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Résumé. 2014 On étudie une paroi de domaine dans un modèle XY tridimensionnel en fonction de l’anisotropie K
et de la température T. On montre que la paroi présente une transition de phase dans le plan (K, T), le paramètre
d’ordre étant la chiralité. C’est un système à deux états analogue à un système d’Ising. La transition peut être du
second ordre avec modes mous. Dans l’état ordonné, la paroi peut posséder des domaines de chiralités opposées
séparés par des lignes singulières.

Abstract. 2014 We study a domain wall in a three dimensional XY model as a function of anisotropy (K) and tempe-
rature (T). It is shown that the wall undergoes a phase transition in the K, T plane, the order parameter being the
chirality. Thus it is a two state system analogous to an Ising system. The phase transition can be of the second
order and exhibits soft modes. In the ordered state the wall can exhibit domains of opposite chirality separated
by singular lines.
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We consider a three dimensional XY [1] model (n = 2) with two dimensional rotators, the rotation axis
being the Z direction. The rotators are located at the vertices of a simple cubic lattice, the interaction being
between first neighbours. The Hamiltonian of the system can be written :

0~ : angle between Si and the Y axis
i : represents the three-dimensional (p, q, r) indices.

When we vary the temperature this system undergoes a bulk phase transition - ferromagnetic ordering -
which, because of the anisotropy K, is of Ising character (n = 1 ).

Let us consider a domain wall perpendicular to the Z direction at T = 0. When K is large, the domain wall
width, 5, is of the order of a ~/7/~ (a : lattice parameter) ; so this relation loses its meaning when 5 is smaller
than A(JIK  1) [2]. In this regime (J/K  1), the domain wall is one unit cell spacing, the spins being up for
Z  0 and down for Z ~ 1 (up refers to the Oy direction). Let us call this configuration (I).

The equilibrium conditions for the wall are :

with the boundary conditions :
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These conditions are fulfilled in (1) because 0~ = 0 or 7r. To investigate its stability let us now study small
movements around this configuration. The equations of motion are :

(I is the moment of inertia of each rotator).
Let us writer = 0? + gi (e° equilibrium angles) and linearize (3) :.

obviously the solutions have the form

For a given value of K)j, we have a full spectrum consisting of a localized mode (in the Z direction), D~
and a branch of delocalized modes O)KII (Kl.) :

with

and

The expression (5) has meaning only if K/J - 4/3 is positive. So the condition of stability of configuration (I)
is K/J &#x3E; 4/3 [3, 4, 5]. If we look at ro~2 as a function of K/J, we have a typical soft mode behaviour, the eigen-
vector corresponding to this mode near the threshold value (K/J)c = 4/3 being :

with a typical width of the order of 2 a.
Just below the threshold, the solution of (2) in the third order in 0 gives
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which is a narrow domain wall with a helicoidal
structure (Bloch character). This is another stable

configuration (II) which was prefigured by the eigen-
vector (7). If we look at the domain wall as a func-
tion of K/J, we see a phase transition with a soft
mode. The order parameter is the amplitude of the
localized modes given by the value of 0(r = 0) which
varies typically as (K/J - (~/Y),)~. This value of
the critical exponent is due to the molecular field

approximation (we have neglected quantum fluctua-
tions).

1. Thermodynamic behaviour. - We want to study
this system as a function of T. From an heuristic
point of view, we know that for a given value of T,
near Tc, K is a relevant quantity and will impose an
Ising behaviour for the system. Thus just below
7~, the domain wall must have an Ising character
(without chirality). On the other hand at low tempera-
ture we know that the domain wall will have a Bloch

character, so we must have a phase transition within
the domain wall as a function of T.
To study this problem, we will look at two limiting

regimes T ~ 0 and K ~ 0.

1.1 T NEAR 0, K 4 8. - We can associate’J 3 El 
-

with each line of spins, n, perpendicular to the wall
a quantity 8~ (~~ = ± 1) which characterizes the

chirality of the line. The « 0 » angles of the line are
given by (8). The interaction energy between two
neighbouring lines n and n’ can be written, knowing
Hamiltonian (1), in the form :

where

this Hamiltonian (9) exhibits clearly the features of
a two-dimensional Ising model with a critical tempe-
rature

1.2 K NEAR 0. - We know that the domain wall

width varies as a ~/7/~ so we will go to a continuum
description. Let us call X and Y the magnetization
components. The three-dimensional Ginzburg-Lan-
dau Free Energy corresponding to the Hamilto-
nian ( 1 ) is of the form :

The uniform solution corresponds to a parama-

gnetic case for T &#x3E; 7c (T. = 20132013/20132013 ) ~d a ferro-

magnetic case for T  Tc. We look at a domain wall
perpendicular to the Z direction in such a way that
the « grad » terms are 3/Sz.
The Euler-Lagrange equations associated with our,

problem have been solved by Sarker et al. [6]. We have
two regimes :

i) A:(7~ - T)  2 K the domain wall exhibits an

Ising character

ii) k(Tc - T) &#x3E; 2 K the domain wall exhibits a
Bloch character (with definite chirality)

where ~, is the characteristic width ’of a Bloch wall

(~=~~7/~).
The transition temperature is given by

It is easy to show, that if we take a Ginzburg-Landau
time dependent expansion, we have also soft modes
connected to this transition [7]. All the critical expo-
nents are of mean field character as a result of the

approximations. It is obvious that, in this case, we
have the exponents of a two dimensional Ising model
except at T = 0 where we can conjecture that the
critical exponents will be those of a three-dimensional
Ising model.
The results are summarized in figure 1.

Fig. 1. - The AB line is the transition line between a domain wall
of Ising type and a domain wall of Bloch type (chiral). The shaded
region corresponds to the bulk paramagnetic state.
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2. Other type of ordered state. - We will show in
one definite example that the structure of the ordered
domain wall can be more complex. We now limit the
discussion to T = 0. The frequency (5) of the localiz-
ed mode associated with configuration (I) depends on
c~L on one hand and on the dispersion relations of the
excitations of spin wave type in the (X, Y) plane on
the other hand. So, if one introduces in our model an
antiferromagnetic exchange between next nearest

neighbours in the X and Y directions, one modifies the
dispersion relations in these directions in such a way
that c~L can be zero when (ol is still nonzero. Thus,
now, we are going to consider a Hamiltonian of the
same kind as that used by Redner and Stanley [8] :

where the second term represents an exchange bet-
ween next nearest neighbours in the (X, Y) plane.

In this case, the frequency of the localized mode
becomes :

and we have two regimes :
. 

4 / K 4 0
2013 f 4 1 J2  1, (UL == 0 for 7 K = -~ (c~ = 0) the

soft mode has a uniform structure in the (X, Y)

plane and the wall which appears for 2013==-.2013 /J

is of uniform Bloch type;

- if i &#x3E; 1, ~(~~ Ky) is minimum for

with cos qy a = cos qx a 4 J2. It is easy to show
2

that co~~x? qy) is zero when

the soft mode exhibiting a modulated structure asso-
ciated with the wave vectors qx and qy in the X and Y
directions. Consequently the wall which appears for
K 4 J 

( 4 J2 22013 just below 3 + 1 I - J has a modulated
structure. In such a situation if one has a bulk phase
transition from a ferromagnet to a helimagnet
(III -+ IV), as the domain wall of the ferromagnet
has already an helical character, the nucleation of
the bulk helicoidal state will occur in the domain wall

(the width of the wall diverges on line c-). Such an

hypothesis has already been made to interpret expe-
rimental results [9].
These results show that there must also exist a line,

in the K J plane, giving the transition bet-J’ J p ’ g g

ween Bloch wall and modulated Bloch wall. The results
summarized in figure 2 indicate the presence of
a Lifshitz point [10].

Fig. 2. - Phase Diagram at T = 0. The region I corresponds to
configuration (I) ; The region II corresponds to uniform Bloch
wall; The region III corresponds to modulated Bloch wall; The
region IV corresponds to a bulk helicoidal type of state ; L is a
Lifshitz point ; (yl) is given by (13) ; (Y2) is a numerically calculated ;
(C) characterizes the transition between uniform and modulated
structures in the bulk and is parallel to (yj. One can show that LP,
(y 1 ), (Y2) have a vertical tangent at L. At Q, (C) has a vertical tan-
gent, and y2 a horizontal one.

3. Conclusion. - We have shown that a ferro-
magnetic domain wall can undergo a two-dimensional
phase transition in space with parameters (J, J2,
K, T). The broken symmetry is the chiral symmetry
(right-left). In the ordered state, singularities associat-
ed with the broken symmetry are Bloch lines. This
transition is associated with the fact that the dimen-

sionality, n, of the order parameter is greater than one
and is different from the roughening transition [11].
The bulk phase transition locks one of the compo-
nents of the order parameter; the transition then
occurs in the space of the (n - 1) other components.
This shows that the singularities associated with
ordered media [12] can change their nature in a coope-
rative way. Thus their degree of universality is less
than that of the bulk transition ; that is to say they
are more sensitive to the structure of the Hamilto-
nian. We have presented another example of a phase
transition in two dimensions [13].
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