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We study a non-Markovian and nonstationary model of animal mobility incorporating both ex-
ploration and memory in the form of preferential returns. We derive exact results for the probability
of visiting a given number of sites and develop a practical WKB approximation to treat the nonsta-
tionary problem. We further show that this model adequately describes empirical movement data
of Egyptian fruit bats (Rousettus aegyptiacus) when accounting for inter-individual variation in the
population. Finally, we study the probability of visiting any site a given number of times and derive
the corresponding mean-field equation. Here, we find a remarkable phase transition occurring at
preferential returns which scale linearly with past visits. Following empirical evidence, we suggest
that this phase transition reflects a trade-off between extensive and intensive foraging modes.

Introduction. Movement is a vital part of life and is key
in a wide range of physical, biological and ecological sys-
tems. Theoretical and empirical frameworks are thus am-
ply used to study the mechanisms underlying movement
patterns in all organisms [1]. In particular, individual-
based modeling of movement has played a crucial role
in studying dynamic systems across multiple spatiotem-
poral scales [2–4]. These models can be applied to infer
behaviors and draw causal links between observed phe-
nomena and their underlying mechanisms beyond phe-
nomenological description of the observed patterns [5].

Most theoretical models rely on Markovian assump-
tions to capture the properties of animal trajectories.
However, memory and similar cognitive mechanisms are
key to understanding patterns observed in animal forag-
ing [6, 7]. A range of taxa, from insects to primates, have
been shown to exhibit spatial memory, and many of them
are known to repeatedly return to previously visited sites
as a part of their regular foraging strategies, mammals
being a paradigmatic example [4, 8–11]. Notably, mem-
ory patterns must be properly balanced by the organisms
with some level of behavioral plasticity to enhance flexi-
bility and exploration (see, e.g., [12]). For all these rea-
sons, correctly incorporating memory within stochastic
models is an important research line for improving both
predictive and descriptive tools of movement [6, 13–15].
Indeed, it has been shown that heuristic models of mem-
ory can be derived from microscopic consideration for
limited cases [16, 17]. At the same time, new experi-
mental methods are allowing to disentangle, even under
field conditions, memory effects on movement from other
cognitive/perception mechanisms [9]. As long as such ex-
perimental and theoretical advances are able to nourish
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each other, new levels of detail in our understanding of
living organisms can be potentially reached.

Dealing with memory and similar cognitive mecha-
nisms still represents a significant theoretical challenge.
Stochastic models that allow the individual to return to
its original position (resettings) have attracted much at-
tention recently [18–20], but these only incorporate mem-
ory in an elementary way. More complex self-avoiding
random walks or preferential returns (PR), where the in-
dividual returns to any previous location with a probabil-
ity proportional to the number of previous visits have also
been studied [21, 22]. These models are non-Markovian
(and typically also non-stationary), requiring that the
individual identifies and keeps record of its entire tra-
jectory. While the propagator of these models [23], and
some properties of relocation times [24], have been com-
puted, characterizing the revisits complete statistics to
each particular location remains an open problem.

Here we study a non-Markovian and non-stationary
mechanistic model of animal mobility, explicitly incor-
porating both the tendency of an individual to return
to previously visited locations (PR) and the tendency
to explore new sites. Versions of this model have been
used to model the mobility of humans [21] and monkeys
[25], the latter suggesting that monkey movements are
non-random due to the use of memory and visitation
patterns driven by resource availability. We generalize
the model by accounting for stochasticity, incorporating
inter-specific variability in the population, and allowing
for nonlinear PR [26]. We provide analytical solutions to
this non-Markovian, non-stationary model that go well
beyond previous mean-field results. In particular, we
present several approaches to analytically find the (non-
stationary) probability of having visited n sites at time
t and study the statistics of how revisits are distributed
through the available locations. Our approach, based on
the WKB (Wentzel–Kramers–Brillouin) approximation,
is thus useful to deal with explicitly time-dependent and
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non-stationary problems. Remarkably, by allowing for
nonlinear PR we find a phase transition as a function of
the strength of the PR, where above some threshold the
most visited site dominates the dynamics, receiving prac-
tically all new visits. We suggest that this phase transi-
tion reflects a balance between the tendency to return to
known sites and the will to explore new ones [19]. We fur-
ther verify our predictions using simulations, and show
that our theoretical results adequately describe the space
use patterns and the revisitation dynamics of Egyptian
fruit bats (Rousettus aegyptiacus) to fruit trees.

Model. Our model consists of two elements [21]: (i)
exploration – with probability Pnew the animal visits a
new site, and (ii) PR – with probability 1 − Pnew the
animal visits a previously visited site i with probability
Πi(mi), where mi is the number of previous visits to site
i. Following empirical evidence in humans and animals
[21, 25] we assume that

Pnew = qn−β , Πi(mi) =
mα
i∑n

j=1m
α
j

. (1)

Here n is the number of previously visited sites, and
β > 0 and 0 < q < 1 control the animal’s tendency
to visit new sites indicating a power-law decay controlled
by conformity exponent β. On the other hand, the PR
exponent α > 0, governs the tendency to return to a pre-
viously visited location. Furthermore, and without loss
of generality, we order the sites by rank such that i = 1
is the most visited site with m1 visits. Notably, we as-
sume that the number of available sites is always larger
than the number of visited sites, and that no significant
resource depletion within a site occurs.

Cumulative number of sites. The probability P (n, t) of
having visited n sites in t� 1 time steps follows

∂P (n, t)/∂t = q(n− 1)−βP (n− 1, t)− qn−βP (n, t). (2)

Although this master equation is interpreted here in the
context of movement between spatially distributed sites,
it can equivalently describe a birth-death process of pop-
ulation of size n, where the growth rate is proportional
to n−β [27]. In particular, for β = 0 the birth-death pro-

cess is ∅ q−→ A and for β = −1 the birth-death process

is A
q−→ 2A. While these special cases have known exact

solutions, in this manuscript we are primarily interested
in the regime β > 0, which describes a growth which
decreases [or saturates, see Eq. (1)] with the number of
sites (or with the population size). To the best of our
knowledge this regime has not been analytically studied.

An equation for the first moment 〈n〉 =
∑
n nP (n, t)

can be obtained from Eq. (2) by multiplying the latter by
n, summing over all n’s, and using the definition for 〈n〉,
resulting in d 〈n〉 /dt = q

〈
n−β

〉
which under the mean-

field approximation
〈
n−β

〉
' 〈n〉−β is solved by [21]

〈n〉 = [(1 + β)qt]1/(1+β), (3)

predicting a power-law dependence on the time of mea-
surement. A similar derivation for the second moment

FIG. 1. The probability P (n, t) for β = 1 and t = 1500. (a)
No variation in β (σ = 0). We compare simulations (circles),
exact result [black dashed-dotted line, Eq. (4)], WKB approx-
imation [red dashed line, Eq. (8)], and WKB approximation
at low energies [blue dashed line, Eq. (9)]. (b) Variability in
β with σ = 0.1, compared to a numerical solution of Eq. (10)
(dashed line). Insets show 〈n〉 and σ2

n (red and black marks,
respectively) versus t, compared with theory (dashed lines).

yields
〈
n2
〉

= 〈n〉2 + 〈n〉 such that the variance follows

σ2
n ≡

〈
n2
〉
− 〈n〉2 = 〈n〉, i.e., the variance of the number

of sites is equal to the mean as in a Poisson process. This
result, however, turns out to be inaccurate as it involves
various uncontrolled assumptions, and is not consistent
with simulations, as elaborated below.

An exact solution to Eq. (2) can be found by Laplace
transforming the equation and solving the resulting re-
currence equation [28]. The exact solution for β 6= 0 has
the form [see Supplementary Information (SI) Sec. S1.A]

P (n, t) = (−1)n−1nβ
n∑
k=1

k−βe−qt/k
β∏n

j=1,j 6=k

(
jβ

kβ
− 1
) . (4)

For special values of β this result simplifies to

P (n, t) =


1

(n−1)!

∑n
k=1

(
n
k

)
(−1)n−kkn−1e−

qt
k β = 1

1
n! (qt)

ne−qt β = 0

e−nqt (eqt − 1)
n−1

β = −1.

(5)
Although Eq. (4) is an exact solution, it is given in form
of a summation of large terms of alternating sign, which
converges due to a precise balance between the terms.
Thus, in practice this result is very slow to converge for
n � 1 in any finite-size system (e.g., python, matlab,
and mathematica) and may result in a significant lack of
accuracy. Moreover, virtually any approximation made
in calculating the individual terms may cause large errors
for n� 1 [29]. To circumvent these issues, we develop a
time-dependent WKB approximation.

Time dependent WKB. In the limit of a large num-
ber of sites n � 1 [30–32], we substitute the time-
dependent ansatz P (n, t) ∼ e−S(n,t) into Eq. (2). Ne-
glecting terms of order O(n−1) we obtain a classical
Hamilton-Jacobi equation for the action function S(n, t):
∂tS = H(n, ∂nS) ≡ H(n, p) where we have defined
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the Hamiltonian H(n, p) = q (1− e−p)n−β , and denoted
p = −∂nS as the conjugate momentum. Instead of di-
rectly solving the Hamilton-Jacobi equations, we use the
Hamilton approach for the classical equations of motion

ṅ = qe−pn−β , ṗ = βq (1− e−p)n−β−1. (6)

We write the action on a classical trajectory as [31]:

S = Et−
∫ t

0

pṅdt = Et−
∫ n

p(n′)dn′ (7)

where the energy E ≡ H[n(t), p(t)] is constant along a
dynamical trajectory given by p(n) = log

[
q/(q − Enβ)

]
.

To find the energy we solve the equation of motion (6)
on a given dynamical trajectory on which the energy is
constant. After some algebra (SI, Sec. S1.C) this yields

P (n, t)∼ e−〈n〉S(x) , S(x) =
f(x)x−β

β + 1
(8)

+xf(x)−1/βB [f(x); 1 + 1/β, 0] + x log(1− f(x)),

with x ≡ n/ 〈n〉 and f(x) = 1− xβ(β(x− 1) + x). Here,
B(z; a, b) =

∫ z
0
ua−1(1 − u)b−1du is the incomplete beta

function. This calculation of the probability of having
visited n � 1 sites at time t, is one of our main results.
In the low energy limit, E � 1, S(x) becomes (SI)

S(x) '
[
(2β + 1)x−2β−1

(
xβ+1 − 1

)2]
/
[
2(β+1)2

]
, (9)

which can be shown to solve the Hamilton-Jacobi equa-
tion in the limit |x − 1| � 1. In Fig. 1a we find good
agreement between the exact result for the PDF [Eq. (4)],
time-dependent WKB approximation [Eqs. (8,9)], and
simulations (see also Fig. S1 in the SI). Here the exact
result and WKB approximation are practically indistin-
guishable, whereas the low energy approximation pre-
dicts the PDF well only in its Gaussian vicinity. Notably,
for n� 1 the accuracy of the exact result rapidly deterio-
rates due to summation of (alternating) very large terms
and accumulation of errors, making the time-dependent
WKB approach highly advantageous in this case [29].

Equation (8) predicts a different variance than that
predicted by the mean-field approach above. The vari-
ance can be found by approximating S(x) in the Gaus-
sian vicinity of n = 〈n〉. Doing so, we find S(x) '
(β + 1/2) (x − 1)2, which yields a variance of σ2

n =
〈n〉 /|S ′′(x)|x=1 = 〈n〉 /(1 + 2β). This entails that the
distribution is narrower by a factor of (1 + 2β) than
that predicted by the moment equations. In the inset
of Fig. 1a both the average [Eq. (3)] and the variance of
number of sites show good agreement with simulations.

To account for between-individual variation, we gen-
eralize our model by allowing different β values acoss
individuals. Assuming β is sampled from a normal dis-
tribution N (β0, σ

2) with mean β0 and variance σ2 � 1
(indicating the inter-individual variability in β around
β0, see empirical results analysis below), Pn(t) satisfies

P (n, t) =
1√

2πσ2

∫ ∞
−∞

Pβ(n, t)e−
(β−β0)2

2σ2 dβ, (10)

FIG. 2. (a) The average frequency of visits to the most vis-
ited site f1 versus α, for β = 1 (simulations). Each curve
corresponds to a given number of visits t (see legend). (b) fk
for different sites (see legend) for β = 1 and t = 105.

where Pβ(n, t) is the probability for a given β, see e.g.,
Eq. (8). Although analytical progress is possible in the
limit of σ�1 (SI, Sec. S1.D), Eq. (10) can generally be
solved numerically (Fig. 1b). Notably, we checked that
while variability in a population (σ > 0) will not signif-
icantly affect the mean number of sites, it dramatically
affects the variability across a population (SI, Fig. S2).

Statistics of number of visits to a site. Having com-
puted the statistics of number of sites, we now turn to
study the probability Wi(mi, t) of having mi visits at
time t to an already visited site i, which follows

∂Wi

∂t
= (1− Pnew) [Πi(mi − 1)Wi(mi − 1, t)

−Πi(mi)Wi(mi, t)] , (11)

where Pnew and Πi are given by Eq. (1). In general, Πi

depends on the number of visits to other sites, such that
Eq. (11) couples between different sites. Below, we focus
on the limit t� 1, where Pnew→0 (SI, Sec. S2).

The case of α = 1. In the limit t � 1 we have∑
imi = t, namely, the total number of visits to all

sites equals the total number of time steps t. Thus,
Πi(mi) = mi/t and Pnew = 0 [33]. Equation (11) is then
solved by Wi(mi, t) = tit

−mi (t− ti)mi−1, where ti is de-
fined as the first time site i is visited, mi(t = ti) = 1.
The average is then 〈mi〉 = t/ti, while the variance

σ2
mi =

〈
m2
i

〉
− 〈mi〉2 = t (t− ti) /t2i ∼ t2.

The case of α 6= 1. Here, we a priori assume that∑〈n〉
j=1 〈mj〉α ∼ tξ, where ξ is a priori unknown and sat-

isfies α < ξ < 1 (see SI, Sec. S2.A for proof). The
average number of visits to any site i can then be shown
to asymptotically follow 〈mi〉 ∼ t(1−ξ)/(1−α)[1+O(tξ−1)].
Plugging this back into the sum over 〈mj〉α we find that
ξ = ξ0(1 + ε), where ξ0 = (1 + αβ)/(1 + β) and ε � 1
is an unknown function of α, β (Fig. S3). For 1− α� ε
[β = O(1)], we further find 〈mi〉 ∼ tβ/(1+β), which is in-
dependent of α; yet, the condition 1−α� ε breaks down
as α approaches 1 (SI, Sec. S2.B and Fig. S4). Impor-
tantly, in the limit t� 1, for any α < 1 we find that all
sites scale similarly with time. In contrast, for α > 1 not
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FIG. 3. (a-b): The mean (blue marks) and variance (red
marks) of number of sites visited by bats during summer
and winter, compared to theoretical prediction (black dashed
lines), with fitted values (a) β0 = 0.71, 0.53 and (b) σ =
0.21, 0.16, respectively. These are averaged over an ensemble
of 38 (a) and 53 (b) bats. (c-d): The mean number of visits
〈mi〉 to the six most visited sites, i = 1, ..., 6 (different colors
mark different sites), averaged over the same ensembles as in
(a) and (b). Black dashed lines 〈mi〉 ∼ t correspond to the
theoretical prediction for α = 1. (e-f): Variance of number
of visits σ2

mi to the same six sites, averaged over the same
ensembles for summer (e) and winter (f). Black dashed lines
σ2
mi ∼ t

2 correspond to the theoretical prediction for α = 1.

all site scale similarly with time. Here we find 〈mi〉 ' t
for i = 1, while 〈mi〉 ' Ci[1 +O(t1−α)] for i > 1, where
Ci = Ci(ti) is a constant (SI, Sec. S2.C).

These results reveal a phase transition at α = 1
(see also SI, Sec. S2.D), where for weak PR (α < 1)
the frequency of visits to the most visited site f1 ≡
〈m1〉 /

∑〈n〉
j=1 〈mj〉 is only a small fraction of the total

number of visits, while for strong PR (α > 1) f1 ap-
proaches 1 as t is increased and site 1 dominates (Fig. 2a).
Importantly, in addition to the phase transition for f1,
the next most visited sites (fk, for k = 2, 3, ...) peak
around α = 1 (Figs. 2b and S5). Here, as α approaches
0 the number of visits to all sites becomes similar, while
for α > 1 these visitation frequencies tend to zero.

Movement of fruit bats. To study the relevance of our
model for real-life systems and to obtain insights into the
phase transition, we compare our predictions to resource
use patterns and visitation dynamics of wild fruit bats
tracked by ATLAS during winter and summer [34]. In
Fig. 3a-b we fit the mean and variance of the number of
visited sites (fruit trees) as a function of the number of
movement steps (defined here as distinguishable move-
ment between trees, see SI) to our theory [35]. We find
that during the summer β0 and σ are higher than dur-

ing the winter, entailing lower rate of visits to new sites
(higher levels of conformity) and larger inter-individual
variability, respectively. Notably, many empirical stud-
ies have shown that individual preferences and decisions
can affect movement and behavior, such that individuals
do not have identical movement patterns [36, 37]. This
may explain the inter-individual variability observed in
both summer and winter. In Fig. 3c-f we show that dur-
ing summer 〈m1〉 ∼ t0.97 and 〈m2〉 ∼ t0.99 (as well as
σ2
m1
∼ t1.94 and σ2

m2
∼ t2.16), which matches the the-

ory for α = 1. In contrast, during winter 〈m1〉 ∼ t0.89

and 〈m2〉 ∼ t0.87 (σ2
m1
∼ t1.96, σ2

m2
∼ t1.80), which is

consistent with α values slightly below 1. These seasonal
differences may be attributed to the fact that bats during
the summer feed of highly abundant and palatable fruits
– mulberries or figs with high levels of sugar content –
and hence do not need to explore for feeding alternatives
(high β0) and can strongly rely on a limited number of
sites (α = 1). Similarly, when food is abundant it makes
sense that most bats will forage on the same bountiful lo-
cations, as they are not constrained by intense resource
competition, thus reducing inter-individual variability in
behaviour. In contrast, during winter there is less moti-
vation to return to less favorable fruits (chinaberries) and
a higher motivation to explore alternative trees, such as
non-seasonal (unpredictable) fruit from the Ficus family.

In light of the phase transition at α = 1, and in agree-
ment with experimental results, we hypothesize that in
animal movement the value of α will tend towards 1.
This maximizes the frequencies of visits to preferred sites
(Fig. 2b), yet avoids an exclusive choice of a preferred site
which occurs at α > 1 (see Fig. 2a). In this manner the
animal combines intensive search patterns (committing
to few site) with extensive searches (returning to all sites
with some probability), a balance which is essential to
optimize between energy expenditure and risk manage-
ment [19, 38, 39]. Indeed, for fruit bats we find α ≈ 1,
and similar results were obtained for humans [21] and
monkeys [25]. Furthermore, the strategy of avoiding an
exclusive site resembles bet-hedging strategies, e.g., bac-
terial persistence [40]. In addition, the value of α may be
correlated to the total number of known sites: for large
β0 (few sites, summer) the bats will show stronger PR,
while for smaller β0 (more sites, winter) the strategy may
tend towards a more uniform visitation rate to all trees.

More generally, we expect our results to also provide
key insights into revisit dynamics in other areas like hu-
man mobility [41–43], COVID-19 spread [44], human mi-
gration [45] and languages dynamics [46].
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Supplementary Information: Phase transition in non-Markovian animal

exploration model with preferential returns

Here we provide additional details and results to support the derivations presented in the main text. Below, the
notations and acronyms are the same as in the main text and the equations and figures refer to those therein.

S1. CUMULATIVE NUMBER OF SITES

In this section we detail the exact solution and the WKB approximation to Eq. (2) of the main text

dP (n, t)

dt
= q(n− 1)−βP (n− 1, t)− qn−βP (n, t). (S1)

A. Solution by Laplace transform

Here we derive Eqs. (4) and (5) of the main text by Laplace transforming Eq. (S1) and solving the resulting
recurrence equation. First we define J(n, t) = qP (n, t)/nβ , which turns Eq. (S1) into:

nβ

q

dJ(n, t)

dt
= J(n− 1, t)− J(n, t). (S2)

Transforming (S2) by Laplace in time and considering the initial condition P (n, t = 0) = δn,1, where δa,b is the
Kronecker delta, we obtain the recurrence equation

Ĵ(n, s) =
1

1 + snβ

q

Ĵ(n− 1, s) +
1

1 + snβ

q

δn,1, (S3)

where s is the Laplace variable and Ĵ(n, s) stands for the Laplace transform of J(n, t) defined as follows:

Ĵ(n, s) = Ls [J(n, t)] =

∫ ∞
0

e−stJ(n, t)dt.

Multiplying (S3) by
∏n
j=0

(
1 + sjβ

q

)
it has the form

A(n, s) = A(n− 1, s) + δn,1

n−1∏
j=0

(
1 +

sjβ

q

)
, (S4)

where A(n, s) = Ĵ(n, s)
∏n
j=0

(
1 + sjβ

q

)
has been introduced. Since P (n ≤ 0, t) = 0 one has A(0, s) = 0 and using

(S4), A(n ≥ 1, s) = 1. Inserting this result into (S3) the solution to the master equation in the Laplace domain reads

P̂ (n, s) =
nβ

q
∏n
j=0

(
1 + sjβ

q

) =
qn−1

[(n− 1)!]β
1∏n

j=1

(
s+ q

jβ

) . (S5)

Now we need to invert (S5) by Laplace. To do this we use the Heaviside expansion theorem [50]

L−1
t

[
1

f(s)

]
=

n∑
k=1

e−akt

f ′(s = −ak)
, f(s) =

n∏
j=1

(s+ aj), (S6)

where the prime symbol stands for the derivative with respect to s. Making use of the property

f ′(s = ak) =

n∏
j=1,j 6=k

(aj − ak),
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and (S6), one readily obtains for any β 6= 0

L−1
t

 1∏n
j=1

(
s+ q

jβ

)
 =

n∑
k=1

e−qt/k
β∏n

j=1,j 6=k

(
q
jβ
− q

kβ

) = (−1)n−1(n!)βq1−n
n∑
k=1

k−βe−qt/k
β∏n

j=1,j 6=k

(
jβ

kβ
− 1
) . (S7)

Finally, plugging (S7) into (S5) the exact solution for β 6= 0 has the form

P (n, t) = (−1)n−1nβ
n∑
k=1

k−βe−qt/k
β∏n

j=1,j 6=k

(
jβ

kβ
− 1
) , (S8)

which is Eq. (4) of the main text, and is valid for any β 6= 0. For β = 0, Eq. (S5) reduces to

P̂ (n, s) =
1

q
(

1 + s
q

)n+1 ,

which after inversion by Laplace coincides with Eq. (5) of the main text

P (n, t) =
(qt)n

n!
e−qt. (S9)

B. Solution by generating function

In some special cases it is more convenient to solve Eq. (S1) using the generating function approach. Particularly,
in the limit of a large number of sites, the equation in the generating function domain becomes a fractional integro-
differential equation for 0 < β ≤ 1, see below.

We define the generating function G(z, t) =
∑
n z

nP (n, t), such that

P (n, t) =
1

n!

∂nG(z, t)

∂zn
|z=0, (S10)

with initial condition P (n, 0) = δn,1 ⇒ G(n, 0) = z. Substituting Eq. (S1) into the definition of G(n, t) yields

∂G

∂t
= q

∑
n

[
zn(n− 1)−βP (n− 1, t)− znn−βP (n, t)

]
= q(z − 1)

∑
n

znn−βP (n, t)

' q(z − 1)
∑
n

D−βz zn−βP (n, t) = q(z − 1)D−βz
[
z−βG(z, t)

]
, (S11)

where D−βz is the Riemann-Liouville fractional integral defined by aD
−β
z f(z) = 1

Γ(β)

∫ z
a

(z− ξ)β−1f(ξ)dξ, and we used

the following relations

D−βz zn−β = zn
Γ(n− β + 1)

Γ(n+ 1)
= znn−β [1 +O(1/n)]. (S12)

Here, the equality on the left is valid for β ≤ 1 while the approximation on the right holds for n� 1 and is exact in
the special cases of β = 0, 1. Notably, for β < 0, i.e., when the growth rate increases in n, Eq. (S11) is a fractional
differential equation for G, while for β > 0, i.e., when the growth rate decreases in n, it is a fractional integro-
differential equation. Although Eq. (S11) is hard to solve analytically for general β, and the direct method presented
above is more suited, it can be solved for β = −1, 0, 1.

1. Solution for β = 0

For β = 0, Eq. (S11) simplifies to ∂tG(z, t) = q(z−1)G(z, t) and is accordingly solved by G(z, t) = ze−qt(1−z). Using
Eq. (S10) we find that P (n, t) follows a Poisson distribution (S9). In particular, in this case we have 〈n〉 = σ2

n = qt.
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2. Solution for β = −1

For β = −1 a similar derivation to Eq. (S11) yields a partial differential equation for the generating function:
∂tG(z, t) = q(z − 1)z∂z[G(z, t)], whose solution is G(z, t) = z/[z + eqt(1− z)] [51]. Using Eq. (S10) we find

P (n, t) = e−nqt
(
eqt − 1

)n−1
. (S13)

The average number of sites here is 〈n〉 = eqt, i.e., we find exponential growth, as expected for a growth rate that

is linear in n. Here, the variance is σ2
n = eqt (eqt − 1) ' e2qt = 〈n〉2, which is significantly broader than that of the

Poisson distribution. This result also agrees with Eq. (5) of the main text.

3. Solution for β = 1

For β = 1, Eq. (S11) is rewritten in explicit integro-differential form:

∂G

∂t
= q(z − 1)

∫ z

0

y−1G(y, t)dy. (S14)

Here, we Laplace transform Eq. (S14) in time

uG(z, u) = z + q(z − 1)

∫ z

0

y−1G(y, u)dy, (S15)

to obtain an integral equation. This equation can be solved iteratively by the Neumann series method [52] to give:

G(z, u) =
1

u

[
(z − 1)e

qz
u

(qz
u

)− q
u

γ

(
p+ u

u
,
qz

u

)
+ z

]
, (S16)

where γ(a, b) is the lower gamma function. Using Eq. (S10) we can inverse Laplace transform Eq. (S16) to obtain

P (n, t) =
1

(n− 1)!

n∑
k=1

(−1)n−kkn−1

(
n

k

)
e−

qt
k , (S17)

in agreement with Eq. (5) of the main text.

C. Time dependent WKB approximation

Here we derive Eqs. (8) and (9) of the main text. We employ the time-dependent WKB approximation in the limit
of a large number of sites n� 1 [31, 32]. Substituting the time-dependent ansatz P (n, t) ∼ e−S(n,t) into Eq. (S1) and
neglecting terms of order O(n−1) we obtain a classical Hamilton-Jacobi equation for the action function S(n, t):

∂S

∂t
= H(n,

∂S

∂n
) ≡ H(n, p) , H(n, p) = q

(
1− e−p

)
n−β , (S18)

where H is the Hamiltonian and p = −∂nS is the conjugate momentum. Instead of directly solving the Hamilton-
Jacobi equations, we use the Hamilton approach for the classical equations of motion [Eq. (6)]

ṅ = qe−pn−β , ṗ = βq
(
1− e−p

)
n−β−1. (S19)

We write the action on a classical trajectory as [31]:

S = Et−
∫ t

0

pṅdt = Et−
∫ n

p(n′)dn′ (S20)

where the energy E ≡ H[n(t), p(t)], is constant along a dynamical trajectory given by p(n) = log
[
q/(q − Enβ)

]
. To

find the energy we solve the equation of motion (S19) on this given dynamical trajectory, which yields

ṅ = qn−β − E. (S21)
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FIG. S1. The probability P (n, t) for β = 0.5 and t = 1500. (a) No variation in β (σ = 0). We compare simulations (circles),
WKB approximation [red dashed line, Eq. (8)], and WKB approximation at low energies [blue dashed line, Eq. (9)]. (b)
Variability in β with σ = 0.1, compared to a numerical solution of Eq. (10) (dashed line). In the insets of both panels are 〈n〉
and σ2

n (red and black marks, respectively) as a function of t, showing very good agreement with the theory (dashed lines).

For n � 1 and β > 0 the right hand side of Eq. (S21) varies very slowly with time [O(n−β)] (as shown below, the
energy E also scales as n−β), such that the solution for Eq. (S21) can be approximated as n = (qn−β−E)t+C. Here,
C is a slowly-varying function of time, and includes constants such that the energy corresponding to the mean-field
solution n = 〈n〉 obeys E(n = 〈n〉) = 0 [31]. Having shown that 〈n〉 ∼ t1/(1+β), we find C = 〈n〉β/(1 + β), which
indeed varies with time slower than t. Substituting this back into the equation for n and solving for the energy yields

E = q 〈n〉−β
{
x−β + [β − (β + 1)x]

}
(S22)

where we have expressed t in terms of 〈n〉 and defined x ≡ n/ 〈n〉. Substituting the energy (S22) into Eq. (S20) and
solving the integral yields

S(n, t) = 〈n〉 S(x) , S(x) =
f(x)x−β

β + 1
+ xf(x)−1/βB

[
f(x); 1 +

1

β
, 0

]
+ x log(1− f(x)) (S23)

where B(z; a, b) is the incomplete beta function, defined as B(z; a, b) =
∫ z

0
ua−1(1 − u)b−1du, and we define f(x) =

1− xβ(β(x− 1) + x). This result coincides with Eq. (8) of the main text and is valid in the limit of n� 1.

1. Low energy solution

To get better insight for the Gaussian vicinity of Pn(t), we solve Eq. (S19) in the low energy limit E � 1. This
yields an approximated solution for the energy in the form

E ' q 〈n〉−β
(2β + 1)x−2β−1

(
1− xβ+1

)
β + 1

, (S24)

where we have again expressed t in terms of 〈n〉. Equation (S24) is indeed small in the limit |x− 1| � 1, which is the
Gaussian vicinity of Pn(t). By further approximating the dynamical trajectory as p(n) ' Enβ/q + E2n2β/(2q2), we
substitute this back into Eq. (S20). Performing the integral and substituting Eq. (S24) yields the following action

S(x) '
(2β + 1)x−2β−1

(
xβ+1 − 1

)2
2(β + 1)2

, (S25)

which coincides with Eq. (9) of the main text. Equation (9) can be shown to solve Eq. (S18) in the limit |x− 1| � 1.
In Fig. 1a and S1a we compare the WKB solutions to simulations. Notably, while in Fig. 1a (main text) we are able
to plot the exact results, in Fig. S1, due to the larger values of n, the exact result cannot be plotted with standard
computational tools.
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FIG. S2. The probability distribution of number of sites visited at time t = 1000 for σ = 0.01, 0.05, 0.1 (see legend), based on
15000 simulations, compared to Eq. (S27) (solid lines), where the integral is approximated numerically. Note that, the averages
〈n〉 for each distribution, marked by vertical dashed lines, are only slightly affected by the change in σ.

D. Individual variability

Here we analytically solve Eq. (10) of the main text in the limit of small variance σ. In the main text we write the
probability of having visited n sites at time t as [Eq. (10)]

P (n, t) =
1√

2πσ2

∫ ∞
−∞

Pβ(n, t)e−
(β−β0)2

2σ2 dβ, (S26)

which can be numerically solved (Figs. 1b, S1b and S2). Analytical progress can only be made in limit of small

variance, σ � 1/
√
〈n〉0, where 〈n〉0 = [(1 +β0)qt]1/(1+β0) is the mean number of sites given β = β0. For simplicity we

focus on the small energy regime, yet similar calculations can be made with the full expression for the action [Eq. (8)].
Substituting Eq. (9) into Eq. (S26) yields

P (n, t) ∼ 1√
2πσ2

∫ ∞
−∞

e−
(β−β0)2

2σ2
−〈n〉0Sβ(n/〈n〉0)dβ, (S27)

where Sβ(x) is given by Eq. (9). This integral can be solved for σ � 1/
√
〈n〉0, using the saddle point approximation,

which yields

P (n, t) ∼ e−〈n〉0Sβ0 (n/〈n〉0)+〈n〉20σ
2S1(n/〈n〉0), (S28)

with

S1(x) =
x−4β0−2

(
xβ0+1 − 1

)2
2 (β0 + 1) 6

[
β0(1 + xβ0+1)− (β0 + 1) (2β0 + 1) ln(〈n〉0 x) + 1

]2
. (S29)

Here, the mean number of sites obeys 〈n〉 = 〈n〉0
[
1 +O(σ2)

]
, whereas the variance obeys

σn = 〈n〉0

{
1

2β0 + 1
+ 〈n〉0 σ

2 [(β0 + 1) ln(〈n〉0)− 1]
2

(β0 + 1) 4
+O(〈n〉20 σ

4)

}
. (S30)

Thus, while inter-individual variability will almost not affect the mean number of sites, it does significantly affect the
variance of the number of sites (by a factor of 〈n〉0 compared to that of the mean), see Fig. S2.

S2. STATISTICS OF NUMBER OF VISITS TO A SITE

Here we provide details on the mean-field equation for the mean number of sites. In particular we explicitly derive
and solve this equation for all α values in the limit of t� 1, and provide evidence of a phase transition at α = 1. Our
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FIG. S3. Comparison between the value of ξ as obtained from 100 simulation of length t = 105 (symbols) to the theoretical
prediction (dashed lines). Plotted for β = 0.5 (blue crosses) and β = 1 (red triangles). In the inset we plot the relative error
between the predicted value and the one obtained in simulations.

starting point is Eq. (11) of the main text

∂Wi

∂t
= (1− Pnew) [Πi(mi − 1)Wi(mi − 1, t)−Πi(mi)Wi(mi, t)] , (S31)

where Pnew and Πi are given by Eq. (1) in the main text.

A. The case of α = 1

In the main text we assumed that Pnew → 0 and solved Eq. (S31). Here we provide a solution to the mean-field
equation without neglecting Pnew. In mean field, we obtain an equation for the first moment 〈mi〉 by multiplying
Eq. (S31) by mi and summing over all mi. For α = 1 this yields

∂ 〈mi〉
∂t

= (1− Pnew)

∞∑
mi=1

mi∑n
j=1mj

Wi(mi, t) '
〈mi〉∑〈n〉
j=1 〈mj〉

(1− q 〈n〉−β), (S32)

where we a priori (to be checked a posteriori) assume that
∑
jmj � mi for any site i such that the denominator can

be taken out of the sum over mi, and that
∑n
j=1mj '

∑n
j=1 〈mj〉. To find the value of

∑〈n〉
j=1 〈mj〉 ≡ Q we sum over

both sides of Eq. (S32) to obtain a differential equation for Q: ∂tQ = (1 − q 〈n〉−β), an equation which is solved by
Q = t− 〈n〉. Substituting this back into Eq. (S32) gives

d 〈mi〉
dt

=
〈mi〉
t− 〈n〉

(1− q 〈n〉−β), (S33)

which is solved, assuming site i is first visited at time ti [i.e., with an initial condition 〈mi〉 (ti) = 1], by [21]

〈mi〉 =
t− 〈n〉
ti − 〈n〉ti

' t

ti
. (S34)

Here 〈n〉ti is the average number of sites at time ti, and on the right we approximated the solution for t � 1 and

discarded terms of order O(t1/(1+β)). This final result agrees with the one found in the main text. Importantly, as
all sites have a linear dependence on t, we verify a posteriori that

∑
jmj � mi for any site i, as contribution from

all visited sites will not diminish at long times.
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FIG. S4. Upper panels: the mean number of visits to the five most visited sites for different values of α (different colors mark
different sites). We fit the most visited site to a power law (blue solid lines, see legend) and plot the theoretical prediction
(black dashed line, see legend). Lower panels: measuring ξ from simulations (black crosses), fit (blue solid line) and theory
(orange solid line).

B. The case of α < 1

For α < 1 we solve the mean-field equation at t� 1 such that Pnew → 0,

∂ 〈mi〉
∂t

'
∞∑

mi=1

mα
i∑n

j=1m
α
j

Wi(mi, t) '
〈mi〉α∑n
j=1 〈mj〉α

' 〈mi〉α

Atξ
, (S35)

where, similarly to the case of α = 1, we a priori assume that
∑
j 〈mj〉α � 〈mi〉α for any site i, and we further

assume
∑〈n〉
j=1 〈mj〉α = Atξ with α < ξ < 1 (to be proved a posteriori, see below). Notably, such a scaling was found

to hold in numerical simulations. For initial condition 〈mi〉 (t = t0) = 1, Eq. (S35) is solved by

〈mi〉 '

1 +
(α− 1)

(
t1−ξ − t1−ξi

)
A(ξ − 1)

1/(1−α)

. (S36)

Note that the asymptotic scaling of this result at t� ti depends on the value of ξ, where for ξ < 1, Eq. (S36) predicts an
asymptotic scaling of 〈mi〉 ∼ t(1−ξ)/(1−α)[1+O(tξ−1)], for all sites. Now, as all sites scale similarly with t, it is evident
that

∑
j 〈mj〉α � 〈mi〉α, thus verifying our initial assumption. Using this solution for 〈mi〉, we find that up to some

unknown factor
∑〈n〉
j=1 〈mj〉α ∼ t1/(1+β)tα(1−ξ)/(1−α), entailing that ξ = α(1−ξ)/(1−α)+1/(1+β) = (1+αβ)/(1+β).

In Fig. S3 we show that this prediction agrees with simulations for two different values of β, up to a maximum
of 3% relative error. However, we note that this relative error becomes crucial when ξ is substituted back into the
scaling 〈mi〉 ∼ t(1−ξ)/(1−α) found above. Let us denote ξ0 = (1 + αβ)/(1 + β) such that ξ = ξ0(1− ε), where ε� 1 is
a small correction that depends on α and β (see Fig. S3). Substituting ξ into 〈mi〉 ∼ t(1−ξ)/(1−α) one readily obtains
(1 − ξ)/(1 − α) = β/(1 + β) + ξ0ε/(1 − α). Here, the approximation is valid only as long as β/(1 + β) � ε/(1 − α),
or alternatively 1 − α � ε [assuming β = O(1)]. As we numerically find that ε = O(10−1) this condition is hard to
satisfy as α approaches 1, and in this regime it is preferable to find ξ directly from simulations.

In Fig. S4 we plot the number of visits to the five most visited site for different values of α. We show that for α < 1
all sites converge to the same number of visits, while for α > 1 the most visited site diverges from all other sites (see
below). All α values show good agreement with the theory presented above. Similarly, in the bottom panels of S4 we

show evidence for our a priori assumption that
∑〈n〉
j=1 〈mj〉α = Atξ, again with good agreement to the theory.
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C. The case of α > 1

Here, in contrast to the previous cases, in the limit of t � 1 we a priori assume that 〈m〉α1 �
∑〈n〉
j=2 〈mj〉α, i.e.

at long times the most visited site dominates and contributions from all other sites diminish. We again obtain an
equation for the first moment 〈mi〉 by multiplying Eq. (S31) by mi and summing over all mi:

∂ 〈mi〉
∂t

'
∞∑

mi=1

mα
i∑n

j=1m
α
j

Wi(mi, t) '

{
1 i = 1
〈mi〉α∑n
j=1〈mj〉

α i > 1,
(S37)

where we have separated the most visited site i = 1 from all other sites, in accord with the above assumption. For
i = 1, Eq. (S37) with initial conditions m1(0) = 1 is solved by 〈m1〉 ' 1 + t ' t, i.e. we predict a linear scaling with

time. For all other sites we assume that
∑〈n〉
j=1 〈mj〉α ' 〈m1〉α ∼ tα. Plugging this into Eq. (S37) yields

〈mi〉 '

{
t i = 1

const[1 +O(t1−α)] i > 1,
(S38)

where const ∼ (1 − t1−αi )1/(1−α). Importantly, for α > 1 and β > 0 it follows that α > 1/(1 + β), such that

〈m1〉α ∼ tα � t1/(1+β) ∼
∑〈n〉
j=2 〈mj〉α, thus verifying our initial assumption. As discussed in the main text, these

results suggest a phase transition at α = 1, see Fig. 3 and S5, and the next subsection.

D. Evidence of a phase transition

Here we prove that there is a phase transition at α = 1, with no a priori assumptions on the solution (see previous

sections). To this end, we define Q ≡
∑〈n〉
i=1m

α
i , so the probability that the most visited site will be visited again in

the next time step t will be p1(t) = mα
1 /Q, and for any site in general we have pi(t) = mα

i /Q. Next, we write an
expression for the expected value of p1(t) in the next time step:

〈p1(t+ 1)〉 =
mα

1 + fα(m1)

Q+ fα(m1)
p1(t) +

〈n〉∑
i=2

mα
1

Q+ fα(mi)
pi(t), (S39)

where we have defined fα(mi) ≡ (mi + 1)α −mα
i . The first term on the right hand side represents the case for which

the most visited site is visited in the next time step t + 1, and the second term corresponds to the case where any
other site is chosen instead.

In the case α = 1 we have f1(mi) = 1 for any mi. Taking into account that p1(t) = mα
1 /Q, Eq. (S39) leads after

some algebra to 〈p1(t+ 1)〉 = p1(t) independently of the specific set of values {mi} we have. Thus, the probability of
revisiting the most visited site will be kept constant through time (and the same can be proved for any other site).

For α > 1 we note that fα(mi) increases monotonically with mi. This, together with the fact that p1(t) =

1−
∑〈n〉
i=2 pi(t) allow us to write the inequality

〈p1(t+ 1)〉 > mα
1 + fα(m1)

Q+ fα(m1)
p1(t) +

mα
1

Q+ fα(m2)
(1− p1(t)). (S40)

Finally, introducing p1(t) = mα
1 /Q into the previous inequality, after some algebra we obtain

〈p1(t+ 1)〉 >
[
1 +

(fα(m1)− fα(m2)(Q−mα
1 )

(Q+ fα(m1))(Q+ fα(m2))

]
p1(t). (S41)

We thus conclude that 〈p1(t+ 1)〉 > p1(t) regardless of the specific set {mi} we have. The probability of revisiting
the most visited site thus always increases with time on average, leading eventually to its dominance over the others.

For α < 1 we proceed in a similar manner. Here, fα(mi) will decrease monotonically with mi, so we can write

〈p1(t+ 1)〉 <
[
1− (fα(m2)− fα(m1)(Q−mα

1 )

(Q+ fα(m1))(Q+ fα(m2))

]
p1(t). (S42)

This leads to 〈p1(t+ 1)〉 < p1(t), such that for α < 1, on average the probability of revisiting the most visited site
will decrease with time, thus leading to a much more homogeneous distribution of revisits among all sites available.
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FIG. S5. (a) The average frequency of visits to the most visited site f1 versus α, for β = 0.5 (simulations). Each curve
corresponds to a given number of visits t (see legend). (b) fk for different sites (see legend) for β = 0.5 and t = 105.

S3. DATA COLLECTION AND ANALYSIS

The Egyptian fruit bat (Rousettus aegyptiacus, EFB) is a long-lived, widely distributed Old World fruit bat [53].
Like other fruit bats, individual EFBs tend to feed on a small subset of available trees and repeatedly revisit them for
weeks and even months [11, 54] affirms that EFBs rely heavily on individual memory. Additionally, it has recently been
shown that EFBs obtain a ”cognitive map,” which encompasses information about a large number of tree locations,
suggesting that memory expands beyond the trees used at a given time [11]. Bats were tracked at a 0.125Hz sampling
rate for an average tracking period of 23.7 nights and up to 131 nights. The data also includes nearly all fruit trees
in the study area (14,314 trees and 18,111 orchard trees), which enabled us to identify specific tree visits.

To segment the data into movements and tree visits, we first filtered raw EFB tracks for localization errors based
on the covariance matrices attributed to each ATLAS fix [55]. Localization that exceeded the highest realistic speed
threshold for this species (20ms ) were removed. Visits to trees were defined based on track segmentation using the first-
passage algorithm to determine the center of a ”cloud of fixes” where the animal has spent a specified number of ob-
servations within a certain radius (for source code and details see https://github.com/ATLAS-HUJI/R/tree/master/
AdpFixedPoint). Finally, the median coordinates of each cloud were related to the closest tree in the dataset.

To make the seasonal classification most relevant for bats’ foraging, we defined winter and summer based on the
known peak of fruiting periods of the main seasonal tree species the bats frequently visit in the study area. These are
the mulberry (Morus negra) and common fig (Ficus carica) species during May-September (summer) and Chinaberry
(Melia azedarach) during November-February (winter). During each fruiting period we used 10 day periods for each
bat to ensure sufficient statistics (many of the bats did not have longer tracks during a single season). Based on the
field work it is reasonable to assume that during such 10 day periods no significant resource depletion occurs. To fit
between the data and the theory we used a standard least square fit procedure from python scipy package.
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