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We consider hadronic matter to be composed of quarks and self-interacting bosons and 
calculate the effective potential in the one-loop approximation in renormalizable field theory. 
We also calculate the relevant thermodynamical quantities and show that 
a) a phase transition of the second kind can arise at temperature T=0.17GeV, 
b) the level density of hadronic matter agrees with the one of the statistical bootstrap model 
below the critical temperature and 
c) our model may predict good fits to the experimental transverse momentum spectra in 
particle production if based on a fireball model. 

§ I. Introduction 

It is well known that the inclusive transverse momentum spectra dGjdPl for 
the reaction 

has the form 

a+ b----7c +anything 

~~exp{- (PT2+mc2)1f2jT} 
dPT2 

(1·1) 

at small PT(PT<1 GeV jc) and that T is roughly constant independently of the 
incident energy. This is very surprising, and so we can expect that a thermodynami­
cal equilibrium (we refer it to a hadronic matter or a fireball) is instantaneously 
reached after the collision. The thermodynamical model proposes a two-step pic­
ture-the production and subsequent decay of fireballs. The statistical bootstrap 
modelD, 2> gives an explanation for the constant temperature. The bootstrap condi­
tion (a fireball is a statistical equilibrium of an undetermined number of all kinds 
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Phase Transition of Second Kind in Hadronic Matter 491 

of fireballs) predicts the existence of a maximum temperature T 0 and also the 
divergence of the thermodynamical potential in T>T0, i.e., a phase transition of 

the zero kind at T 0• 

On the other hand, remarkable deviation from the form (1·1) has been ob­
served at large Pr(Pr"?:.-1 GeV/c).3l~5l One can get a first approximation for the 
inclusive transverse momentum spectra at large P T by assuming the form for the 

effective temperature 

(1·2) 

m Eq. (1·1) ,6l where Ecm is the incident energy in the center of mass system. 
In the inclusive reaction, we observe that the hadrons are produced from fireball 
of various masses even at a definite incident energy, and so we can get the form 
(1·1) at small Pr if we assume that multi-fireballs with small mass are also 
produced peripherally. Then the constancy of the temperature at small mass and 
the increase at large mass must be ensured by 

lim dJl4 f':?> lim dM f, 
r~r,-o dT T~T,+O dT 

(1· 3) 

where 111! is the mass of a fireball. This means a phase transition of the second 
kind. It was suggested by Eliezer and W einern that a hadronic matter might 
undergo a phase transition of the second kind based on Weinberg model. sl Dolan 
and Jackiw derived the critical temperature by a functional-diagrammatic evaluation, 
however, their theory is renormalized at zero temperature and so draws an effective 
potential of complex number. 

In this paper, we derive an effective potential of a hadronic matter by Dolan 
and Jackiw method, where the renormalization is carried out at finite temperature 
and the hadronic matter is regarded as being composed of quarks and self-interact­
ing bosons. We also show that the predictions of our model are consistent with 
the condition (1· 3) and the level density of the hadronic matter has the form 
exp (- Mt/T,) in T <T,. 

In the next section, we calculate the effective potential renormalized at finite 
temperature in the one-loop approximation. In § 3 we compute entropy, energy, 
specific heat and physical masses of a quark and a boson from the thermodynamical 
potential. Finally we give concluding remarks. 

§ 2. Effective potential 

In this paper we restrict ourselves to a simple model involving only a spinor 
and a scalar fields. At finite temperature the generating functional is defined as 
follows: 

Z(r;, 'lj, J) =Tr(e-H;T {exp( S d 4x(([ir;+7JrjJ+J¢) )} J, (2·1) 
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492 S. Kagiyama, S. Hirooka, H. Kikukawa, J. Kikukawa and Y. Nishiyama 

where H is the Hamiltonian of the system, T is the temperature in energy unit, 
7j, 'lj and J are the external sources, f d4X = n/T duf~oodr and the SUffiX+ denotes that 
the time ordering has been performed. It should be noted that u denotes the 
imaginary time. The generating functional Z (r;, 'lj, J) defined by Eq. (2 ·1) cor­
responds to the partition function in the statistical thermodynamics. The simple 
derivation of it and the related notes are given in Appendix A. By taking the 
functional differentiations of the generating functional we can get the time ordered 
n-point Green's functions. In order to investigate the connected Green's functions 
it is more convenient to define the connected generating functional zc by Z 
= exp ( _zcjT). 

The classical fields are defined by 

1 ozc 
cfJc= ---~ r o'lj' 

and the functional Legendre transformation: 

1 ozc 
rPc= ----

T oJ (2·2) 

(2·3) 

is called the effective action. One particle irreducible Green's functions are given 
by taking the functional differentiations of T. Here zc and T correspond to Gibbs' 
and Helmholtz's free energies in the thermodynamics respectively. We expand the 
effective action in powers of the external momenta as 10> 

In the tree approximation - Pc is the sum of all non-derivative terms in the 
Lagrangian density. To investigate the properties of the spontaneously broken 
theory, we define the effective potential by 

where if; is a constant. The above definition shows that the effective potential is 
the generating functional for single particle irreducible Green's functions of the 
scalar field at zero momentum. The purpose of this section is to get the explicit 
temperature dependence of the effective potential in the one-loop approximation. 

Now we begin with the following Lagrangian: 

(2·6) 
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Jl=f1o2 +0flo2 , (]= io , 
g 

(2·7) 

In Eqs. (2 · 6) and (2 · 7) p02, g0 and Ao are temperature-independent parameters 

and op02, Zg and Z, are in general temperature-dependent in the finite temperature 

system. We have not explicitly written the renormalization constants of field ope­

rators as they are not necessary for our estimation of the effective potential. Fol­

lowing to ]ackiwlll the effective potential for our Lagrangian is given at zero 

temperature by 

(2·8) 

The last term of Eq. (2 · 8) smnmarizes the following operation. Calculate the 

vacuum expectation value of ( exp (if d"xJ: r)) +where J: r is the interaction Lagrangi­

an after the replacement ¢----'>¢ + ¢ in Eq. (2 · 6); keep only the connected single 

particle irreducible graphs; delete an over all factor of space-time volume f d"x. 
At finite temperature -vve have only to replace (see Appendix B) 

{
2m:T 

l:z4 --> 
(2n + 1)nT 

for bosons, 

for fermions, (2·9) 

where n denotes the integer. Then the effective potential at finite temperature 1s 

given in the one-loop approximation by 

( ~ 1 2 ~2 1 .- 4 p ¢) =-j.l ¢ +-},¢ 
2 4! 

_L 11' '' s d3Jc 1 (4-' 2T'+k2.L 2+ 11 ;i2) ,. - .L.l - n "n , , fir -Ar'f' 
2 n (2n) 3 2 

- T I: s-d3!? In det (ik · ry + i (2n + 1) rcTy4 + g r¢). 
n (2rr) 3 

(2 ·10) 

Note that we have replaced f.1 2 , A and g by the renormalized temperature-dependent 

parameters f-1r2 , lr and (]r in the last two terms of Eq. (2·10). If we employ 

f-1 0
2 , }.0 and g0 instead of the temperature-dependent parameters, there appeares a 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/62/2/490/1845924 by U

.S. D
epartm

ent of Justice user on 17 August 2022



494 S. Kagiyama, S. Hirooka, H. Kikukawa, J. Kikukawa and Y. Nishiyama 

complex thermodynamical potential as can be seen in Ref. 9). This is because the 
scalar meson mass on the third term in Eq. (2 ·10) is given by f-l02 + i Ao< ¢l where 
<¢> is the value of if; when the effective potential takes its minimum. For the 
requirement of spontaneous symmetry breaking p 02 must be negative. So the scalar 
meson mass takes the negative value when the temperature tends near to the 
critical temperature because then <¢> approaches zero. To avoid a complex ther­
modynamical potential, we adopt the loop expansion in terms of the temperature­
dependent parameters f-lT, AT and gT as in Eq. (2 ·10). Then the scalar meson mass 
is given by f-ll + i AT< ¢;)2 which is found to be always positive. The temperature 
dependences of our parameters are decided by the renormalization conditions. The 
sum on n in Eq. (2 ·10) diverges; we evaluate them by the trick used in Ref. 9). 
Then it follows 

where 

+(terms independent of EB), 

L:; In det(ik·oy+i(2n+1)nTr4+gT¢) 
n 

= 2 L:; In { (2n + 1) 27!2T 2 + E/} 
n 

+ (terms independent of EF), 

EB2=k2+M2 =P+ttl+i AT¢;2, 

EF2= k2+ m2=k2+gT2¢2. 

(2 ·11) 

(2 ·12) 

(2 ·13) 

Consequently the third and the fourth term of Eq. (2 ·10) can be written apart from 
unimportant terms as 

(2 ·14) 

(2 ·15) 

As can be seen from Eqs. (2 ·13) '"" (2 ·15), the fourth term is always real but the 
third term takes a complex value for M<O. In our perturbation scheme, M and 
m accord with the relevant physical masses at the value of if; giving the minimum 
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Phase Transition of Second Kind in Hadronic Matter 495 

of P ( (/;) which corresponds to the thermodynamical potential density. The third 
term, consequently, can be real around such a value of (/; in contrast to Dolan 
and Jackiw model, in which M can accord with the physical mass at zero tempera­
ture only. 

Then we can evaluate PBi and P/ as 

(2 ·16) 

(2·17) 

(2·18) 

P/= -4T s d 3k ln{1+exp(-l_EF)} 
(2n) 3 T 

(2 ·19) 

where the last terms of Eq. (2 ·17) and (2 ·19) are finite. In § 3 M and m will 
be shown to be very small parameters at (/; giving the minimum of P ((/;). 

Owing to Eqs. (2 ·16) ~ (2 ·19) the effective potential is given by 

P((/;) = ~ /1o2¢ 2+ ~!Ao¢4 + ~ ofl/¢2+ ~! ( ~. -1)lo¢4 

- T( -2) M4+ T( -2) m4- n2 T4+ M2T2+ m2 T2+0(M3 m4). (2·20) 
32n2 8n2 20 24 12 ' 

We can see from Eqs. (2 ·13) and (2 · 20) that the effective potential can be 
renormalized by the mass and the coupling constant renormalizations. We define 
the renormalized parameters by the conditions: 

(2. 21) 

and require Oflo2 and ol0 = (Z,- 1 -l)Ao cancel the divergent terms m Eq. (2·20). 
Then it follows: 

(2·22) 

We replace gT by g0 as it is not necessary here to distinguish them. Finally the 
renormalized effective potential in our approximation is given apart from irrelevent 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/62/2/490/1845924 by U

.S. D
epartm

ent of Justice user on 17 August 2022



496 S. Kagiyama, S. Hirooka, H. Kikukawa, J. Kikukawa and Y. Nishiyama 

divergent constant by 

(2·23) 

§ 3. Thermodynamical consideration 

We will apply the results in the previous section to the system of quarks and 
scalar bosons (the hadronic matter). We assume that the quarks and the scalar 
bosons are confined in a constant volume V,. and calculate the relevant thermo­
dynamical quantities. The minimum of P ((/;) with respect to if; is realized thermo­
dynamically and corresponds to the thermodynamical potential density. We obtain 
the value of (/; giving the minimum of P((/J) by the equation: 

which leads to 

where 

O(x) = {~ for x>O, 

for x<O. 

Then the thermodynamical potential density P (T) is given by 

3 4 2 y2 
P(T) = -- fJ.T O(T -T) _!!_T4+-fJ. 4 • 

2 Ao c 20 24 T 

(3·2) 

(3·3) 

On the other hand, we can get the critical temperature of the hadronic matter 
from Eq. (2 · 23) as a function of the renormalized parameters as follows: 

(3·4) 

(3·5) 

by the condition: 

(3·6) 

Then fJ.l is represented as 

fJ.l=A(T2 -T/), (3·7) 
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Phase Transition of Second Kind in Hadronic Matter 497 

and Eq. (3 · 3) is rewritten as follows: 

F=P((/j)) = -- 3 A 2(T 2-T/f{)(Tc-T) 
2Ao 

+A T2 (T2 _ T 2) _ 7r2 T4. 
24 c 20 

The physical masses of a quark and a scalar boson are given by 

Mq = _(!;_; (T 2-Tc2) {) (Tc -T), 

M.2 = -A(r-Tc2) {38 (Tc-T) -1}. 

From Eq. (3 · 8) we can get easily the entropy density s: 

s=- aF(T) = 6A2T(T2-T 2)8(T -T) _AT(2T2-T 2) 
aT Ao c c 12 c 

+ n2T3 
5 , 

the energy density c: 

c =F+ Ts= 3A 2 (3T 2 + Tc2) (T 2-T /) () (Tc-T) 
2Ao 

_AT2(3T2-T 2) +]_n2T4 
24 c 20 , 

and the specific heat Cv: 

(3·8) 

(3·9) 

(3·10) 

(3 ·11) 

(3·12) 

c =~?_c___= 6A 2T(3T 2-T 2)()(T -T) _AT(6T2-T 2) +2n2T 3 (3·13) 
" aT Ao c c 12 c 5 . 

T 
(GeV 

0.20 
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0.16 

0.5 

g 02 /4rr =0.13 
0.088 
0.059 

2.0 

Fig. 1. Temperature T as a function of c/c,. 
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Fig. 2. Specific heat (1/c,) (ac/aT) as a function 
of T. 
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We shall need to impose some sort of 

weak coupling condition in order to justify 

the use of the perturbation theory. On the 
other hand stronger coupling is desirable to 

satisfy the condition (1· 3) and to get the 

low critical temperature, as shown by Eqs. 

(3 ·1) and (3 ·13) respectively. First we 

settle Tc and Ao as follows: 

Tc=0.17 GeV, (3 ·14) 

(3 ·15) 

then we choose the value of g0
2 which 

satisfies both the conditions (1· 3) and 

(g02/4n) ~1. For some values of go"f4n, we 
calculate the energy density e and the specific 

heat Cv as functions of T (Figs. 1 and 2). 

We regard that Vhe corresponds to the mass 

of hadronic matter, where vh is the volume 

of the system. We obtain the critical mass 

Me: 

=0.87 GeV, (3 ·16) 

fvlq (GeV) 

0.6 

0 

0 

go'/47!=0.13 

0.088 

0.059 

2 

fvl. (GeV) 

0.06 

0.04 

0 

go'/47!=0.13 

0.088 

2 

Fig. 3. (a) The quark mass as a function 
of EjE,. 

(b) The scalar boson mass as a 
function of E/E,. 

where we have assumed that the radius of hadronic matter is given by the compton 
length of pion. It is surprising indeed that the order of magnitude is consistent 

with the mass of a hadron. From our formulation it is clear that the critical mass 
also depends on the freedom of the boson and the quark field, so that the value 
itself is not to be taken seriously. The physical masses of the quark and the scalar 
boson are evaluated as functions of T and e respectively (Fig. 3). The level 
density of the hadronic matter is given by the formula: 

(3 ·17) 

where S (lvfh) Is the entropy of the hadronic matter and it Is derived as follows: 

S (M ) ~ n2 ( 20_) s;4M s;4 V 1!4 

h T>T, 5 3?r2 h h ' 
(3 ·18) 

(3 ·19) 

from Eqs. (3 ·11) and (3 ·12). This means that the level density of the hadronic 
matter below Tc agrees with the one of the statistical bootstrap model. 
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Phase Transition of Second Kind in Hadronic Matter 499 

§ 4. Concluding remarks 

We have studied the phase transition of the hadronic matter in renormalizable 

field theory at finite temperature. It has been shown that one could get low critical 

temperature even for weak couplings to justify the one-loop approximation for the 

effective potential. Temperature may turn into an important parameter in the field 

theory for the strong interaction if the critical temperature is sufficiently low as 

given in this paper. 

Appendix A 

When we study the phase transition, the corresponding long range order­

parameter (for example, (/;: the thermal average of ¢) is introduced and the con­

jugate external potential J to ¢ is added to the system.J2l In this case the partition 

function Z (J) is given by 

Z(J) =Tr{e-CH-J</>)fT} 

(A·1) 

where ¢ (u) = euH¢e-uH, the u is the imaginary time. The proof of the equality 

(A ·1) is given as follows. 

If e-xCH+Bl = e-xHU(x), then we get the differential equation U(x) by differen­

tiating both sides by x, 

0~~x) =B(x)U(x), (A·2) 

where B (x) = exHBe-xH. Equation (A· 2) is rewritten as 

U(x) =1- rB(u)U(u)du. (A·3) 

From Eq. (A· 3) the U (x) is formally obtained using the time-ordering trick as 

(A·4) 

If B = - J¢ and X= 1/T, we get Eq. (A ·1). Furthermore, we can extend Eq. 

(A ·1) to the system with the time-dependent and space-varing external potentiaP3' 

by replacing n/T duJ¢ (u) with 

r~ Joo S Jo du -oodrJ(r,u)¢(r,u)= d 4xJ(x)¢(x). 

Appendix B 

From Eq. (A ·1) it is found that the time-evolution of ¢ at finite temperature 
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is described with the imaginary time. Therefore. it is convenient to use the tempe­
rature-Green's function (Matsubara Green's function), which is defined as 

G (x x') =--T0e-HfT (¢ (x) ¢t i_x)2+}_ (B ·1) 
' Tr(e-HfT) ' 

where ¢ (x) is the Bose or Fermi field operator and ¢ (x) = euH¢ (r) e-uH. G (x, x') 
obeys the following boundary condition with time, 

G(u, u') =G(u-u') 

{+ G(u- u' + 1/T) 

= -G(u-u'+1/T) 

for the Bose :field, 

for the Fermi :field. 
(B·2) 

Therefore the Fourier transformation of G with respect to time is given by 

G(u-u') = ~ G(iwn) eiwn(U-U') (B ·3) 
n 

with wn=2nnT for the Bose field and wn=7r(2n+1)Tfor the Fermi field (n is the 
integer). 
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