and (4.26)
proportional to

∂m̃2
G

∂φi

∂m̃2
G

∂φj
ln m̃

2
G

µ2 , φi = ρ̃1, ρ̃2, s̃. (4.27)

This problem is due to the ill-defined renormalized Higgs boson masses at p2 = 0 with
massless Nambu-Goldstone modes, and one can fix it by setting the momenta of the Higgs
bosons on shell [83, 84]. Similar problems exist in the effective potential with higher loops,
and more details can be found in refs. [85, 86]. An approximate treatment is to give an IR
cutoff ΛIR to the Nambu-Goldstone boson masses [81], i.e., to set m̃2

G0 = m̃2
G± = Λ2

IR in
the logarithms at (ρ̃1, ρ̃2, s̃) = (v1, v2, vs). Here, we take ΛIR to be the mass of the SM-like
Higgs boson. Solving eqs. (4.24)–(4.26), we obtain

δm2
1 = − 3

4v1

∂V1
∂ρ̃1

+ 1
4
∂2V1
∂ρ̃2

1
+ v2

4v1

∂2V1
∂ρ̃2∂ρ̃1

+ vs
4v1

∂2V1
∂s̃∂ρ̃1

, (4.28)

δm2
2 = − 3

4v2

∂V1
∂ρ̃2

+ 1
4
∂2V1
∂ρ̃2

2
+ v1

4v2

∂2V1
∂ρ̃2∂ρ̃1

+ vs
4v2

∂2V1
∂s̃∂ρ̃2

, (4.29)

δm2
s = − 3

4vs
∂V1
∂s̃

+ 1
4
∂2V1
∂s̃2 + v1

4vs
∂2V1
∂s̃∂ρ̃1

+ v2
4vs

∂2V1
∂s̃∂ρ̃2

, (4.30)

δλ1 = 1
8v3

1

∂V1
∂ρ̃1
− 1

8v2
1

∂2V1
∂ρ̃2

1
, δλ2 = 1

8v3
2

∂V1
∂ρ̃2
− 1

8v2
2

∂2V1
∂ρ̃2

2
, (4.31)

δλs = 1
8v3
s

∂V1
∂s̃
− 1

8v2
s

∂2V1
∂s̃2 , δλ12 = − 1

4v1v2

∂2V1
∂ρ̃2∂ρ̃1

, (4.32)

δλ1s = − 1
4v1vs

∂2V1
∂s̃∂ρ̃1

, δλ2s = − 1
4v2vs

∂2V1
∂s̃∂ρ̃2

, (4.33)

at (ρ̃1, ρ̃2, s̃) = (v1, v2, vs).
Thermal corrections to the effective potential are crucial for studying the EWPT. The

one-loop finite-temperature effective potential [87] can be expressed as

V1T(ρ̃1, ρ̃2, s̃, T ) = T 4

2π2

 ∑
i=bosons

niJB

(
m̃2
i

T 2

)
+
∑
i=t,b

niJF

(
m̃2
i

T 2

) , (4.34)
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where T is the temperature and the functions JB and JF are defined as

JB(x) ≡
∫ ∞

0
y2 ln

(
1− e−

√
y2+x

)
dy, (4.35)

JF(x) ≡
∫ ∞

0
y2 ln

(
1 + e−

√
y2+x

)
dy. (4.36)

We also consider the daisy diagrams, which can be significant. The corressponding
contribution to the effective potential can be estimated by [88, 89]

VD(ρ̃1, ρ̃2, s̃, T ) = − T

12π
∑

i=bosons
ni
[
(m̄2

i )3/2 − (m̃2
i )3/2

]
. (4.37)

m̄2
i are the field-dependent boson masses squared with thermal corrections in the high-

temperature limit and can be derived by

m̄2
i (ρ̃1, ρ̃2, s̃, T ) = eigenvalues[M̃2

X(ρ̃1, ρ̃2, s̃) + ΠX(T )], (4.38)

where M̃2
X(ρ̃1, ρ̃2, s̃) represents the mass-squared matrices or masses squared in terms of

the classical fields, and ΠX(T ) denotes the thermal corrections to M̃2
X . The subleading

off-diagonal elements of ΠX(T ) can be neglected [88, 90]. The diagonal elements of ΠX(T )
for the scalar bosons are derived as

Πh,11 = Π0,11 = Π+,11 = T 2

48
(
9g2 + 3g′2 + 12λ1 + 8λ3 + 4λ4 + 4κ1 + y1

)
, (4.39)

Πh,22 = Π0,22 = Π+,22 = T 2

48
(
9g2 + 3g′2 + 12λ2 + 8λ3 + 4λ4 + 4κ2 + y2

)
, (4.40)

Πh,33 = Πχ = T 2

6 (λS + κ1 + κ2). (4.41)

Here, y1 and y2 are the contributions from the Yukawa couplings. For the type-I and -II
cases, they are given by

Type I: y1 = 0, y2 = 12(y2
t + y2

b )
sin2 β

, (4.42)

Type II: y1 = 12y2
b

cos2 β
, y2 = 12y2

t

sin2 β
. (4.43)

The thermal corrections to the electroweak gauge bosons are

ΠW±L
= ΠW 3

L
= 2g2T 2, (4.44)

ΠBL = 2g′2T 2, (4.45)
ΠW±T

= ΠZT = ΠγT = 0. (4.46)

Note that ΠW 3
L
and ΠBL are the corrections to the diagonal elements of M̃2

W 3,B in eq. (4.18).
Finally, we obtain the total effective potential1

Veff(ρ̃1, ρ̃2, s̃, T ) = V0 + V1 + VCT + V1T + VD. (4.47)
1Discussions on theoretical uncertainties in perturbative calculations of the effective potential can be

found in ref. [91].
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5 Phase transitions

Based on the effective potential constructed in the previous section, we can study its evo-
lution with temperature. At sufficiently high temperatures, the effective potential is mini-
mized at the origin (ρ̃1, ρ̃2, s̃) = (0, 0, 0), implying the restoration of the electroweak gauge
symmetry. As the Universe cools down, extra minima appear. In particular, if there are
two coexisted minima separated by a high barrier, strong FOPT could take place and result
in a stochastic GW background. We utilize the numerical package CosmoTransitions [92]
to analyze the phase transitions. For each parameter point in the random scans, we ver-
ify whether or not the minimum (ρ̃1, ρ̃2, s̃) = (v1, v2, vs) is the global one of the zero-
temperature effective potential. The parameter points that fail this test are rejected. Then
we use CosmoTransitions to trace the temperature evolution of the local minima.

In this model, the three classical CP -even neutral scalar fields would develop VEVs,
typically leading to multi-step cosmological phase transitions. In figure 1, we demonstrate
the temperature evolution of multiple phases for a benchmark point (BP), whose parame-
ters can be found in the BP3 column of table 1 in section 7. In the plots, v1(T ), v2(T ), and
vs(T ) are the T -dependent values of the classical fields ρ̃1, ρ̃2, and s̃ at the local minima
of the effective potential. The red, green, and blue lines indicate the positions of three
local minima.

At T & 460 GeV, the system stays at the red minimum with
(
v1(T ), v2(T ), vs(T )

)
=

(0, 0, 0), respecting the electroweak gauge symmetry. At T ' 460 GeV, a second-order
phase transition occurs and the system turns into the green minimum, where s̃ develops
a nonzero VEV. At T ' 148 GeV, the blue minimum appears, accompanied with a
barrier that separates it from the green minimum. These two minima coexist till the zero
temperature.

The effective potential at the blue minimum is higher than at the green minimum
until the critical temperature Tc ' 119 GeV. Below Tc, the green minimum becomes a
metastable state, i.e., a “false vacuum”. The system finally undergoes a FOPT through
quantum tunneling and turns into the blue minimum, or the “true vacuum”. Such a FOPT
nucleates bubbles, inside which the system is trapped at the true vacuum. In this FOPT,
v1(T ) and v2(T ) increase from zero to O(100) GeV, while vs(T ) slightly decreases. At zero
temperature, the true vacuum satisfies

(
v1(0), v2(0), vs(0)

)
= (v1, v2, vs).

In our parameter scans, we usually find that vs(T ) does not evolve synchronously with
v1(T ) and v2(T ), probably due to the less couplings of the singlet field to other fields
compared with the two Higgs doublets. Typically, vs(T ) becomes nonzero much earlier
than the conventional EWPT epoch via a second-order or first-order phase transition. ρ̃1
and ρ̃2 then gain VEVs in an subsequent phase transition, which could be a strong FOPT
similar to those in the conventional two-Higgs-doublet models [93, 94].

Below we discuss the dynamics of the FOPTs. The bubble nucleation rate per unit
time and unit volume is given by [95, 96]

Γ ∼ AT 4e−S , (5.1)

where A is anO(1) constant and S = min{S4, S3/T}. S4 and S3 are the Euclidean actions of
the scalar fields for O(4)- and O(3)-symmetric bubbles, respectively. The three-dimensional
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Figure 1. Temperature evolution of the positions of the minima in the axes v1(T ), v2(T ), and
vs(T ) for BP3. The red, green, and blue lines denote three local minima. The vertical dashed lines
indicate the critical, nucleation, and percolation temperatures Tc, Tn, and Tp.

action S3 can be simplified to

S3 = 4π
∫ ∞

0
dr r2

[1
2
dφi
dr

dφi
dr

+ Veff(φi, T )
]
, (5.2)

where r is the radius of the bubble. φi(r) =
(
ρ̃1(r), ρ̃2(r), s̃(r)

)
is given by the bounce

solution of the equations of motion

d2φi
dr2 + 2

r

dφi
dr

= ∂Veff
∂φi

(5.3)

with boundary conditions
dφi
dr

∣∣∣∣
r=0

= 0, φi(∞) = φfalse
i , (5.4)

where φfalse
i is the field configuration of the false vacuum.
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Figure 2. The actions S3/T and S4 (a) and the nucleation rate Γ (b) as functions of the temperature
T for BP3. The dashed lines denote the critical, nucleation, and percolation temperatures Tc, Tn,
and Tp.

We present S4 and S3/T as functions of the temperature for BP3 in figure 2(a), as well
as the corresponding nucleation rate Γ in figure 2(b). We find that S3/T is the smaller one
until temperatures below ∼ 5 GeV. The minimal of S3/T is reached at T ∼ 40 GeV. As
the Universe cools down, below the critical temperature Tc, the nucleation rate increases
before the peak around T ∼ 40 GeV, and then decreases.

The bubbles are actually nucleated at the nucleation temperature Tn, where the nu-
cleation probability for a single bubble within a Hubble volume reaches O(1). Thus, Tn
can be estimated by [97] ∫ tn

tc
dt

Γ
H3 =

∫ Tc

Tn
dT

Γ
H4T

= 1, (5.5)

where H is the Hubble rate, and tc and tn denote the critical and nucleation times, re-
spectively. Note that the differential relation between the time t and the temperature T is
dt = −(HT )−1dT in the radiation-dominated epoch.

Below the nucleation temperature Tn, an increasing number of bubbles thrive and
collide with each other. The maximum of bubble collisions that remarkably produces
stochastic GWs is expected to be reached when percolation occurs [98]. In order to evaluate
the percolation time tp, we need to estimate the fraction of space that still remains in the
false vacuum at time t, which can be computed by [99, 100]

P (t) = exp
[
−4π

3

∫ t

tc
dt′ Γ(t′) a3(t′) r3(t, t′)

]
, (5.6)

where a(t′) is the scale factor. r(t, t′) is the comoving radius of a bubble growing from t′

to t, given by

r(t, t′) =
∫ t

t′
dτ

vw
a(τ) , (5.7)
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where vw is the velocity of the bubble wall. For randomly distributed spherical bubbles
with equal size in the three-dimensional space, the percolation threshold is reached when
the fraction of space converted to the true vacuum, 1 − P (t), increases to ∼ 0.29 [101,
102]. Thus, the percolation time tp can be derived by requiring P (tp) ' 0.71, with the
corresponding temperature Tp characterizing GW production from FOPTs [98, 103–105].

FOPTs are able to release latent heat from the vacuum energy, which drives the ex-
pansion of the bubbles and also converts into the thermal and bulk kinetic energies of the
plasma [106–108]. The density of the released vacuum energy is given by [109]

ρvac = Veff(φfalse
i , T )− Veff(φtrue

i , T )− T ∂

∂T

[
Veff(φfalse

i , T )− Veff(φtrue
i , T )

]
, (5.8)

where φtrue
i is the field configuration of the true vacuum. It is useful to define a dimension-

less strength parameter
α ≡ ρvac

ρrad
, (5.9)

with ρrad = π2g∗T
4/30 the radiation energy density in the plasma. g∗ is the effective

relativistic degrees of freedom in the plasma.
The expansion of the bubbles depends on the interactions between the bubble walls and

the plasma, analogous to chemical combustion in a relativistic fluid [106]. Hydrodynamic
analyses show that bubble propagation have diverse modes, including Jouguet detonations,
weak detonations, subsonic deflagrations, supersonic deflagrations (hybrid), and runway
bubble walls [108]. Thus, it is difficult to completely work out the bubble wall velocity vw.
For Jouguet detonations, the Chapman-Jouguet condition leads to a wall velocity of [106]

vCJ = 1 +
√

3α2 + 2α√
3(1 + α)

. (5.10)

This is a typical assumption when evaluating GW signals.
Expanding the action S around the time t′ = tn or t′ = tp, we have

S(t) ' S(t′)− β(t− t′) +O[(t− t′)2], (5.11)

where

β ≡ −dS
dt

∣∣∣∣
t=t′

=
(
HT

dS

dT

)∣∣∣∣
T=T ′

(5.12)

can be roughly understood as the inverse time duration of the phase transition [110]. For
the electroweak FOPTs in which we are interested, the derivative dS/dT is positive at
T = T ′, leading to positive β. In addition, S3/T is typically smaller than S4 at T = T ′.
In order to conveniently compare the phase transition time scale β−1 and the cosmological
expansion time scale H−1, we define a dimensionless quantity

β̃(T ′) ≡ β(T ′)
H(T ′) . (5.13)
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Based on eqs. (5.5) and (5.6), further calculations show that the nucleation and per-
colation temperatures Tn and Tp can be approximately determined by [111]

S3(Tn)
Tn

' 141.5− 2 ln g∗
100 − 4 ln Tn

100 GeV − ln β̃(Tn)
100 , (5.14)

S3(Tp)
Tp

' 132.0− 2 ln g∗
100 − 4 ln Tp

100 GeV − 4 ln β̃(Tp)
100 + 3 ln vw. (5.15)

For BP3, the nucleation temperature is Tn ' 64 GeV, while the percolation temperature
assuming vw = vCJ is slightly lower, Tp ' 60 GeV, as denoted in figures 1 and 2.

6 Gravitational wave spectra

Electroweak FOPTs could induce significant perturbations of the Friedmann-Robertson-
Walker metric and produce stochastic GWs around the mHz band. Two key parameters
relevant to the relic GW spectrum are α and β̃ evaluated at the time t∗ when GWs are
produced. There are three coexisting GW sources at a FOPT, namely bubble collisions,
sound waves, and magnetohydrodynamic (MHD) turbulence [112–115]. Denoting ΩGW to
be the present GW energy density per logarithmic frequency interval divided by the critical
density, we separate the contributions from the three sources as

ΩGWh
2 = Ωcolh

2 + Ωswh
2 + Ωturbh

2. (6.1)

(a) Bubble collisions. The nucleated bubbles expand and finally collide with each other.
Their collisions break the spherical symmetry and generate gravitational waves [110]. This
process can be well described by the envelope approximation [110, 116, 117]. Numerical
simulations for bubble collisions in the thermal plasma [107, 118] show that the resulting
GW spectrum at present can be approximated by

Ωcolh
2 = 1.67× 10−5 0.11v3

w
(0.42 + v2

w)β̃2

(
κφα

1 + α

)2 (100
g∗

)1/3 3.8(f/fcol)2.8

1 + 2.8(f/fcol)3.8 , (6.2)

where g∗ is evaluated at T = T∗, the temperature corresponding to t = t∗. The peak
frequency of the spectrum can be modeled as [118]

fcol = 0.62 β̃h∗
1.8− 0.1vw + v2

w
. (6.3)

The redshift of the frequency has been taken into account by the factor

h∗ = a(t∗)H(t∗)
a(t0) = 1.65× 10−5 Hz T∗

100 GeV

(
g∗

100

)1/6
, (6.4)

which is the inverse Hubble time at t = t∗ redshifted to today (t = t0). The efficiency factor
κφ characterizes the fraction of the available vacuum energy converted into the gradient
energy of the scalar fields.
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(b) Sound waves. The explosive bubble expansion in the plasma induces a sound shell
around the bubble wall. After the bubble collisions, the sound shells propagate into the fluid
as sound waves, which become a significant GW source [119–121]. This source lasts until the
sound waves are disrupted by the development of nonlinear shocks and turbulence [104,
121–123]. Therefore, the duration of the sound wave source can be determined by the
nonlinearity timescale estimated as [123]

τnl ∼
(8π)1/3vw

β̃H∗

√
4(1 + α)

3κvα
, (6.5)

where H∗ ≡ H(t∗) is the Hubble rate at t = t∗ and κv is the fraction of the available
vacuum energy converted into the kinetic energy of the fluid bulk motion. For Jouguet
detonations, vw = vCJ, and κv can be approximated by [108]

κCJ
v =

√
α

0.135 +
√

0.98 + α
. (6.6)

In an expanding radiation-dominated Universe, the finite duration of the sound wave
source leads to a suppression factor [124]

Υ = 1− 1√
1 + 2τnlH∗

. (6.7)

Thus, the GW spectrum contributed by the sound waves is given by [121, 124]

Ωswh
2 = 1.17× 10−6 Υvw

β̃

(
κvα

1 + α

)2 (100
g∗

)1/3 ( f

fsw

)3 ( 7
4 + 3f2/f2

sw

)7/2
, (6.8)

where the peak frequency is estimated to be [121]

fsw = 0.54β̃h∗
vw

. (6.9)

(c) MHD turbulence. Bubble collisions can stir up turbulence in the fluid, as the
energy injection to the plasma results in an extremely high Reynolds number [107]. Since
the plasma is fully ionized, the magnetic field, along with the velocity field, should be
considered, leading to MHD turbulence [125]. It takes several Hubble times for the MHD
turbulence to decay, and the stochastic GWs arise continuously during this period [126].
The corresponding GW spectrum can be fitted as [113, 126]

Ωturbh
2 = 3.35×10−4 vw

β̃

(
κturbα

1+α

)3/2(100
g∗

)1/3 (f/fturb)3

(1+f/fturb)11/3(1+8πf/h∗)
, (6.10)

with
fturb = 3.5β̃h∗

2vw
. (6.11)

Based on the suggestion from simulations, we optimistically set κturb ' 0.1κv [113, 120].
In general, the contribution from the sound waves dominates in the GW spectrum [115].

Moreover, κφ is typically negligible, except for runaway bubble walls [108, 113, 122]. Thus,
we omit the contribution from the bubble collisions in the following calculations.
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Figure 3. Contours of the peak amplitudes of the GW spectra in the α-β̃−1 plane assuming
Jouguet detonations. Purple and green points denote the parameter points for type-I and type-II
Yukawa couplings, respectively. Four BPs are also indicated.

7 Numerical analyses

We perform random scans with the model parameters in the ranges of vs ∈ [10, 1000] GeV,
mχ ∈ [58, 800] GeV, |m2

12| ∈ [1, 5002] GeV2, tan β ∈ [0.5, 20], λ1, λ2, |λ3|, |λ4|, |λ5|,
λS ∈ [0.8, 8], and |κ1|, |κ2| ∈ [0.01, 8] for the two types of Yukawa couplings. We
assume that the prior probabilities for the random parameters follow uniform distributions
in the logarithmic scale. The parameter points are required to pass all the experimental
constraints described in section 3, as well as to cause a FOPT.

Note that positive λ1, λ2, and λS are required to satisfy the bounded-from-below
conditions (3.2). A negative vs would be totally equivalent to a positive one due to the Z2
symmetry S → −S. Besides, a parameter point with tan β andm2

12 is equivalent to one with
− tan β and −m2

12, since the potential respects the Z2 symmetry Φ1 → −Φ1 or Φ2 → −Φ2
expect for the soft breaking quadratic terms with m2

12. Thus, we can just take positive vs
and tan β in the scans, while m2

12, λ3, λ4, λ5, κ1, and κ2 can be either positive or negative.
In addition, the vs range of 10 GeV to 1 TeV ensures that S has a VEV near the electroweak
scale, and the interplay between S and the two Higgs doublets could be important.

The strength of the stochastic GW signals from the FOPT depend on α and β. Larger
α implies a stronger FOPT, while smaller β corresponds to a longer FOPT time duration.
Consequently, larger α and β̃−1 lead to stronger GW signals, as implied in eqs. (6.2), (6.8)
and (6.10). For the surviving parameter points, we calculate the resulting values of α and
β̃−1, and then project the points in the α-β̃−1 plane, as presented in figure 3. The purple
and green points are corresponding to type-I and type-II Yukawa couplings, respectively.
The parameter points lie in the ranges of 10−4 . α . 0.3 and 10−7 . β̃−1 . 0.02. The relic
GW spectra for the parameter points are further evaluated, assuming Jouguet detonations.

We introduce Ω̂GWh
2 to denote the peak amplitudes of the GW spectra. The contours

of Ω̂GWh
2 are demonstrated in figure 3 and we can easily read off the GW signal strengths

of the parameter points from the plot. The strongest GW signal we find reaches up to
Ω̂GWh

2 ∼ 10−11.
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(b) Type-II Yukawa couplings.

Figure 4. Peak amplitudes of the total GW spectra versus frequency for the parameter points
with type-I (a) and type-II (b) Yukawa couplings assuming Jouguet detonations. Sensitivity curves
for the future space-based GW interferometers LISA [51], Tianqin [54], Taiji [56], BBO [60], and
ultimate DECIGO [58] are also plotted. The color axes denote the LISA signal-to-noise ratio
SNRLISA for the parameter points with SNRLISA > 10. The gray points yield SNRLISA < 10.

Figure 4 illustrates Ω̂GWh
2 versus the peak frequency f for the parameter points. For

comparison, we also plot the sensitivity curves for the future space-based interferometers
LISA [51], TianQin [54], Taiji [56], BBO [60], and DECIGO [58]. Some of the curves are
converted from the sensitivity on amplitude spectral density or characteristic strain. The
conversions of the related quantities can be found in, e.g., ref. [127]. The DECIGO curve
we adopt here is the ultimate sensitivity that is only limited by quantum noises, and it can
be regarded as an observational limitation [58].

The GWs produced by FOPTs become an isotropic and stochastic background in the
present Universe. The detectability of the GW signals in the space-based interferometers
increases with the practical observation time T . The signal-to-noise ratio can be defined
as [113, 128]

SNR ≡
√
T
∫ fmax

fmin

Ω2
GW(f)

Ω2
sens(f) df, (7.1)

where Ωsens(f) is the sensitivity of the experiment. Below we take the practical observation
time T = 9.46×107 s (3 years) for LISA [114], Taiji, and TianQin. The signal ΩGW(f) can
be detected if the corresponding SNR is larger than a signal-to-noise ratio threshold SNRthr.
For the six (four) link configuration of LISA, the threshold is SNRthr = 10 (50) [113]. We
find that some parameter points yield the LISA signal-to-noise ratio SNRLISA > 10 and
could be probed by LISA. We denote SNRLISA for them as the color axes in figure 4, with
the remaining gray points corresponding to SNRLISA < 10. The next-generation plans
aiming at f ∼ O(0.1) Hz, like BBO and DECIGO, may probe much more parameter points.

For a closer look at the results, we choose four benchmark points, whose detailed
information is listed in table 1. BP1 and BP2 (BP3 and BP4) correspond to the type-I
(type-II) Yukawa couplings. In these BPs, the masses of the Higgs bosons h1,2,3, a, and
H± are all below 1TeV, while the mass of the DM candidate is less than 140GeV. The
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BP1 BP2 BP3 BP4
Type I I II II

vs (GeV) 542.40 384.26 64.987 138.82
mχ (GeV) 117.88 78.191 134.03 76.678
m2

12 (GeV2) 2.0210× 104 1.5876× 102 1.7696× 105 1.5042× 105

tan β 2.8616 3.2654 0.91655 1.1732
λ1 2.1496 2.1882 1.5297 0.87839
λ2 0.80887 0.85479 1.2074 0.80222
λ3 2.3925 2.2628 1.5741 2.8002
λ4 3.0027 1.4715 5.3967 4.4643
λ5 −6.2187 −4.0567 −7.8556 −7.5755
λS 3.4048 2.5502 6.0689 4.8644
κ1 −1.4852 1.0295 0.80378 −0.38075
κ2 1.1727 −1.2142 −0.83745 −0.14591

mh1 (GeV) 125.11 91.459 125.38 124.87
mh2 (GeV) 282.02 124.77 158.83 307.56
mh3 (GeV) 1014.5 641.83 650.98 582.08
ma (GeV) 664.75 496.49 911.87 874.04
mH± (GeV) 402.96 280.94 655.60 631.66

〈σannv〉d (cm3/s) 1.30× 10−26 3.68× 10−27 1.72× 10−26 6.82× 10−27

α 0.240 0.160 0.181 0.346
β̃−1 1.33× 10−2 4.02× 10−3 7.71× 10−3 2.15× 10−2

Tp (GeV) 55.3 74.9 60.2 47.2
SNRLISA 96.6 37.7 60.1 120
SNRTaiji 83.3 23.9 42.3 155

SNRTianQin 5.50 2.39 3.07 9.20

Table 1. Detailed information for four benchmark points.

SM-like Higgs boson is h2 in BP2, while it is h1 in the rest BPs. The DM annihilation
cross sections 〈σannv〉d at dwarf galaxies predicted by the BPs are below 2× 10−26 cm3/s,
beyond the reach of Fermi-LAT and MAGIC [78].

For the four BPs, percolation of the FOPT occurs in 47 GeV . Tp . 75 GeV, with α
ranging from 0.16 to 0.35 and β̃−1 ranging from 4× 10−3 to 2.2× 10−2. Assuming Jouguet
detonations, we derive the GW spectra for these BPs, as presented in figure 5. The BPs are
also indicated in figures 3 and 4. We find that the GW signal strengths decrease according
to the order of BP4, BP1, BP3, and BP2, reflecting the descending order of α. In table 1,
we also list the signal-to-noise ratios SNRLISA, SNRTaiji, and SNRTianQin for the LISA,
Taiji, and TianQin experiments, respectively. LISA and Taiji look promising to detect all
BPs, while TianQin may probe BP4 with a sightly longer observation time.
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Figure 5. GW spectra for four benchmark points assuming Jouguet detonations.
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Figure 6. Parameter points projected in the tan β-m±
H plane for type-I (a) and type-II (b) Yukawa

couplings. Yellow regions are excluded at 95% C.L. by the FCNC bounds from the Gfitter global
fit [73]. The color axes denote the peak amplitude of the GW spectrum Ω̂GWh

2 for Jouguet
detonations.

In order to show the most important flavor constraints mentioned in section 3, we plot
our parameter points confronting the FCNC bounds. We have adopted the data from the
Gfitter global fit [73] to reject parameter points. In figure 6, the parameter points for the
two types of Yukawa couplings are projected in the tan β-m±H plane, with the color axis
indicating the peak amplitude of the GW spectrum, Ω̂GWh

2.
For the type-I case in figure 6(a), the most stringent FCNC bound comes from the

LHCb and CMS measurements of Bd → µ+µ− [129, 130], excluding a region with tan β . 3.
For the type-II case in figure 6(b), the bounds from the observations of B → Xsγ [131–133]
and Bs → µ+µ− [129, 130] exclude a region with mH± . 750 GeV. Thus, the FCNC
constraints remove small tan β and light H± for type-I and type-II Yukawa couplings,
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Figure 7. Parameter points projected in the mχ-〈σannv〉d plane for type-I (a) and type-II (b)
Yukawa couplings. Dashed lines denote the 95% C.L. upper limits on the DM annihilation cross
section from the γ-ray observations of dwarf galaxies by Fermi-LAT and MAGIC [78].

respectively. We remark that strong GW signals typically favor small mH± . There are
many parameter points with mH± . 600 GeV in the type-I case leading to large Ω̂GWh

2. In
the type-II case, themH± . 600 GeV region is basically excluded by the FCNC constraints,
and hence it is more difficult to achieve strong GW signals.

In figure 7, we project the parameter points in the mχ-〈σannv〉d plane. Although
all these parameter points are required to predict the observed relic abundance, 〈σannv〉d
can deviate from the canonical annihilation cross section 3 × 10−26 cm3/s, due to the
velocity dependence of 〈σannv〉. One reason is that some annihilation channels kinematically
forbidden at low velocities could be opened at the freeze-out epoch, and another reason is
the resonance effects [134]. The pile-up of points around mχ ∼ 78 GeV is mainly related
to the annihilation channel χχ→W+W−.

In the above numerical analyses, we have assumed the bubble propagation mode to
be Jouguet detonations with bubble wall velocity vw = vCJ. Below, we study the effect of
various bubble propagation modes. In general, the dependence of κv on vw and α can be
found in ref. [108]. The sound speed cs in the relativistic plasma is very close to 1/

√
3. For

vw � cs, vw = cs, and vw = 1, the vacuum energy fraction converted into the bulk kinetic
energy of the fluid κv has the following analytic approximations, based on fit.

vw � cs : κA
v = 6.9αv6/5

w
1.36− 0.037

√
α+ α

. (7.2)

vw = cs : κB
v = α2/5

0.017 + (0.997 + α)2/5 . (7.3)

vw = 1 : κD
v = α

0.73 + 0.083
√
α+ α

. (7.4)

Furthermore, for subsonic deflagrations (vw < cs), supersonic deflagrations (cs < vw < vCJ),
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Figure 8. GW spectra for BP4 with several assumptions of vw.

and detonations (vw & vCJ), κv is roughly given by

κv(vw < cs) = c
11/5
s κA

v κ
B
v

(c11/5
s − v11/5

w )κB
v + vwc

6/5
s κA

v

, (7.5)

κv(cs < vw < vCJ) = κB
v + (vw − cs)δκ+

(
vw − cs
vCJ − cs

)3 [
κCJ
v − κB

v − (vCJ − cs)δκ
]
, (7.6)

κv(vw & vCJ) = (vCJ − 1)3(vCJ/vw)5/2κCJ
v κD

v

[(vCJ − 1)3 − (vw − 1)3]v5/2
CJ κ

CJ
v + (vw − 1)3κD

v

, (7.7)

where δκ = −0.9 ln[
√
α/(1 +

√
α)].

According to these expressions, we derive the GW spectra for BP4 assuming the bubble
wall velocity vw = 0.05, 0.2, 0.72, and 1. These spectra are demonstrated in figure 8, along
with the previously obtained BP4 spectrum for vw = vCJ = 0.87. Compared to Jouguet
detonations with vw = vCJ, supersonic deflagrations with vw = 0.72 lead to a stronger GW
signal, which could be properly tested by TianQin with SNRTianQin = 15.8. On the other
hand, subsonic deflagrations with vw = 0.05 and 0.2 give much weaker GW signals.

8 Summary

In this paper, we have studied the stochastic GW signals from electroweak FOPTs in the
model comprising the pNGB dark matter framework and two Higgs doublets with type-I
or type-II Yukawa couplings. The DM candidate is a pNGB whose tree-level scattering off
nucleons vanishes at zero momentum transfer, evading the constraints from direct detection
experiments. The three scalar fields in the model have nonzero VEVs at zero temperature,
which should be developed from EWPTs at the early Universe. If such EWPTs are of
strongly first order, stochastic GWs could be effectively produced. The effective potential
has been carefully constructed with one-loop corrections at zero temperature as well as
thermal corrections, allowing us to carry out accurate analyses on EWPTs.

– 21 –



J
H
E
P
0
5
(
2
0
2
1
)
1
6
0

We have performed random scans in the 12-dimensional parameter space, taking into
account the constraints from bounded from below conditions, LHC run 1 and run 2 mea-
surements of the 125GeV Higgs boson, FCNC B-meson decays, the Planck observation of
the DM relic abundance, and the γ-ray observations of dwarf galaxies by Fermi-LAT and
MAGIC. The surviving parameter points are also required to induce an electroweak FOPT.
We have further analyzed the characteristic temperatures, the phase transition strength,
and the characteristic time duration of the FOPT. Based on such information, the resulting
relic GW spectra from sound waves and MHD turbulence have been evaluated.

Assuming that the bubble propagation mode is Jouguet detonations with vw = vCJ, we
have found that the FOPTs of some parameter points could induce peak amplitudes of the
GW spectra around 10−13–10−11, which could be well detected by the future space-based
GW interferometers LISA and Taiji. The next-generation GW interferometers BBO and
DECIGO are capable of probing much more parameter points. We have noticed that a
lighter charged Higgs boson H± in this model is more probable to induce a strong GW
signal. Since the FCNC constraints on mH± for type-II Yukawa couplings at large tan β
are more stringent than those for type-I Yukawa couplings, the type-I case typically leads
to stronger GW signals.

We have also investigated the effects of different bubble propagation modes with several
values of the bubble wall velocity vw. For the benchmark point BP4, supersonic deflagra-
tions with vw = 0.72 can induce a stronger GW signal than Jouguet detonations with
vw = vCJ. In this optimistic case, BP4 could be well tested by LISA, Taiji, and TianQin.
Detonations with vw = 1 lead to a slightly weaker GW signal, while subsonic deflagrations
with vw = 0.2 and 0.05 result in much weaker signals.
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