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The layered spin system with planar rotator symmetry is considered in the case of the 

small interplane coupling. It is argued that vortex pair excitations are important in this 

system, and their effect on the critical behavior is studied by the renormalization group 

equation. In particular, the .temperature dependence of the spontaneous magnetization is 

investigated for the characteristic two dimensional behavior. The effect of the spin anisotropy 

on the transition temperature is also considered. The layered magnet K,CuF, is discussed 

as an example of quasi-two dimensional planar system. 

§I. Introduction 

The planar rotator model or equivalent superfluid model in two dimensions is 

known to have a critical line in the low temperature region where the scale 

in variance rnay hold. ll, 2) Kosterlitz and Thouless 3J have considered the vortex pair 

excitation mechanism in the low temperature regwn and found that in this planar 

model the transition to the high temperature region is determined by the dissocia

tion of the vortex pair. 

The important prediction of the theory is the universal jump4J of the two 

dimensional superfluid density Ps at the transition, which has been confirmed ex

perimentally in liquid 4He films. 5) As for the magnetic systems, there is no ideal 

tvvo dimensional material which shows the planar behavior. However, there are 

several quasi-two dimensional planar systems which have layered structure with 

very small interplane coupling. Experimentally these materials are known to show 

interesting properties. 6J 

Berezinskii and Blank/J and Pokrovskii and Uimin8J have considered the layer

ed planar magnetic system with the interplane coupling constant J .L which is 

much smaller than the intraplane coupling constant J 11 • They derived the scaling 

law with respect to the ratio L1 = J .L/ J 11 and discussed in particular the spontaneous 

magnetization, which should vanish in the case of the vanishing interplane coupl

ing.9) Their arguments depend upon the self-consistent spin wave theory in two 

dimensions and do not incorporate the vortex-pair mechanism. In this paper, we 

discuss the quasi-two dimensional planar system by considering both the spin wave 

and vortex-pair excitations. Recently, Kosterlitz 10J and subsequently Jose, Kadanoff, 
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388 S. Hikami and T. Tsuneto 

Kirkpatrick and Nelson11) developed the renormalization group treatment for the 

two dimensional planar rotator model. We use the same renormalization group 

equation of two dimensions in a modified manner because of the presence of the 

small interplane coupling, which gives rise to the shift of the critical temperature 

Tc of three dimensional ordering away from the two dimensional critical point TK. 

The scaling law with respect to the ratio of J j_/ J 11 is explained in § 2. The 

spin wave calculation gives the result consistent with the scaling law in the low 

temperature region and the spontaneous magnetization is discussed in § 3. In § 4, 

we discuss possible vortex excitations in the layered system and compare the energy 

of a vortex ring extending over many sheets and that of an independent vortex 

pair existing in a single sheet. The result is used in the renormalization group 

treatment and the curve of the spontaneous magnetization is derived in § 5. In 

§ 6, we consider the effect of spin anisotropy on the transition temperature and 

from the classical solution of a vortex in the presence of spin anisotropy we 

derive a condition of quasi-two dimensional planar model. As an example of quasi

two dimensional planar material, the ferromagnet K 2CuF4 is discussed in § 7. 

§ 2. Scaling law for the small interplane coupling 

The layered planar rotator model is described by the following Hamiltonian: 

!JC= -J 11 2: (StS/+SiYS/) -Jj_ 2: (SixS/+S/S/), (2 ·1) 
(i, j) (i, j) 

where J 11 and J j_ denote the intra plane coupling and the interplane coupling, 

respectively, and the spin is assumed as classical. The summation is taken over 

the nearest neighbor lattice sites. The two dimensional planar rotator model to 

which our model reduces to when J j_ = 0, has no spontaneous magnetization but 

below a certain temperature, which we denote as Tc, it shows the critical behavior 

with the scale invariance. The critical exponent 1J for the spin-spin correlation 

function changes continuously in the region below Tc which can be thought as 

infinite critical points. That the value of the spontaneous magnetization is zero 

is consistent with the recent calculation of the non-linear (j model, which gives 

the infinite value for the exponent (3. 12), 13) 

In the case of the small non vanishing interplane coupling J j_' the expression 

for the spontaneous magnetization may be written by a scaling function f as 

(2·2) 

where 

The exponent ¢ IS the crossover exponent. In our case, the crossover Is 111 the 
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Phase Transition of Quasi-Two Dimensional Planar System 389 

spatial dimensions and is identical to the exponent r of the susceptibility in two 

dimensions.w Noting that the all region below T, is critical, we have from (2 · 2) 

by eliminating the temperature, 

The exponents (3 and rare divergent for two dimensional planar model. However, 

the ratio /31 r is finite as 

/3/r= (d-2+77)/(4-277). (2·4) 

Therefore, we have the scaling law for the spontaneous magnetization of the 

quasi-two dimensional planar system as 

(2 ° 5) 

Near the critical temperature, we cannot apply the equation and we will discuss 

this problem in § 5. The exponent 1J is temperature dependent and in the low 

temperature limit is given by 

kT 
77=--. 

2nJII 
(2·6) 

Pokrovskii and Uimin8J obtained (2 · 5) for the planar rotator model. Berezinskii 

and Blank') discussed quantum spin system by the spin wave argument and ob

tained the slightly different result from the classical one of (2 · 5) 

( 
J ) ~/4-2" M- _j_ ,- T . (2·7) 

For the quantum spin system, the expression (2 · 7) is valid in the low temperature 

region, which then goes over to the classical scaling of (2·5) at high temperature. 

This quantum to classical crossover may be important for the layered magnet 

K 2CuF4 which has spin 1/2. We will discuss this problem in § 7. 

§ 3. Spin wave calculation 

We consider the two point spin-spin correlation function for the planar rotator 

model; 

<S(O) ·S (r)) =<cos [0 (0) -B (r)]). (3 ·1) 

The average is taken for the following Hamiltonian: 

!]{=2_J11 L.;[B(x+a) -B(x)] +2_Jj_ L.;[B(x+b) -B(x)] 
2 2 

= ~ J 11 Jcve(x)) 2 + ~ Jj_ Jcve(x)) 2
• (3·2) 
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390 S. Hikami and T. Tsuneto 

Since the Hamiltonian of (3·2) is free field, we can write 

(S(O) ·S(r))= exp{-- ~ ((8(0) -8(r)) 2)}. 

Therefore, we write the spin-spin correlation function as 

with 

(S(O) ·S(r))= exp {---1-G' (r)} 
2nK 

G'(r) =2rr[G(O) -G(r)], 

K=J 11 jkT, 

(3 ·3) 

(3 ·4) 

(3·5) 

where the function G (r) is the lattice Green function. 

= 0, we have for large r 

In two dimensions, J .L 

(3 ·6) 

and it leads to 

(S(O) ·S(r))::::::l__, 
r~ 

(3 ·7) 

where 

kT 
1]=---- . 

2nJ11 

(3 ·8) 

The spontaneous magnetization is obtained by taking the infinite limit of r in the 

spin-spin correlation function as 

l'vf, = [lim (S (0) · S (r))] 112• (3·9) 

We obviously obtain zero spontaneous magnetization91 in two dimensions from 

(3·7). 

In the presence of the anisotropy Ll = J .L/ J 11 , the Green function becomes 

(3 ·10) 
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Phase Transition of Quasi-Two Dimensional Planar System 391 

This quantity IS calculated as 

_l_G'=- 1 f'1 eik,zK0 (r/i1l?z)dkz+ - 1- lAin(A2 +i1k/)dkz 
2rr 2rrA Jo 4rrA Jo ilk/ 

(3 ·11) 

From (3 · 4), (3 · 9) and (3 ·11), we have the expression for the spontaneous magne

tization as 

lv!, = JJkT!ScJ;t • (3 ·12) 

This result is consistent with (2 · 5) since the exponent r; is given by (3 · 8) in the 

low temperature region. 

§ 4. Independent vortex pair versus vortex ring 

In the previous section we have discussed the spin wave contribution to the 

spontaneous magnetization. In the low temperature region the system is discussed 

by the spin ;vave excitations. However when the temperature is increased, the 

non-perturbative topological excitation may become important in two dimensions 

and especially in the planar system the phase transition occurs due to the dissocia

tion of the vortex pair. 3). 10> 

Before discussing the renormalization group treatment of vortex-pairs and of 

spm waves, we investigate the vortex-pair excitation in the quasi-two dimensional 

planar system. In two dimensions the energy of a vortex is given by 

Evair = Jfl In r + 2;t , (4·1) 

where r is the distance of two vortices of opposite sign and 11 is the energy 

necessary to make a vortex in one layer. If the interplane interaction .] j_ is 

strong enough and becomes the same order as .111 , the vortices in adjacent layers 

pile up and make a string which closes itself as a vortex ring. The energy of a 

vortex ring may be written as 

r 
Ering =- (2p + .1 11 ln r), 

a 

where the quantity a IS the lattice constant. 

(4·2) 

For the small interplane coupling J .L• it may be more favourable for vortex 

pairs in different layers to become independent, instead of making a vortex ring. 

The energy of the independent vortex pair is given by 
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392 S. Hikami and T. T suneto 

Ei.v.p. = J 11 ln r + J .L (:) 
2 + 211 . (4·3) 

The first term is the vortex vortex interaction and the second comes from the 

energy between adjacent layers since the mismatch of the spin configurations of 

the layers extends over an area of size r. Comparing ( 4 · 2) and ( 4 · 3), we find 

that the energy of an independent vortex pair becomes smaller than the energy 

of a vortex ring when r is smaller than the critical radius r 0 given by 

J_.L_~ a ln r 0 

J 11 ro 
(4· 4) 

For more accurate comparison we must consider the entropy as well, but we believe 

it ;vill favor the independent vortex pairs. 

We note that the energy of the vortex pairs depends on r logarithmically 

for r smaller than V J 11 j J .L ·a, which is in turn smaller than r 0• As the important 

excitations in our system, therefore, we only have to consider the independent 

vortex pairs of radius smaller than V J 11 j J .L ·a. It must be remarked that the 

three dimensional ordering takes place when the intraplane correlation length ~ 

becomes of the same order. 

§ 5. Renormalization group equation 

The renormalization group equation for the two dimensional planar rotator 

model has been developed by Koster litz10J and subsequently by Jose et al.ll) Here 

we describe the results of the renormalization group treatment for two dimensional 

planar model following Jose et al'D which is useful to analyze the quasi-two dimen

sional planar model. The spin-spin correlation function is given by 

(S (0) · S (r)) = exp { _l_ (l_ -7r2 ~ r 0
2(m (0) m (ro) >) G' (r) l, 

2rr K r, ) 

(5 ·1) 

where the lattice Green function G' (r) is given by (3 · 5) and m is the vortex 

field. The vortex-vortex correlation is given by 

(ni (0) m (r)) = - 2yze-zrrxo·<arl' (5. 2) 

where y 1s introduced as 

(5. 3) 

which indicates the density of vortex. In the original Hamiltonian, y is unity, 

from which it deviates due to fluctuations. In two dimensions, from (3 · 6) we have 

(5. 4) 

Therefore, the spin-spin correlation function is written, as we have discussed in 
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Phase Transition of Quasi-Two Dimensional Planar System 393 

§ 3 by the effective K which is defined by 

(5· 5) 

where K in (5 · 4) is also replaced by Keff· Then, from the scale in variance one 

derives the renormalization equations for K and y which reduce to 

where 

We have from (5·6) 

y'=y{1+ (2-rrK)lnb}, 

rrK=2. 

d_:t:_ = -16rrzyz 
d ln b ' 

dy 
--=-xy. 
d ln b 

The quantity x is defined by 

(5. 6) 

(5·7) 

(5·8) 

(5·9) 

From (5 · 8) we have a fixed line for x >O and at x = 0, which corresponds 

to K~}=rr/2, the dissociation of the vortex pair occurs. Hereafter, we denote this 

temperature as T K· The solution of the renormalization equation is given by 

(5 ·10) 

where t means the deviation from T K; 

(5 ·11) 

The scaling variable b can be solved for T>TK 

{ 1 ( _1 -/T~TK _1 ~T-TK)} b=exp ~T-T~ tan --x----tan - ··~· ··· , (5·12) 

where the quantity xi is the initial value. 

Up to now, we have described the renormalization equation for the two dimen

sional case (J j_ = 0). As shown in the previous s.ection, in the quasi-two dimen

sional planar system the independent vortex pairs can be realized and their energy 

depends on the size r logarithmically when r<ajy'iJ. This means that the two 

dimensional renormalization group eq.uations are valid as far as the vortex pairs 
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394 S. Hikami and T. Tsuneto 

of size smaller than ajy'LJ are concerned. In other words, the length scale trans 

formation is now limited by the cutoff 

bmax = 1/v A (5 ·13) 

and the upper limit of the integral in (5 · 5) must be replaced by 1/ y A. 

Therefore, from (5 ·12) and (5 ·13), we have the equation; 

JT-TK 
y- _------ -- -

.- tan[JT-TKln(1/JX)]. 
(5 ·14) 

we note that at TK, Kosterlitz point where the phase transition occurs for J j_ = 0, 

.r is not zero clue to the presence of A as 

1 
.r= ,----

ln(1/v' A) 
(5·15) 

and at this point the effective inverse temperature J(eff becomes as 

2 1 
Keff=--1- (5·16) 

7r ln(1/JA) 

Therefore, the true phase transition IS higher than TK. In the two dimensional 

case the discontinuous change of Kelt with the universal jump appears at TK. In 

the presence of the interplane coupling J _j_' the discontinuous change of Keff is 

not present and there appears the crossover phenomena from two dimensional 

like behavior to three dimensional behavior. For small A, we can estimate the 

true transition temperature Tc at the point where the denominator of (5 ·14) be

comes close to zero; 

(5 ·17) 

Thus the critical temperature IS giVen by 

(5·18) 

This deviation from T K is consistent with the crossover exponent, which is identical 

with r of two dimensional planar model and is known to be infinite. The ex

pression for the transition temperature is also derived as follows. 151 When we 

approach from the high temperature side to the transition temperatnre, the correla

tion length becomes large as 

(5 ·19) 

Thus the true transition may appear at the point where 
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Phase Transition of Quasi-Two Dimensional Planar System 395 

It gives the same expression for Tc as (5 ·18). The equation (5 ·14) gtves the 

value of Keff as a function of temperature, vvhich decreases rapidly above T K· 

The value of Keff becomes 2/rr at the following temperature: 

From (5 ·18) and (5 · 21), we estimate the decreasing of Keff above T K as 

(5. 22) 

If the temperature approaches the true critical point Tc, the renormalization 

group equation of (5 ·16) becomes invalid and the system shows the three dimen

sional critical behavior. In this region, the effective interplane coupling becomes 

the same order as intra plane coupling (5 · 20). For the isotropic planar model we 

have 

I~T c_:::::::4. (5-23) 

J 

Therefore at least when Kef£ becomes 1/4, the three dimensional critical behavior 

may be observed. For very small J, the temperature shift (5 ·18) becomes very 

small. However, the existing layered materials such as K 2CuF4 have the value 

10- 3 for J, so that the three dimensional critical region is expected to be seen. 

§ 6. Effect of spin anisotropy 

We have discussed the quasi-two dimensional planar model with small space 

anisotropy J. In this section we investigate the effect of the spin anisotropy. 

Anisotropic two dimensional Heisenberg model is described by 

(6 ·1) 

It is interesting to see how the critical behavior of this anisotropic Heisenberg 

model depends on the anisotropic parameter A. When A is zero, there may be no 

phase transition.l2l For O<A/2<1, the system is similar to the planar model. 

However, when a vortex is created, the spins near its center may tend to align 

into the direction perpendicular to the easy plane. To investigate this situation, 

we consider the classical solution corresponding to the presence of a vortex ex

citation. In the continuum limit the Hamiltonian (6 ·1) is approximated as 

H = -f S { ( 1- ~ cos'(}) (17(}) 2 +sin'(} (17¢) 2 +A cos'(}} (6·2) 
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396 S. Hikami and T. Tsuneto 

with 

sz =cos 6' 

sx = sin 6 cos ¢ , 

SY = sin 6 sin ¢ . 

In the classical equation 

(1 - _}c_ cos26) f7 26 + A sin 26 (f76) 2 - ~ 11 ~ 6 + !___ sin 26 = 0 
2 4 2~ 2 

(6· 3) 

we put 

for the vortex solution with unit circulation. Hence we have 

(6·5) 

with the boundary condition 

6 = n: (r---+ oo) and 6 = 0 . (r = 0) 
2 

(6·6) 

The asymptotic sol uti on becomes 

(6·7) 

As we see from (6 · 7), the characteristic length 1s provided by 1/VA which 
we interpret as the radius of the vortex core: To estimate the energy of a single 
vortex with finite size R, we use the asymptotic solution for r---+oo with C= 
= rc/2 and find 

- SR 1- (n:j2)e-v"r . - n:J - - - - -dl 
a r 

(6·8) 

where E 1 is exponential integral. Therefore we expect the vortex patr energy 

still depends logarithmically on the pair distance when it is greater than the core 
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Phase Transition of Quasi-Two Dimensional Planar System 397 

SIZe 1/v/;,. 

If }, becomes zero, the system becomes the isotropic Heisenberg model and the 

critical temperature drops to zero. It is interesting to note that the vortex pair 

turns out to be an instanton in the limit A= 0 and the energy becomes finite and 

independent of the pair distance. In the Appendix we consider the classiccal sol u

tion for A= 0 in detail. For small A case, the transition temperature is estimated 

by the value of the crossover exponent ¢ of spin anisotropy, which is known to 

be infinite in two dimensions.l6),m However, the ratio ¢/v for the two dimen

sional Heisenberg model becomes two. Thus, we have 

(6·9) 

The correlation length of 2d Heisenberg modeP 21 IS known to be 

(6' 10) 

Therefore, by the scaling argument for the crossover phenomena, we have the 

transition temperature as 

kTc ~ 47C 

J ln(c/A) 
(6 ·11) 

Including the anisotropy of spin freedom, we have the expression for the 

energy of vortex pair as (6·8), which is not essentially different from (4·3) and 

the independent vortex pair picture of the previous section may be valid when the 

following condition of the distance of vortex pair r is satisfied: 

(6 ·12) 

If the spm anisotropy parameter }, and the space anisotropy L1 = J 1_j J 11 become 

comparable, we may have a picture which is completely different from the picture 

of independent vortex pair. In this case, the crossover from the anisotropic Heisen

berg to the three dimensional planar behavior occurs and the transition temperature 

is estimated in the small L1 and small A case by 

(6·13) 

The first term* 1 is obtained from the correlation length ~ of the two dimensional 

Heisenberg model (6 ·10) by a similar argument to (6 · 9). The second term is due 

to the crossover from the three dimensional Heisenberg to the three dimensional 

planar model. The crossover exponent ¢ is known to be 1.22. 181 When the con

dition of (6 ·12) is satisfied, we may have the following expression for the transi-

*1 For the exactly solvable anisotropic spherical model, the constant c, is 64 and this expression 

gives quite accurate value for J = 10- 2• 
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398 S. 1-Iilwmi and T. Tsuneto 

tion temperature, 

(6 ·14) 

Where T K' 1s the transition temperature of two dimensional planar model 

with the spin anisotropy }. and it is approximated by (6 ·11) for small l. From 

(6 ·11) and (6 ·13), we get for J<J,<(1, 

(G. Ei) 

Therefore, Eq. (6 ·14) is better approximate expression than Eq. (6 ·1:3) for J<l 

In the next section, we consider a quasi-two dimensional planar ferromagnet 

K 2CuF4 which has small space anisotropy J and small spin anisotropy A. 

As another spin anisotropy, the dipole interaction is important. The dipole 

interaction is knovvn to shift the transition temperature upwards. Howe1Ter, the 

crossover from the planar fixed point to the dipole fixed point is complicated and 

has not been considered completely. 19J· 201 

§ 7. Quasi-two dimensional materials 

Recently, quasi-two dimensional materials6J ha,-e been investigated 111 experi

ments. As quasi-two dimensional Ising like materials, K,NiF4 and Rb,MnF, are 

known and show remarkable two dimensional Ising like behavior except in a Ycry 

narrow region near the transition temperature. 

The ferromagnet K,CuF421l' 2" is knmvn as a good quasi-two dimensional planar 

like material. The interplane interaction is almost Heisenberg like with the ,;mall 

spin anisotropy },~2 X 10- 2 • Due to this spin anisotropy, the system shmn the 

critical behavior of the planar system. The interplane coupling constant is small 

and the ratio J_~J ,jJ11 = 6 X 1o-·'. The transition temperature is 6.25"K. Since 

the ratio A is very small and the spin anisotr-opy satisfies the condition of (6 ·12), 

\Ve apply the independent vortex pair picture to this material. The spontaneous 

magnetization has been measured and it shows T 312 law up to 4.5''K. The spin 

waYe theory, which is valid in the low temperature region, gives T 3 ' behavior 

for the spontaneous magnetization only for T <J ,_k = 0.024°K, and it gives T ln T 

term above J ,_/ k, which Berezinskii and Blankn exponentiated as (2 · 7). Therefore 

we compare the experimental curve of the spontaneous magnetization with (2 · 7) 

in the low temperature region and we may have crossover from the quantum 

scaling to the classical scaling as (2 · 5). This material K 2CuF1 has spin and 

the intralayer coupling .111 / k as 20°K. From these values, we estimate the Koster

litz transition temperature T K as 7.8''K *> when A= 1. Since the actual value of 

}. is 0.02, the transition temperature TK is reduced considerably. Equation (6 ·11) 

*l Here we take T K as nJ/2k; however more precise value has been investigated as (1. 4) 

Ji k/ 0> which gives T K as 7°K. 
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giVes the same value as T K• if we take c = 64 and we need more accurate formula. 

However, we believe the reduction due to the spin anisotropy is around 30%, for 

},=0.02, which leads to the value 5.5°K as the Kosterlitz transition temperature. 

Taking the value of L1 as 6 X 10-", the theoretical curve of the spontanous magne

tization agrees well with the experiment. We note that the spontaneous magnetiza

tion (2 · 5) becomes large even for the small L1 = 6 X 10-", and therefore, the ex

perimental sharp neutron Bragg peak observed in neutron scattering can be ex

plained. The recent neutron scattering experiment"3J shows the crossover pheno

mena near the transition temperature. The value of the magnetization critical ex

ponent (3 changes from 0.24 to 0.33 at 6oK. The small value 0.24 of /3 means 

the rather sharp decreasing of the magnetization. This sharp decreasing may be 

interpreted by the renormalization group equation in § 5 and is typical of the 

quasi-two dimensional planar system. 

As another interesting example, the layered copper compounds (CnH2, r!NH3) 2 

CuCl 4°)' 24 ) shows quasi-two dimansional behavior. If these series have the planar 

like condition Ll<l-, it is interesting to measure the shape of the spontaneclUS 

sublattice magnetization and the shift of the transition temperature. 

In liquid crystals, the smectic B phase is regarded as a layered quasi-two 

dimensional solid. If the interplane coupling is weak enough, -vve can apply the 

similar analysis although the two dimensional melting transition") is different from 

the transition of the planar model; for example, the temperature dependences of 

the exponent -r; is different. Recent experiment of BBOA (408), measured the 

transition from smectic B to smectic A phase. 2n,,sJ The smectic B phase, if the 

interplane coupling is weak, may be interpreted as a stacking of two dimensional 

solid."9)' 30J In this case also, the X ray scattering may give sharp Bragg peak as 

in K 2CuF,. The typical behavior of quasi-two dimensionality may be seen in the 

dynamical behavior. 

Acknowledgements 

The authors thank Professor B. I. Halperin and Professor Y. Nagaoka for 

valuable discussions and Professor K. Hirakawa for useful comments and stimu

lating discussions about quasi-two dimensional materials. 

Appendix 

We have considered the single vortex classical sol uti on for the anisotropic 

Heisenberg model in § 6. Here we discuss in detail the vortex pair solution, and 

in particular we note that the spin configuration of vortex pair in the 2d anisotropic 

Heisenberg model changes continuously into an instanton solution in the limit of 

vanishing anisotropic parameter A. 

We assume that two vortices are located at (- (a/2), 0) and ( (a/2), 0) m 

the two dimensional coordinate space and they are attracting each other. The 
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400 S. Hikami and T. Tsuneto 

Heisenberg spin IS described by (6 · 2) with the parameter 0 and ¢. When the 

anisotropy A becomes zero, the system becomes the isotropic Heisenberg model and 

it has instanton solutions by Belavin and Polyakov.w Representing the coordinate 

(x, y) by the complex plane z 

z=x+iy, 

we have the following one instanton solution: 

z + a/2 =cot !!_ei¢. 
z- a/2 2 

Along the real axis (y = 0, ¢ = 0), we have 

0 =2 tan-1 (X- af2 ). 
x+a/2 

(A·l) 

(A·2) 

(A·3) 

In the limit x~ ± oo, the spin aligns in the x direction. The spin configuration 

changes continuously from the vortex pair to an instanton in the limit A= 0. The 

configuration still looks like vortex pair even for A= 0, but the energy now be

comes 4rrJ which is independent of the distance between vortices. 

It is also interesting to consider the single vortex solution for A= 0 (6 · 5) 

with the following boundary condition: 

r=R, 
(A·4) 

r=O. 

The classical solution of (6 · 5) is given by 

(A·5) 

The energy 1s calculated as 

E= ~ J[ (V0) 2 + si~:e]d 2 r 

=7TJ fR(cae)2+ sin20)rdr, 
Jo r2 

(A·6) 

= 2rrJ. (A·7) 

Thus the energy is independent of R and just half of the energy of an instanton. 

For the very small A, we may have the following free energy3J of the vortex 

pmr: 

t1F=4rrJ -kT ln 2_. 
A 

(A·S) 
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Phase Transition of Quasi-Two Dimensional Planar System 401 

The first term is the energy of the instanton and the second term of (A· 8), is 

entropy term which is obtained from the fact that the core of vortex is 1/vX when 

anisotropy A is finite. We have the expression for the transition temperature from 

(A·S) as 

kT = 4nJ (A-9) 
c ln(1/A.) 

This result is obtained by considering the instanton. We obtain the same formula 

(6 ·11) from the scaling argument using the correlation length ~ which is obtained 

by the renormalization group. 
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