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We consider hadronic matter to be composed of quarks and self-interacting bosons and
calculate the effective potential in the one-loop approximation in renormalizable field theory.
We also calculate the relevant thermodynamical quantities and show that
a) a phase transition of the second kind can arise at temperature 7=0.17 GeV,

b) the level density of hadronic matter agrees with the one of the statistical bootstrap model
below the critical temperature and

¢) our model may predict good fits to the experimental transverse momentum spectra in
particle production if based on a fireball model.

§ 1. Introduction

It is well known that the inclusive transverse momentum spectra dg/d P for
the reaction

a+b—c+anything
has the form
g?’vexp{— (Pr*+m™)" /T 1-1

at small Pr(Pr<1GeV/c) and that 7T is roughly constant independently of the
incident energy. This is very surprising, and so we can expect that a thermodynami-
cal equilibrium (we refer it to a hadronic matter or a fireball) is instantaneously
reached after the collision. The thermodynamical model proposes a two-step pic-
ture—the production and subsequent decay of fireballs. The statistical bootstrap
1? gives an explanation for the constant temperature. The bootstrap condi-
tion (a fireball is a statistical equilibrium of an undetermined number of all kinds

mode
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Phase Transition of Second Kind in Hadronic Matter 491

of fireballs) predicts the existence of a maximum temperature 7, and also the
divergence of the thermodynamical potential in T>7T,, i.e., a phase transition of
the zero kind at T

On the other hand, remarkable deviation from the form (1-1) has been ob-
served at large Pr(Pr=>1GeV/c).*~® One can get a first approximation for the
inclusive transverse momentum spectra at large P; by assuming the form for the
effective temperature

TocEY: (1-2)

in Eq. (1-1),” where E., is the incident energy in the center of mass system.
In the inclusive reaction, we observe that the hadrons are produced from fireball
of various masses even at a definite incident energy, and so we can get the form
(1-1) at small P, if we assume that multi-fireballs with small mass are also
produced peripherally. Then the constancy of the temperature at small mass and
the increase at large mass must be ensured by

lim sy fim My (1-3)

r-7.—0 T T-Te+0 T
where My is the mass of a fireball. This means a phase transition of the second
kind. It was suggested by Eliezer and Weiner” that a hadronic matter might
undergo a phase transition of the second kind based on Weinberg model.® Dolan
and Jackiw derived the critical temperature by a functional-diagrammatic evaluation,
however, their theory is renormalized at zero temperature and so draws an effective
potential of complex number.

In this paper, we derive an effective potential of a hadronic matter by Dolan
and Jackiw method, where the renormalization is carried out at finite temperature
and the hadronic matter is regarded as being composed of quarks and self-interact-
ing bosons. We also show that the predictions of our model are consistent with
the condition (1-3) and the level density of the hadronic matter has the form
exp (—M,;/T,) in T<T..

In the next section, we calculate the effective potential renormalized at finite
temperature in the one-loop approximation. In § 3 we compute entropy, energy,
specific heat and physical masses of a quark and a boson from the thermodynamical
potential. Finally we give concluding remarks.

§ 2. Effective potential

In this paper we restrict ourselves to a simple model involving only a spinor
and a scalar fields. At finite temperature the generating functional is defined as
follows:

20,7, 9) =T (e fexp( [ @ @r+mo+a0))} ), @1
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where H is the Hamiltonian of the system, 7" is the temperature in energy unit,
7,7 and J are the external sources, [d'x = [¥7duf*.dr and the suffix - denotes that
the time ordering has been performed. It should be noted that z denotes the
imaginary time. The generating functional Z(7,7,J) defined by Eq. (2-1) cor-
responds to the partition function in the statistical thermodynamics. The simple
derivation of it and the related notes are given in Appendix A. By taking the
functional differentiations of the generating functional we can get the time ordered
n-point Green’s functions. In order to investigate the connected Green’s functions
it is more convenient to define the connected generating functional Z° by Z
=exp(—2°/T).
The classical fields are defined by

- 102 102° 10z°
=== =0 g 0 2.9
g T 0y 2 T 07 ¢ T 0J 22
and the functional Legendre transformation:
Lo b =220, 9y +T (2@ + 70+ T90) 2-3)

is called the effective action. One particle irreducible Green’s functions are given
by taking the functional differentiations of I”. Here Z¢ and I” correspond to Gibbs’
and Helmholtz’s free energies in the thermodynamics respectively. We expand the
effective action in powers of the external momenta as®

4G o b =—T j A= Py (Fer P 6) +O Orffes Dues b)) @-4)

In the tree approximation — P, is the sum of all non-derivative terms in the
Lagrangian density, To investigate the properties of the spontaneously broken
theory, we define the effective potential by

P(@) =P.(f.=¢:=0,d.=¢), (2-5)

where ¢ is a constant. The above definition shows that the effective potential is

the generating functional for single particle irreducible Green’s functions of the

scalar field at zero momentum. The purpose of this section is to get the explicit

temperature dependence of the effective potential in the one-loop approximation.
Now we begin with the following Lagrangian:

Loge

- R N PN
L= =P 04+ 9506 (0,9) = S0~

St 00 0ot L0 3y — s L
=“¢7‘0¢+go¢¢¢_?(ap¢> 2ﬂo¢ 4l o

1 Nogos—Ls, e L[ 1 1 2.6
+<”z; 1)go¢¢¢ Loude 4!< 5 1)xo¢, (2-6)
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where

=u’+0m’, g= go_, A= 'li- 27

Z, Z,
In Egs. (2-6) and (2-7) /), ¢y and A, are temperature-independent parameters
and 64, Z, and Z; are in general temperature-dependent in the finite temperature
system. We have not explicitly written the renormalization constants of field ope-
rators as they are not necessary for our estimation of the effective potential. Fol-
lowing to Jackiw'® the effective potential for our Lagrangian is given at zero
temperature by

P =-;—u2$2+4l!z¢4—_j 1n<k o x¢)

@2n )‘

. ~
+i j(;zné“ In det(Zk-7+9¢)

+i<exp (i Id“x.,f,((/?, 6, 6, $)>>. 2.9)

The last term of Eq. (2-8) summarizes the following operation. Calculate the
vacuum expectation value of (exp (ifd'x_L})) ,where _L;is the interaction Lagrangi-
an after the replacement (/)—>¢+$ in Eq. (2-6); keep only the connected single
particle irreducible graphs; delete an over all factor of space-time volume [d'x.
At finite temperature we have only to replace (see Appendix B)

j‘d“k—>2i7:T 5 jd%

2nnT for bosons,

k4 _>{
@n+1)aT for fermions, (2-9)

where 7 denotes the integer. Then the effective potential at finite temperature is
given in the one-loop approximation by

P =%/f¢”’+ %w

LI 4r2n2T2+/o toutt

+—'1 Zf(

ey
Ty j(‘z kondet(ik-y+i@n+DaTrtged).  (2-10)
Note that we have replaced z*, A and g by the renormalized temperature-dependent

parameters /7, Ar and ¢r in the last two terms of Eq. (2-10). If we employ
i, A, and ¢, instead of the temperature-dependent parameters, there appeares a
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complex thermodynamical potential as can be seen in Ref. 9). This is because the
scalar meson mass on the third term in Eq. (2-10) is given by #2414 2{$>* where
{$> is the value of ¢ when the effective potential takes its minimum. For the
requirement of spontaneous symmetry breaking x,* must be negative. So the scalar
meson mass takes the negative value when the temperature tends near to the
critical temperature because then <$> approaches zero. To avoid a complex ther-
modynamical potential, we adopt the loop expansion in terms of the temperature-
dependent parameters /7, 2y and g7 as in Eq. (2-10). Then the scalar meson mass
is given by ﬂT2+%lT<$>2 which is found to be always positive. The temperature
dependences of our parameters are decided by the renormalization conditions. The
sum on 7z in Eq. (2-10) diverges; we evaluate them by the trick used in Ref. 9).
Then it follows

S In(r T+ E) :% {L;B +T ln[l —exp( —%EB> }}
+ (terms independent of Eg), (2-11)
S In det(ik-y+i@n+ 17T 7+ 000)

=23 1In{Cn+1)*7*"T*+ E&*}

:i{gE%—Tln[l-FeXP(—%EFﬂ}

+ (terms independent of Ep), (2-12)

where
Eg=F+M*=F+ 1 +1% 2r¢?,
Bl =E4mi =+ 074" 2-13)

Consequently the third and the fourth term of Eq. (2-10) can be written apart from
unimportant terms as

(3rd term) = (_g%{g?_FT 1n[1—eXP<_—%EB>:|}

_pepy, (2-14)
&% (E 1
(4th term) = —4 j'('zﬁ{ LT ln[l-l- exp (-_T_EF>]}
:PF1+PF2- (215)

As can be seen from Egs. (2:13) ~(2-15), the fourth term is always real but the
third term takes a complex value for M*<(0. In our perturbation scheme, M and
m accord with the relevant physical masses at the value of ¢ giving the minimum
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of P($) which corresponds to the thermodynamical potential density. The third
term, consequently, can be real around such a value of $ in contrast to Dolan
and Jackiw model, in which A can accord with the physical mass at zero tempera-
ture only.

Then we can evaluate Pg’ and Py as

PE=T j(_%? 111{ —eXp<—%EB>}

__ ga:ﬂ + .].2‘442.T % In (ZM?) + O (M?), (2-17)
Pgl= —4T (;an; In {1 + exp <-— ‘;,,—‘EF>}

- 1.8_T“ 12T +1_.. In(zm?) +0(m*), (2-19)

where the last terms of Eq. (2:17) and (2-19) are finite. In § 3 M and m will
be shown to be very small parameters at ¢ giving the minimum of P($).
Owing to Egs. (2-16) ~(2-19) the effective potential is given by

P<¢>=—/102¢ 5 xqs +—0ﬂ02<15 + 1 <Zl )zoq?‘

F(2) r( 2) i, My, mP g

M+ 7 T + TP TP O(M?E, mY). (2-20
3272 s ™ o4 1 Ty IO, mY. (2:20)

We can see from Egs. (2:13) and (2-20) that the effective potential can be

renormalized by the mass and the coupling constant renormalizations. We define

the renormalized parameters by the conditions:

&Pl _, ., d'P|

R i 2.21
dgri T dgte T (2-21)

and require 0/, and 0%,= (Z,7'—1) 1, cancel the divergent terms in Eq. (2-20).
Then it follows:

2
ﬂT2:ﬂ02+"7'6'1_<%KT+gT2>, lz':lo- (2‘22)

We replace gr by ¢, as it is not necessary here to distinguish them. Finally the
renormalized effective potential in our approximation is given apart from irrelevent
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divergent constant by

N ~ N 2 2
P(¢) =—é—ﬂf¢"+%xr¢‘~g—OT4+-Z»

1 41’ (2-23)

§ 3. Thermodynamical consideration

We will apply the results in the previous section to the system of quarks and
scalar bosons (the hadronic matter). We assume that the quarks and the scalar
bosons are confined in a constant volume V), and calculate the relevant thermo-
dynamical quantities. The minimum of P ($) with respect to ¢ is realized thermo-
dynamically and corresponds to the thermodynamical potential density. We obtain
the value of ¢ giving the minimum of P($) by the equation:

0P(<$)i ( 2 }ko’\2>" 0
0L \P) = ) =0, 3.1
R O (3D
which leads to
N2 617"
@yt=—Sro (1., (3-2)
0
where
1 for x>0,
0(x) = {
0 for x<0.
Then the thermodynamical potential density P (T") is given by
» 3 u 1 ] ) . T? .
PIy=—="20T,—T) —=T*'"+ = —u". 33
@) ==3 401y -1 T 39

On the other hand, we can get the critical temperature of the hadronic matter
from Eq. (2-23) as a function of the renormalized parameters as follows:

2
T = T;fli’ ) (3-4)
=2 (20 +22), (3-5)
by the condition:
2P (4) |
/msgﬁg%ﬂﬂL (3-6)

Then y;,* is represented as

ut=AT—TY), (37
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and Eq. (3-3) is rewritten as follows:

P=P(()) == AT =T N0 (To~T)
0
A 7
+ =TT =T —=T". 3-8
24 ( ) 26 (3-8
The physical masses of a quark and a scalar boson are given by
M=—22T -1 H0(T.~T), 39)
0
M=—-AT*-T2) {30 (T.—T) —1}. (3-10)
From Eq. (3:8) we can get easily the entropy density s:
0P (T) 6A* 2 2 A 2 2
="l ="T (T -THOT ., —T) —=T 2T*-T,
s T 2 ( )0 ( ) 12 ( )
7T2
+€T3, (3-11)
the energy density e:
_ 2
e=P4Ts= ?;;1 BT+ T (T —~T (T —T)
0
A 3
—ATBT T + 2T, .
21 ( ) +207Z (3-12)

and the specific heat c,:

6 2
cy=08 SA T 3T T (T —T) AT 6T ~T 2 + 22T . (3-13)
0T A, 12 5
= g& Gev
10°F
r
[ — g2/km =013 —_—
——— 0.088
020 ____ 0.059 0t —
0.191
0.18f L
017k sz’ | T gg/4m=0.13
of  =—- 0.088
0.16f — 0.059
1 1 1
0.155 05 10 15 20 NG X 3%
e/ec ' T (Gev) ‘
Fig. 1. Temperature T as a function of &/e.. Fig. 2. Specific heat (1/¢.) (0¢/0T) as a function

of T.
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We shall need to impose some sort of

. - . . Mg (GeV)

weak coupling condition in order to justify
. ———— 02/47Z=0.]3

the use of the perturbation theory. On the 0.6 0.088
other hand stronger coupling is desirable to o 01059
satisfy the condition (1-3) and to get the 0.4 X
low critical temperature, as shown by Eqgs.
(3-1) and (3-13) respectively. First we 02
settle 7, and 2, as follows: 0

T.=0.17 GeV, (3-14)

: 0 i 7
=2, (3-15) e/e
4r

M (GeV)
then we choose the value of ¢, which

satisfies both the conditions (1-3) and
(9s°/47) <1. For some values of g,2/4w, we
calculate the energy density ¢ and the specific

e g#m=0.3

0.06

0.04
heat ¢, as functions of 7" (Figs. 1 and 2).
We regard that Ve corresponds to the mass 0.02E:
of hadronic matter, where V, is the volume
of the system. We obtain the critical mass 0
1 1
M,: 0 I e/e, 2
M, ziTCZTCAV:inZTC‘iﬂ< L)S Fig.3. (a) The quark mass as a function
20 m, of S/EC.
(b) The scalar boson mass as a
~0.87 GeV, (3-16) function of &/¢..

where we have assumed that the radius of hadronic matter is given by the compton
length of pion. It is surprising indeed that the order of magnitude is consistent
with the mass of a hadron. From our formulation it is clear that the critical mass
also depends on the freedom of the boson and the quark field, so that the value
itself is not to be taken seriously. The physical masses of the quark and the scalar
boson are evaluated as functions of 7' and ¢ respectively (Fig. 3). The level
density of the hadronic matter is given by the formula:

0 (My) =exp (S(My)), (3-17)
where S(M,) is the entropy of the hadronic matter and it is derived as follows:
2 3/4
S (M) = L <@;> M AV VA (3-18)
5 \3rn
M, (3-19)

<1, T

wn2ate Le
from Egs. (8-11) and (3:12). This means that the level density of the hadronic
matter below 7T, agrees with the one of the statistical bootstrap model.
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§4. Concluding remarks

We have studied the phase transition of the hadronic matter in renormalizable
field theory at finite temperature. It has been shown that one could get low critical
temperature even for weak couplings to justify the one-loop approximation for the
effective potential. Temperature may turn into an important parameter in the field
theory for the strong interaction if the critical temperature is sufficiently low as

given in this paper.

Appendix A

When we study the phase transition, the corresponding long range order-
parameter (for example, ¢: the thermal average of ¢) is introduced and the con-
jugate external potential J to ¢ is added to the system.”” In this case the partition
function Z(J) is given by

Z(J) =Tr{e "7/}
:Tr{e—H/T<exp<j‘0‘/Tdu J¢(u)>>+}’ (A1)

where ¢ (u) =e*#pe ", the u is the imaginary time. The proof of the equality
(A-1) is given as follows.

If e %P = ¢ *HJ (), then we get the differential equation U(x) by differen-
tiating both sides by =z,

V(%) ~B)U (=), @A-2)
0x
where B(x) =¢"#Be™®, Equation (A-2) is rewritten as

U(z) =1— fB(u)Uw)du. (A-3)

From Eq. (A:3) the U(x) is formally obtained using the time-ordering trick as

U (z) = {exp<— LIB(u)du>}+. (A-4)

If B=—J¢ and X=1/T, we get Eq. (A-1). Furthermore, we can extend Eq.
(A-1) to the system with the time-dependent and space-varing external potential®®
by replacing [¥*duJd (u) with

£ M j_wwdr T, ) (ry u) = jd‘x S (@) ¢ ().

Appendix B

From Eq. (A-1) it is found that the time-evolution of ¢ at finite temperature
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is described with the imaginary time. Therefore. it is convenient to use the tempe-
rature-Green’s function (Matsubara Green’s function), which is defined as

N Tr{e ™ (3 (2) ¢t (@)}
Gz, z')=—-—""1 le-'_(eiH-/T) s B-1)
where ¢ (x) is the Bose or Fermi field operator and ¢ (x) = ¢*#$ (r) ¢ ™. G(x, x")
obeys the following boundary condition with time,

G(u,u’)=G(u—u")
{—I—G(u—u’—l—l/T) for the Bose field,

B-2)
~Gu—u"+1/T) for the Fermi field.

Therefore the Fourier transformation of G with respect to time is given by
Gu—u') =3 G(@w,) e (B-3)
n

with w,=272T for the Bose field and w, =7 (22-+1) 7 for the Fermi field (7 is the
integer).
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