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Chapter 1 

Introduction 

 

 

1.1 Colloids 

Colloids are widely used because of their exceptional properties. Beside their importance 

for wide range applications in foods, petrol, cosmetics and drug industries, photonic 

crystal, optical filters and chemical sensor, they are also known as powerful model 

systems to study molecular phase behavior [1]. Particles are regarded as colloids when 

their diameter a is in the range of nanometer to micrometer, although any such definition 

is inevitably imprecise. The lower limit comes from the requirement that the particles be 

significantly larger than the molecules of the suspension medium. The upper limit ensures 

that the particles exhibit significant Brownian motion leading to equilibrium phase 

transitions and particle self-assembly, and that their motion is not dominated by 

extraneous effects such as gravitational and convection. Typically, the diameter of a 

colloidal particle is 103 -105 times larger than that of an atom. This disparity of size has 

several important consequences. Firstly, since the surface tension is proportional to a 

typical energy / a
2, interfacial tensions of colloidal phases are roughly 106 – 1010 times 

smaller than that of the atomic counterparts (Fig.1.1). The weakness of the colloidal 

surface tension means that the interface of the colloidal system can be easily deformed and  
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Figure 1.1: Schematic of the particle domain.  

(a) The typical particle size scale. (b) The corresponding surface tension scale. 

 

thermally induced fluctuations become large and directly observable. Secondly, because 

the time the particle needs to diffuse by its own radius is of the order of a fraction of a 

second, processes can be followed with great time resolution. The large diffusion time 

means that once disrupted or melted a colloidal system will take a macroscopic time 

(seconds, minutes or even hours) to rearrange. This brings a big convenience to investigate 

the evolution of the thermodynamic process in the system. Another important difference 

between atoms and colloids concerns the particle size distribution. The atoms (of one 

isotope) of a particular element are identical. However, with the possible exception of 

some biological materials, colloidal particles inevitably have some distribution of size or 

‘polydispersity’ this size distribution can be tailored to study glass formation and particle 

assembly. 

 

1.2 Colloidal phase behavior 

Over the last few decades, the phase transitions in soft matter have been extensively 

studied. The most outstanding examples are colloidal systems in which the sizes, 

polydispersity and interactions of colloidal particles can be precisely set. For example, a 

rich colloidal phase behavior results from different type of repulsive and attractive 
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interactions (see Fig. 1.2) [2]. The simplest model system to mimic the phase behavior of 

simple atomic liquids and solids is the colloidal hard sphere system. Hard spheres are 

defined as impenetrable spheres that cannot overlap in space and they are non-interacting 

as long as they do not touch. A schematic of the hard sphere phase diagram is shown in 

Fig. 1.2a. The particle volume fraction  is the only parameter to control the phase 

behavior. The system behaves like a fluid as  is lower than 0.494. At 0.494 <  < 0.545, 

fluid and crystalline phases coexist in the system. Above  ~0.545, the crystal phase 

becomes thermodynamically stable. The addition of long-range attractions result in three-

phase equilibria, with a triple point and phase line between liquid and gas ending in a 

critical point, Fig.1.2b. This is the phase diagram we know from atomic and molecular 

systems. For short-range attractions, equilibrium between gas and crystal is found, but the 

gas-liquid equilibrium becomes metastable, Fig.1.2c. In spite of the various forms of these 

phase behaviors, many of their properties have common origins, such as a large number of 

internal degrees of freedom, weak interactions between structural elements, and a delicate 

balance between entropic and enthalpic contributions to the free energy. These properties 

lead to large thermal fluctuations, sensitivity of equilibrium structures to external 

conditions, macroscopic softness, and metastable states.  

 

Figure 1.2: Colloidal phase diagram.  

(a) Purely hard-sphere system, (b) long-range attraction system, and (c) short-range attraction system. 

 

http://en.wikipedia.org/wiki/Entropy
http://en.wikipedia.org/wiki/Enthalpy
http://en.wikipedia.org/wiki/Helmholtz_free_energy
http://en.wikipedia.org/wiki/Thermal_fluctuations
http://en.wikipedia.org/wiki/Softness
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1.3 Interactions in soft matter 

1.3.1 Screened Coulomb and van der Waals forces 

 Well-know Derjaguin-Landau-Verwey-Overbeek (DLVO) theory considers the total 

interaction between stabilized colloids as a sum of attraction and repulsion. The attractive 

Van der Waals interactions, also called London- dispersion forces, arise from the 

interactive forces between instantaneous multi-poles in molecules without permanent 

multi-pole moments. The total potential energy of two spheres of radius R at a center-to-

center distance of r is given by [3];           [                    (       )]  (1.1) 

where A is the Hamaker constant which depends on the polarisablilites of both the 

particles and the solvent. In practice, an estimate of the Hamaker constant is given by [4]:      (      ) (      )   √ (        )  ⁄      (1.2) 

where h is Planck’s constant, v is the characteristic frequency and n1 and n2 are the 

refractive indices of the colloids and the solvent, respectively. When the refractive index 

of the colloidal particle is closely matched with that of solvent, the Hamaker constant is 

infinitely small and the van der Waals attraction is reduced. However, complete 

elimination of van der Waals forces is impossible, since the simultaneous refractive index 

matching at all wavelengths is impossible. Usually, the matching of refractive indices 

occurs at visible wavelengths 

The van der Waals attraction diverges as the gap between the surfaces tend to zero [4]            ( )               (1.3) 

This negative potential has near contact a finite value, but becomes much larger than the 

thermal energy kBT, leading in general to an irreversible aggregation of the colloidal 

particles. The effect of the van der Waals forces is to create a primary minimum in the 

potential near r=2R. Thus one needs to introduce some mechanism providing a large 

positive potential barrier in order to prevent the particles from being trapped in the 

primary minimum. 
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Colloids are mostly charge stabilized leading to repulsive Coulomb interaction between 

them. These repulsive forces act against dispersion forces thus avoiding the irreversible 

aggregation of colloids. In reality, the strong electric potential resulting from the charge of 

the particles attracts free counterions, a fraction of which get absorbed onto the surface 

forming a layer of condensed  

 

Figure 1.3: The schematic description of the DLVO interaction potential. The two dashed lines indicate the 

separate contributions of van der Waals attraction and double-layer repulsion. The solid line represents the 

total potential energy. 

 

counterions [5]. The remaining free counterions form the so-called electrical double layer 

that screens the bare Coulomb repulsion between the charged colloidal particles and 

reduces its range. This leads to an interaction potential that does not scale as 1/r, as for two 

charges in vacuum, but rather exhibits an exponential decay, the Yukawa-type form [6]   ( )  (  )    (   )      ,      (1.4) 

where ϵ0 is the permittivity of vacuum, ϵ is the dielectric constant of the medium and Z is a 

charge incorporating the effect of the finite size of the colloidal particle:         (  )     ,      (1.5) 

where R is the radius of the particle. The inverse Debye screening length κ is given by [4]: 

  √  (  )               (1.6) 
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where c is the density of the free counterions and q their valence. Thus, the screened 

Coulomb potential decays exponentially with the characteristic Debye length D. The 

Debye length can be considered as the range of repulsive potential and corresponds 

approximately to the thickness of the diffuse electrical double layer. For the charged 

colloidal system, the total energy between charged colloids is the sum of the hard 

repulsion for r < 2R, the van der Waals attraction and the electrostatic repulsion (Fig. 1.3). 

The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory is a well-known model for 

describing the interactions in a colloidal system [7]. 

 

1.3.2 Polymer mediated depletion attraction 

Depletion interaction between colloids is induced by adding polymer to a colloidal system. 

When partial or complete depletion of macromolecules occurs between colloids and 

surfaces, the osmotic pressure difference between the bulk and gap regions produces an 

effective attractive potential between the colloids (Fig. 1.4) [8]. The attractive nature of 

this potential can be understood either from a force balance as particles and surfaces being 

pushed / pulled together from the integrated pressure or from an energetic perspective as 

the free energy associated with negative adsorption being minimized by closing the gap 

between particles and surfaces. The range and the strength of the attraction are controlled 

by the size and the concentration of the polymer, respectively. The above-mentioned phase 

behavior of attraction particles (Fig. 2b and c) has been experimentally explored using 

depletion interaction. 

 

Figure 1.4: A schematic illustration of the origin of the polymer-induced depletion attraction between hard 

spheres (spheres). A volume (circles) exists around each sphere into which the center of the polymer coil 

(sketch) cannot penetrate.  
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1.3.3 DNA-mediated attraction 

DNA-functionalized colloidal systems have been recently introduced in soft matter; Due 

to the specificity of the DNA interaction these systems are expected to be a powerful tool 

for guiding the self-assembly of nanometer-and micrometer-sized particles. The 

interactions originate from binding of complementary single-stranded DNA “sticky ends” 

which are coated on the surfaces of the colloids. These “sticky ends” on two different 

colloids either bind directly to each other via complementary sequences or via a ssDNA 

linker sequence introduced in solution. The strength of binding depends on the 

temperature, pH and ionic strength of the solution [9, 10].  

 

Figure 1.5: DNA- driven assembly can either be initiated by the addition of a linker DNA (3-strand system) 

or colloids can be coated with fully or partially complementary ssDNA directly (2-strand system). 

 

1.3.4 Solvent mediated attraction or the critical Casimir forces 

When fluctuating fields are confined between two walls, long-range forces arise. A well-

known example is the quantum mechanical Casimir effect, where vacuum fluctuations of 

the electromagnetic field confined between two conducting plates cause attraction between 

these plates (Fig. 1.6a) [11]. It was predicted by Casimir in 1948 [12], but experiment 

could only confirm in 1980s and 1990s when atomic force microscopy had enough 

sensitivity [13].  A thermodynamic analogue is the critical Casimir force being realized in 

1978 by Fisher and de Gennes [14]. This force arises due to the confinement of 

concentration fluctuations of a solvent close to its critical point (Fig. 1.6b). This force is 

attractive if the boundary conditions are symmetric and repulsive if the boundary 

conditions are asymmetric. The strength and range of this force depend sensitively on the 

solvent correlation length set by the temperature, as recently demonstrated by Bechinger et 

al with direct measurements of the critical Casmir force [15].  The authors used total 

internal reflection microscopy to measure directly the critical Casimir force between a  
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Figure 1.6: (a) Confinement of vacuum fluctuations leads to Casimir forces. (b) Confinement of 

composition fluctuations close its critical point leads to critical Casimir forces. 

 

single colloidal sphere and a flat silica surface immersed in a mixture of water and 2,6 

lutidine near its critical point. 

In this thesis, we use attractive critical Casimir forces between colloids to induce colloidal 

phase transitions, and assemble the particle with temperature as a control parameter. We 

determine the particle pair potential directly and study gas-liquid transition quantitatively 

by tuning the strength and range of the critical Casimir interaction with temperature.  

 

1.4 Solvent phase diagram 

A binary mixture of water (D2O/H2O) and 3- methylpyridine (3-mp) exhibits 

concentration fluctuations when the temperature approaches the critical point of the 

mixtures. A schematic illustration of the solvent phase diagram is shown in Fig. 1.7. 

Outside the loop, water and 3-mp are well mixed and form a homogenous solvent, while 

within the loop, they are separated into water rich phase and 3-mp rich phases. The two-

phase region ends at the critical point with 3mp concentration Cc. For the mixture used in 

this thesis Cc = 0.31. However, the shape and the width of the loop depend on the ratio of 

D2O/H2O in the mixture. The two phase region is maximal when the mixture has no D2O 

and it shrinks with increasing fraction of heavy water concentration [16].  
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By approaching the critical point line from below, the correlation length increases. The 

resulting long-range fluctuations give rise to critical Casimir forces between the particles 

that are suspended in the solvent. These forces cause the particles to aggregate. 

Aggregation appears at the right hand side of the critical point Cc if colloids prefer water 

and at the left hand side when colloids prefer 3mp. In this thesis, we use particles that 

prefer 3-mp and therefore aggregation occurs on the left hand side of the critical point. 

 

Figure 1.7: Schematic illustration of the solvent phase diagram. The solid line is the coexistence curve for 

the solvent mixture Tcx. The gray regions are the colloidal aggregate regions, corresponding to aggregate 

temperature Ta. Ccritical is critical composition of 3mp. When the particle preferred the water-rich phase 

aggregation occurs on the right side of the critical composition (dark gray), and when the particle preferred 

the 3mp-rich phase aggregation occurs on the left side of the critical composition (light gray). 

 

 

1.5 Scope of this thesis 

In this thesis we investigate two major subjects; in the first part, we investigate the crystal-

fluid transition and free energy at colloidal crystal-fluid interface. In the second part, we 

study colloidal phase transitions induced by critical Casimir forces.  

Chapter 2: We describe and discuss the experimental techniques used in this thesis. The 

main techniques are confocal microscopy, dynamic light scattering, temperature gradient 

and particle tracking. The standard sample preparation and particle size behavior are also 

presented.  
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Chapter 3: We present a new temperature-gradient method to grow colloidal crystals using 

thermosensitive particles, and provide a direct microscopic observation of colloidal crystal 

growth. We tune the volume fraction of the colloidal suspension by temperature, and then 

use the temperature gradient to grow colloidal crystal from a colloidal fluid. We use 

confocal microscopy to follow directly the heterogeneous crystal nucleation and the 

advancing interface. We measure the growth velocity of the crystal, diffusion coefficient 

of fluid particles and use them to determine the chemical potential difference between 

crystal and fluid phases. We investigate the effect of impurities on the advancing interface 

and determine the critical force needed to overcome impurity particles from the local 

interface curvature. 

Chapter 4: In this chapter we focus on the equilibrium crystal-fluid interface. We visualize 

the structural transition from the long range order crystal to short range order fluid by 

measuring the possible packing configurations of particles in different phases. We 

establish a direct link between structure and interfacial energy by measuring the free 

energy change across the interface from the 3D particle configurations. The free energy is 

determined directly from the particle configurations. Moreover, we measure the anisotropy 

of the crystal-fluid interfacial tension directly from the thermally excited fluctuations of 

the interface. 

Chapter 5: We perform experimental and simulation studies of colloidal phase transition 

induced by critical Casimir forces. We use confocal microcopy to observe these phase 

transitions directly. We show that by approaching the solvent phase separation 

temperature, colloidal gas condenses into a liquid and a crystal phase. The particle pair 

distribution function and, therefore, the particle pair potential are measured directly from 

the confocal images. The temperature-dependent range and amplitude of critical Casimir 

attractive force are determined. We use the particle pair potential and van der Waals model 

to examine the gas-liquid transition and compare it with the direct observation. We also 

use the measured particle pair potential as input for Monte Carlo simulation to fully study 

colloidal phase behavior. We find a good agreement between the simulation and the 

experimental results. 

Chapter 6: In this chapter we mainly focus on visualization of colloidal liquid nucleation 

and growth induced by critical Casimir forces. First, liquid nucleation and growth are 

investigated by dynamic light scattering. We find three distinctive regimes: initial 
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nucleation, surface limited growth and diffusion limited growth. We then use confocal 

microscopy to follow directly the nucleation and growth process. We measure the density 

profile of liquid clusters and define the critical size of nuclei. The distribution of the 

cluster size is used to determine the cluster free energy barrier, and compare with classical 

nucleation theory predictions. We measure the interfacial tension and the chemical 

potential difference between gas and liquid particles and we find that these quantities are 

directly related to the degree of supersaturation. 

Chapter 7: In the last chapter we study the morphology of fractal structures by combining 

experimental control of critical Casimir forces and Monte Carlo simulations of diffusion-

limited aggregation. Experimentally, using temperature-quench we assemble particles into 

aggregates with well-defined morphology. We elucidate the relation between their fractal 

dimension and the depth of temperature quench directly by imaging the resulting 

structures at the particle scale. In the simulation, we use Monte Carlo simulations of 

diffusion-limited aggregation with finite particle dissociation probability to model the 

aggregation process, and relate the resulting structures directly to the attractive potential 

strength.  

  



Chapter 1: Introduction 

 

12 
 

Bibliography 

 

[1]  P. Pusey, Colloidal suspensions, UK.  

[2]  V. J. Anderson and H. N. W. Lekkerkerker, "Insights into phase transition kinetics from colloid 

science," Nature, vol. 416, p. 811, 2002.  

[3]  W. R. Schowalter, colloidal dispersions, Cambridge: Cambridge university press, 1989.  

[4]  J. Israelachili, Intermolecular and surface forces, London: Academic press, 1992.  

[5]  D. H. Eerett, Basic principles of colloid science, London: Royal society of chemistry, 1988.  

[6]  L. D. Landau, and B. V. Derjaguin, "Theory of the stability of strongly charged lyophobic sols and of 

the adhesion of strongly charged particles in solution of electrolytes," Acta Physicochim USSR, vol. 14, 

p. 633, 1941.  

[7]  E. J. W. Verwey, and J. T. Overbeek, Theory of the stability of lyophobic colloids, Amsteram: Elsevier, 

1948.  

[8]  S. Asakura, and F. Oosawa, "On interaction between two bodies immersed in a solution of macro-

molecules," J. Chem. Phys., vol. 22, p. 1255, 1954.  

[9]  A. Paul Alivisatos, et al, "Organization of "Nanocrystal molecules" using DNA," Nature, vol. 382, p. 

15, 1996.  

[10]  M. E. Leunissen et al, "Switchable seft-protected attractions in DNA-functionalized colloids," Nature, 

vol. 8, p. 590, 2009.  

[11]  K. A. Milton, The Casimir effect, Singapore: World scientific, 2001.  

[12]  H. B. G. Casimir, Proc. K. Ned. Akad. Wet., vol. 51, p. 739, 1948.  

[13]  U. Mohideen and A. Roy, "Precision Measurement of the Casimir Force from 0.1 to 0.9μm," Phys. Rev. 

Lett., vol. 81, p. 4549, 1998.  

[14]  Gennes, M. E. Fisher and P.-G. de, "Physique des Colloides," C. R. Acad. Sci. Ser. B, vol. 287, p. 207, 

1978.  

[15]  C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, C. Bechinger, "Direct measurement of critical Casimir 

forces," Nature, vol. 451, p. 172, 2008.  

[16]  Z. P. Visak, L. P. N. Rebelo and J. Szydlowski, " The hidden phase diagram of water+ 3-

Methylpyridine at large absolute negative pressures," J. Phys. Chem. B, vol. 107, p. 9837, 2003.  

 
 

 

 

 



13 
 

 

 

 

Chapter 2 

Experimental Techniques 

 

 

In this thesis, we investigate colloidal phase behavior and the interfaces at the particle 

level in both real space and reciprocal space. The particle sizes are in the range of several 

hundred nm to m, therefore, the standard experimental methods used in this thesis are 

light scattering and confocal microscopy. Below we describe in detail the basic principle 

of each techniques and the information obtained by them. We also show the standard 

methods of sample preparation, particle size measurement and temperature control 

techniques. 

 

2.1 Dynamic light scattering 

When colloidal particles are suspended in a solvent, the particles exhibit a random motion 

called Brownian motion. Each particle exhibits a zigzag motion, and its motion is 

uncorrelated with the other particles in very dilute suspensions. As light scatters from the 

moving particles, this motion imparts a randomness to the phase of the scattered light, 

such that when the scattered light from two or more particles is added together, there will 

be a changing destructive or constructive interference. This gives rise to time-dependent 
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fluctuations in the intensity of the scattered light, known as “speckle patterns”. The 

fluctuations are quantified by the intensity autocorrelation function [1, 2] 

        


T

T
dtqIqI

T
qItqI

0

,,
1

lim0,,     (2.1) 

where q is the scattering wave-vector, I(q,0) and I(q,t) are the scattered intensity at time 0 

and time t, respectively. The brackets denote an ensemble average. The scattering wave-

vector is directly related to the laser wave length λ and scattering angle θ as 

q = (4π/λ)sin(θ/2)       (2.2) 

A sketch of the light scattering setup is shown in Fig. 2.1. 

In Dynamic Light Scattering (DLS) measurements, the time fluctuations of the scattered 

intensity are sent into a correlator that calculates the normalized intensity correlation 

function in real time as  

     
  2

1 ,0,
,

qI

tqIqI
tqg       (2.3) 

where  qI  is the ensemble averaged scattered intensity. For simple diffusion of the 

particles, this correlation function decays exponentially with time as 

   tDqtqg
21 2exp,       (2.4) 

where D is the diffusion coefficient. The hydrodynamic radius R of the particles is 

determined directly from the diffusion coefficient using the Einstein-Stokes relation: 

 

Figure 2.1 : Schematic configuration of the light scattering setup. 
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D

Tk
R B

6
        (2.5) 

where  is the viscosity of the solvent, kB is Boltzman’s constant, and T is temperature of 

the solvent. 

 

2.2 Confocal microscopy 

2.2.1 Confocal microscopy setup 

The Laser Scanning Confocal Microscope (LSCM) was invented in 1957 by Marvin 

Minsky [3]. The confocal microscope uses point illumination and a pinhole in an optically 

conjugate plane in front of the detector to eliminate out-of-focus light. Only the light 

within the focal plane is detected, so the LSCM provides 2D sections though a 3D 

specimen. As only one point is illuminated at a time in LSCM, 2D or 3D imaging requires 

scanning over a regular raster (i.e. a rectangular pattern of parallel scanning lines) in the 

specimen. The thickness of the focal plane is defined mostly by the point spread function 

due to the diffraction through the circular aperture (pinhole).  

 

 

Figure 2.2 : Schematic configuration of the confocal microscope setup. 
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A LSCM shows much better contrast than a conventional microscope because the detector 

pinhole blocks most scattered and out of focus light. Also, scattered light is reduced 

because only a small part of the sample is illuminated. Fluorescent samples give good 

contrast because a filter can block out everything except the fluorescent wavelengths. With 

a dichroic mirror, a single objective can be used so that the laser and the fluorescent light 

go through the same objective (Fig. 2.2). A conventional LSCM can take an image in 

about one second. Here, we use a recent fast Zeiss LSM 5 Live confocal microscope that 

can acquire up to 120 frames per second at a resolution of 512 by 512 pixels.  

 

2.2.2 Data acquisition 

The most widely used particle tracking algorithm was introduced by Crocker and Grier in 

1995 [4]. By assuming the particles appear as spherical bright spots on a dark background, 

the software defines local brightness maxima within an image as candidate particle 

locations. Then the tracking algorithms remove the undesired noise and long wavelength 

contrast gradients using a spatial band pass filter. A centroid algorithm finds the center of 

particles by locating the brightness weighted center of mass of the bright spots. With this 

refinement procedure the coordinates of the particle centers can be obtained with sub-pixel 

resolution down to less than 1 / 10 of the pixel size. We show an example of the different 

stages of the particle tracking procedure in Fig. 2.3; the confocal image (a), the image after 

using the spatial band pass filters (b), and the determined particle centers, shown as the 

black dots within the white spots (c). 

 

 

Figure 2.3 : Particle tracking procedure: 

(a) A confocal image. (b) The image after using spatial band pass filter. (c) The particle centers are shown as 

the black dots within the white spots. 
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One of the most advanced features of the software is linking particle locations into 

trajectories. The program matches up locations in each image with corresponding 

locations in later images to produce particle trajectories. This requires determining which 

particle in a given image most likely corresponds to one in the preceding image. Linking 

particle positions into trajectories is only feasible if the typical single particle displacement 

between subsequent images is sufficiently smaller than the typical inter-particle spacing, a. 

Otherwise, particle positions will become inextricably confused between snapshots. The 

optimal cutoff parameter falls in the range of ≤a/2. Any particle with no match in the 

successive frames is considered to be lost. Such particles are generally detected at the 

boundaries of the images where the particles move in and out of the field of view. 

 

2.3 Sample and sample cell preparations 

Below we describe in detail the preparation method to obtain the monodisperse colloidal 

samples used in this thesis. We used colloidal poly-N- isopropylacrylamdie (pNipam) 

particles that are cross-linked microgel spheres. The spheres swell in water at room 

temperature, but shrink and undergo a reversible volume transition above the critical 

solution temperature [5-8]. In the swollen state, the density and refractive index match 

closely that of the solvent, preventing settling of the particles for several weeks and 

allowing to image particles deep inside the bulk of a dense suspension. The particles are 

labeled with a fluorescent dye that allows us to image them with LSCM.  

 

2.3.1 Samples for crystal growth 

For the colloidal crystal growth described in chapter 3, it is important to use a 

monodisperse suspension. In the following we describe the cleaning and preparation steps 

applied to obtain the final sample. The fluorescent Poly-N-isopropylacrylamdie microgel 

suspensions were obtained from Zhibing Hu, University of North Texas. To screen the 

particle charge, LiCl 0.005 M was added to the suspension. The sample contained a small 

amount of larger particles (impurities) which were removed by centrifuging. To do this, 

the stock suspension was diluted five times with water, and was subsequently concentrated 

by centrifugation at a speed of 7500 rpm for 30 minutes. Because of the larger size, the 

impurities settled faster than the rest of particles. By taking out the upper half of the  
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Figure 2.4: An image of glass sample cell used for crystal growth. pNipam suspension (pink) is filled in the 

middle of the cell, covered by a microscope slide and glued by Bevat 2- hydroxyethylmethacrylaat (yellow). 

 

suspension, we achieved a uniform pNipam colloidal suspension. In order to not waste the 

sample, the bottom half of the suspension was diluted and concentrated subsequently five 

times. To obtain the final sample, the monodisperse suspension was then centrifuged with 

a higher speed for a longer time (9000 rpm, 100minutes) and subsequently water was 

removed with a pipette. The concentrated suspension was then diluted to an effective 

volume fraction of 55 %.  

We prepared a sample cell by making a hole of 10 x 2 x 1 mm in the middle of a 75 x 25 x 

1 mm glass slide. To avoid contamination, the glass slide was soaked in chromic acid for 

one day, rinsed several times with Millipore water, and then dried in a vacuum oven. One 

side of the glass slide was closed by a microscope cover glass with dimensions 15 x 32 x 

0.19 mm, glued by a dilute Bevat 2- hydroxyethylmethacrylaat solution. After curing by 

UV light for one day the cell was ready for use. We filled the suspension in the blank cell, 

which we covered by a microscope slide, sealed with 2-epoxy components glue. The final 

sample cell is shown in Fig. 2.4. 

 

2.3.2 Samples for critical Casimir effect 

The second part of the thesis (chapter 5-7) deals with the aggregation and phase transitions 

by critical Casimir forces. The samples for these studies were prepared by suspending the 

pNipam particles in a mixture of 3-Methyl Pyridine (3MP), water and heavy water. The 

range and amplitude of the force depends not only on the temperature, but also on the 

concentration of liquid components [9-11]. In this thesis, we investigate the temperature 
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Figure 2.5: Images of binary mixture in glass sample cells. 

 (a) Below the solvent separated temperature, a homogenous mixture is observed, (b) Above the solvent 

separated temperature, the mixture separates into 3mp-rich phase (above) and water-rich phase (below). 

 

dependence of the critical Casimir forces using two types of quasi two-component solvent. 

The first quasi two-component solvent consists of 3MP and water (H2O and D2O) with 

mass fractions of 0.25 and 0.75, respectively, and on the left side of the critical 

concentration Cc = 0.31. This solvent mixture separates into 3MP-rich and water-rich 

components upon heating to Tc x = 52.2 °C (see Fig.2. 5) and will be used to investigate the 

colloidal gas-liquid transition in chapter 5. The other mixture has 3mp mass fraction of 

0.28, and is closer to the critical point. This solvent mixture separates into 3MP-rich and 

water-rich components upon heating to Tc x = 39.5 °C. It will be used to investigate liquid 

nucleation and morphology of cluster aggregate in chapter 6 and 7. The change of solvent 

composition allows us to investigate the influence of the solvent composition on the 

particle pair potential (see chapter 5). pNipam particles with a weight fraction of ~0.3% 

are suspended in the binary solvent. The advantage of these particles is that their refractive 

index and density match closely that of the binary solvent, making the suspension 

transparent, and preventing particle sedimentation. We find that these particles are stable 

in the 3mp-water mixture over at least several months. The suspension is filled in a 0.2 x 

4.0 mm clean glass capillary and the capillary flame sealed to avoid solvent evaporation.  

 

2.4 Measurement of particle size 

Particle volume fraction is the unique parameter controlling the crystal-fluid transition in 

hard sphere system. In our system, we tune the particle volume fraction by controlling the 
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pNipam colloid size using temperature. In order to know precisely how the particle size 

changes with the temperature, we investigate the temperature dependence of the particle 

radius using dynamic light scattering techniques. 

 

2.4.1 Sample preparation for dynamic light scattering 

We diluted the monodisperse suspension to particle volume fraction of 0.5% by adding 

water. The suspension was then filled into a quartz curvet and the curvet was thoroughly 

closed by a cap and well winded by parafilm to avoid solvent evaporation. We embedded 

the curvet in the scattering chamber, which was connected to a thermostat to control its 

temperature. We fixed the scattering wavelength q=0.37 m-1 by fixing the scattering 

angle at  = 90o. The incident laser beam has a scattering wavelength at  = 632 nm. We 

measured the scattered intensity I(t) and the reduced correlation function g
1
(q,t) as a 

function of time to determine the particle size.  

 

2.4.2 Experimental results and discussion  

We show the reduced correlation function at T = 20 oC in Fig.2.6a. The best exponential fit 

to the data gives the diffusion coefficient D = 0.308 m2/s. Using the viscosity of water at 

20 oC,  = 1.002 Pas, and the Stokes – Einstein relation, we obtain the hydrodynamic 

radius of the pNipam particles Rh = 694 nm. We gradually increased the temperature from 

20 oC to 40 oC in steps of 1 oC, and equilibrated the system for 30 minutes at each step 

before making a new measurement.  

The resulting correlation functions of the pNipam suspension at different temperatures are 

shown in Fig. 2.6b. Single exponential functions are observed at all investigated 

temperatures. With increasing temperature, the correlation functions are shifted to the left 

indicating an increase in the diffusion coefficient, which reveals a decrease of the particle 

size with increasing temperature.  The curves are clearly divided into two groups, 

indicating that the diffusion coefficient changes rapidly when the temperature increases 

from 32 to 33 oC. The resultant average hydrodynamic radius of the particles as a function 

of temperature is shown in Fig. 2.7 (solid triangle). The radius of the particle decreases 

from 694 nm at 20 oC to 345 nm at 38 oC, a decrease by a factor of 2. In detail, when the 
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temperature increases from 20 to 32 oC, the particle radius decreases slightly from 694 to 

639 nm and it decreases rapidly when the temperature is in the range of 32-36 oC. 

However, the particle radius is almost constant when the temperature is above 38 oC. This 

is in good agreement with earlier observations [5- 8].  

We examine the reversibility of the particle size change by measuring the particle radius 

with decreasing temperature. The values are shown as open squares in Fig. 2.7. In general, 

both data sets are consistent. However, at 32, 34, and 36 oC the values show larger 

 

Figure 2.6: Reduced correlation function, measured by means of dynamic light scattering, of pNipam 

suspension at  = 0.005. (a) At T = 20 0C, experimental measurements (squares), and best single exponential 

(solid line). (b) At different temperatures, single exponential functions are observed at all investigated 

temperatures. 

 

Figure 2.7: Hydrodynamic radius of pNipam particle as a function temperature; solid triangle-measured 

with increasing of temperature, open square-measured with decreasing of temperature. 
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deviations. We associate these deviations with the rapid change of particle size at these 

temperatures. Here, a longer waiting time is needed for the system to reach the final 

thermal equilibrium.  

 

2.5 Temperature-control setup 

In this thesis, temperature is the key parameter controlling the colloidal phases. On the one 

hand, we use the temperature to tune the particle size to control the growth of large 

crystals, while on the other hand we use temperature to control the amplitude and range of 

the critical Casimir forces via fluctuations of binary solvents. The detail of the 

temperature-control setup is described below. 

A photo and a schematic of the temperature setup are shown in Fig.2.8. A temperature 

stage is directly connected to a thermostat by a water loop. The thermostat controls the 

average temperature of the sample and the microscope objective with a stability of 0.02 

oC. For the critical Casimir experiments (chapter 5, 6 and 7), the sample cell is mounted 

directly on the surface of the stage using thermal paste. 

To guide the crystallization from its melt (chapter 3 and 4), we introduce a temperature 

gradient using peltiers. These peltiers are mounted on opposite sides of the temperature 

stage and they are placed upside down with respect to each other. A voltage is applied to 

both elements, the upper plate of one peltier warms up with respect to the water bath while 

the upper plate of the other peltier cools down. This results a temperature gradient from 

 

Figure 2.8: (a) An image of the temperature gradient setup and (b) its schematic configuration used for the 

crystal growth experiment. 
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left to right. A thin copper plate, 0.5 mm thick, is placed on top of the two peltiers in order 

to have a linear temperature profile. Finally, a sample cell is mounted on top of the thin 

cooper plate using thermal paste.  

We use an infrared camera to check the temperature profile of our sample cell. An infrared 

image of the pNipam sample cell at an applied electric current of I = 0.7 A, and a voltage 

of U = 3 V is shown in Fig. 2.9a. Different colors in the image correspond to different 

temperatures (see the color scale on the right). This way, we measured the temperature 

across the sample cell as function of applied electric current. The resulting temperature 

profiles, for different electric currents at U = 3 V, are shown in Fig. 2.9b. The data 

confirms that, to good approximation, the temperature is a linear function of the distance. 

 

 Figure 2.9: Temperature gradient of sample cell: (a) an infrared-camera picture of the sample cell at U = 

3 V and I = 0.7 A. (b) Temperature as a function of distance across the cell, measured with an infrared 

camera at U = 3 V and different applied electric currents to the peltiers. 
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Chapter 3 

Microscopic observation of colloidal 

crystal growth 

 

 

3.1 Introduction  

Three-dimensional ordered colloidal systems whose lattice constants are comparable to the 

wavelength of visible light have important applications in photonic crystals [1], optical 

filters and switches [2], and chemical sensors [3]. Recently, colloidal crystallization has 

been actively studied [4-8], leading to the development of several methods to control the 

self-assembly of the colloidal particles; for example colloidal epitaxy [9] and space-based 

reduced gravity techniques [10]. 

In this chapter, we show that by using new temperature-sensitive colloidal particles and a 

temperature gradient, we can grow large, equilibrated colloidal crystals. The temperature 

changes the size of the particles, thereby allowing precise control over the crystal growth 

process. We apply a temperature gradient to guide the nucleation of a few crystals, and use 

slow cooling to direct the growth of these crystals. We use confocal microscopy to image 

the entire crystal growth process: heterogeneous crystal nucleation, the advancing crystal-

fluid interface, and the stationary equilibrium crystal-fluid interface at the particle level. 

We determine the diffusion coefficient of particles in the liquid from their mean-square 
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displacement. The amount of supersaturation that drives the growth of the crystals is then 

determined directly from the measured crystal growth velocity and the diffusion 

coefficient. We find that crystals grow perfectly at moderate supersaturations with a 

chemical potential difference  ~ 0.4kBT between the crystal and fluid. Finally, we 

investigate the stability of growth by adding impurity particles. This allows us to directly 

observe the role of surface tension to surmount the impurities during growth and keep the 

interface stable and straight. 

 

3.2 Crystal growth procedure 

We have shown in the preceding chapter that the size of the colloidal pNipam particles 

depends strongly on temperature. The particle diameter changes reversibly from d~1.4 µm 

at room temperature to d~0.7µm at 36.0 oC with a polydispersity of less than 3%. We use 

these properties to control the particle volume fraction in order to drive the crystal growth 

with a temperature gradient. The used temperature protocol is shown in Fig.3.1a. We start 

with a suspension that is fully crystallized at room temperature, and then increase the 

average temperature to 36.0 oC, at which the crystals melted entirely. We waited for one 

hour to obtain a homogeneous colloidal melt. A linear temperature gradient of 2 °C/cm 

was applied across the cell, and we lowered the average temperature of the sample slowly 

at a rate of 0.5 °C/h with a temperature stability of 0.02 oC to direct nucleation and the 

 

Figure 3.1: (a) Schematic of the temperature protocol used for the crystal growth. (b) Schematic showing 

the imaged 67 x 68 mm section (dashed) with respect to the sample cell. The dark gray color represents the 

crystals, while the light gray color represents the fluid. The x axis aligns with the temperature gradient 

direction. 
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growth of macroscopic crystals. We used confocal microscopy to image individual 

particles in horizontal slices of 67 µm by 67 µm at the interface (see Fig. 3.1b); these 

slices contain roughly 12,000 particles. The x-axis aligns with the temperature-gradient 

direction. To avoid boundary effects, we focus on sections roughly 10 μm above the cover 

slip. 

 

3.3 Observation of crystal nucleation and growth 

After two hours of cooling, we observed that particles order in a few corners of the 

sample. Fig. 3.2a shows that within the area indicated by the dotted line, the particles 

crystallize, while they are still disordered outside. We interpret these areas as 

heterogeneous crystal nuclei forming at the corners of the sample cell. Such heterogeneous 

nucleation reduces the interfacial area between the crystal and its melt, and is therefore 

energetically preferred over homogeneous nucleation in the bulk. We followed the 

development of these nuclei, and saw that they grew to large crystals when we lowered the 

temperature. Close inspection reveals that these crystals exhibit a random hexagonal close 

packed (rhcp) structure. They consist of a random stacking of hexagonal close packed 

(hcp) planes, similar to crystals formed in hard-sphere colloidal systems. The hcp planes 

align with the cover slip; their lateral orientation is random. 

We focus on the early stage of crystal growth, and image the interface after t1 = 2.5 hrs 

when the crystals have grown to 180 µm in length. Selected snapshots of the crystal-fluid 

interface during growth are shown in Fig. 3.2b-d. The interface advances in the positive x-

direction, while at the same time significant fluctuations of the interface occur. We 

determine the growth velocity by following the mean interface position as a function of 

time in Fig. 3.3. The data indicates linear growth with a constant velocity of v = 0.1 µm/s.  

We follow the motion of the individual particles in the fluid and crystal to determine their 

mean square displacement. 200 images are acquired at a frame rate of 30 images/s and the 

positions of the individual particles in the horizontal sections are tracked with an accuracy 

of 0.03 µm [11]. Particle trajectories are plotted in Fig. 3.4a. While for particles in the 

fluid, these trajectories indicate diffusive motion, for particles in the crystal, they indicate 

confinement of the particles to their crystal lattice positions. For more clarity, we plot 

enlarged trajectories of a single particle in the crystal and fluid phase in the left- and right 
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hand inset of Fig. 3.4a. We determine the mean square displacement <r
2> separately for 

particles in the crystal and fluid, and plot <r
2> as a function of time in Fig. 3.4b. For 

crystal particles, the mean square displacement saturates at <r
2> = 0.0086 µm2 due to 

confinement by their neighbors, while for fluid particles <r
2> increases linearly with time 

confirming that the particles exhibit diffusive motion. For the crystals, the asymptotic 

value of the crystal mean square displacement corresponds to twice the variance of the 

particle displacement from their equilibrium position. Assuming that particle fluctuations 

are isotropic, we used this value to determine the three-dimensional Lindemann parameter 

of melting using [12]  

 

Figure 3.2: Observation of crystal nucleation and growth. (a) Confocal microscope image of a crystal 

nucleus forming at the sample boundary. (b)–(d) Sequence of confocal microscope images taken during the 

early stage of crystal growth, starting after t1 = 2.5 h of cooling. Dotted lines indicate the advancing 

interface, and the dashed line indicates the initial position of the interface at time t1. 
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Figure 3.3: Mean interface position as a function of time, experimental measurements (dots) and best linear 

fit (solid line) 
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Here the crystal nearest neighbor distance rnn = 0.75µm. We find L ~ 0.115, in good 

agreement with values for close packed crystals close to melting [13-16]. We also 

determined the diffusion coefficient Dlq of fluid particles from their mean square 

displacement using 

<r
2> ~ 4Dlqt       (3.2) 

A value of Dlq = 0.052 µm2/s is obtained from the best linear fit (Fig.3.4b). The velocity of 

diffusion-limited growth can be estimated according to [17] 

 vdl= 4Dlq/d.        (4.3) 

Using the measured diffusion coefficient, we obtain vdl = 0.3 µm/s. This value is a factor of 

3 larger than the observed growth velocity v = 0.1 µm/s indicating that the growth is not 

limited by diffusion, but rather by the rate of attachment of particles at the crystal surface. 

The difference between both values allows estimation of the amount of supersaturation of 

the crystallizing suspension. Assuming Wilson-Frenkel growth, we determine the 

chemical potential difference ∆µ between fluid and crystal according to [17-19] 
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Figure 3.4: Particle trajectories and mean square displacement.  

(a) Trajectories of particles in the crystal (left) and fluid (right). Inset: enlargement of a single particle 

trajectory for a particle in the crystal (top left) and fluid (top right). (b) Mean square displacement as 

function of time for particles in the crystal (filled dots) and fluid (open dots). The mean square displacement 

of crystal particles saturates at a value of 0.0086 μm2 (solid line, bottom), while that of fluid particles 

increases linearly with time (solid line, center) indicating diffusion. The slope equals four times the diffusion 

coefficient. 

 

Using the experimentally measured values for vdl and v, we find TkB0.41 , a small 

amount of supersaturation that indicates that the growth occurs close to the equilibrium 

freezing transition [17, 20, 21]. This value is in good agreement with simulation values 

between 0.2 and 0.5 kBT for crystallizing soft spheres [22], and is of the same magnitude 

as hard-sphere simulation values predicted for ~0.52 [23], well in the crystal-fluid 

coexistence regime. 

 

3.4 Crystal growth stability 

The stability of crystal growth is important because it defines the quality and the 

morphology of the final crystal. Here, we investigate the role of the interfacial free energy 

in stabilizing the crystal growth. This is done by adding “impurity particles” that act as 

obstacles and pin the advancing interface. We add impurity particles of two different sizes, 

with radii R1 ~ 2d and R2 ~ 3d, and follow the interface with time starting from the moment 

where the interface reaches the edge of the impurities. Reconstructed images of the 

advancing interface are shown in Fig.3.5. Gray dots indicate particles in the crystal while 

open circles indicate particles in the fluid. The black line indicates the advancing fluid-
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crystal interface, and the two large gray dots show the impurity particles. We observe that 

both impurities pin the interface; however, while the small impurity is easily overcome by 

the interface, the larger impurity holds the advancing interface back and causes it to bow 

strongly (Fig. 3.5b and c), before finally impurity is overcome and the interface retracts. 

The interface curvature leads to a local force that drives the interface across the obstacle. 

This force is 

F = PAeff .       (3.5) 

Here Aeff is the effective contact area between the interface and the obstacle, and P can be 

estimated from the Laplace pressure  

CRP /2
LP

       (3.6) 

with  is the interfacial free energy, and RC is the radius of curvature of the pinned 

interface. The interface overcomes the impurity when the driving force F becomes larger 

than Fobst, the critical force required to surmount the obstacle. This critical force is  

 

Figure 3.5: Crystal growth across impurities.  

(a)–(d) Sequence of reconstructed images showing the advancing solid-fluid interface surmounting impurity 

particles (dark gray spots): Interface touching the impurities (a), surmounting the small impurity (b), pinned 

by the large impurity (c), and final straightening of the interface after successful transgression (d).  
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Fobst ~ 2Aeff / Rc      (3.7) 

where we take Rc ~ R2 and the contact area  

Aeff = (4πR2)
2 / 2      (3.8) 

By using a typical value of the interfacial free energy of these colloidal crystals, 

2
dTkB /0.71  (see chapter 4), we obtain Fobst = 1.610-13 N. Interestingly, this force is 

of the same order as that measured for dislocation motion through a dense colloidal crystal 

[24]. When F > Fobst, the interface overcomes the impurity, and it quickly retracts and 

flattens, thereby minimizing its energy cost (Fig. 3.5d). 

 

3.5 Conclusions 

The temperature sensitivity of pNipam hydrogel particles allows excellent control to guide 

macroscopic crystal growth. We have shown that in analogy to atomic crystal growth, 

large macroscopic pNipam colloidal crystals grow in a temperature gradient when the 

suspension is cooled slowly so that only a few crystal nuclei form initially. We followed 

the growth directly and determined a chemical potential difference of TkB0.41  

between crystal and fluid phases indicating that the growth occurred close to equilibrium 

with only moderate undercooling. 

By adding impurities with different sizes to the advancing interface we examined the role 

of the interfacial tension to stabilize of the crystal growth. We also estimate the Laplace 

pressure and the critical driving force required to surmount the obstacle. The magnitude of 

this force is 160 fN, which is the same order as the force measured for dislocation motion 

through a dense colloidal crystal. 
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Chapter 4 

Visualizing the structural solid-fluid 

transition and free energy at colloidal 

crystal-fluid interfaces 

 

 

The interfacial free energy between a crystal and its melt is an important parameter that 

determines crystal nucleation and growth. The origin of this interfacial free energy is 

mostly entropic, and results from the change of order from the long-range order of the 

crystal to the short-range order of the liquid. In this chapter, we report the direct 

measurement of the interfacial free energy and its small anisotropy from thermally 

equilibrated crystal-fluid interfaces using pNipam microgels as a model system [1-5]. We 

use three-dimensional imaging of the equilibrium crystal-fluid interface to obtain insight 

into the structural transition from the liquid to the crystal. We measured the corresponding 

interfacial free energy barrier directly by implementing a new method to relate structure 

and free energy. Finally, we resolve the small anisotropy of the interfacial free energy by 

directly following thermally induced interface fluctuations of crystal fluid interfaces in 

different orientations. 
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4.1 Introduction 

The hallmark of the crystal is its maximal global density, which results from a periodic 

filling of space. In contrast, the liquid maximizes its short-range density by forming local 

close packed configurations [6, 7]. It has been argued that for simple monatomic liquids, 

maximum short-range density is achieved with icosahedral configurations [6]. These 

icosahedral units exhibit five-fold rotational symmetry that is incompatible with a periodic 

filling of space [8]. This incompatibility leads to the first-order transition that separates 

solid and liquid phases [9]. At the interface to the solid, the number of possible packing 

configurations of the liquid is reduced with respect to the bulk liquid, resulting in a loss of 

configurational entropy; this loss of configurational entropy provides the dominant 

contribution to the interfacial energy [10]. The structural transition is therefore central to 

our understanding of the interfacial energy. In atomic liquids, sophisticated scattering and 

electron microscopy [11-13] measurements have been used to elucidate it; however, the 

change of liquid configurations at the interface to the solid is extremely difficult to image 

in atomic system, and the direct measurement of the structure-dependent free energy 

barrier remained elusive. 

We used colloidal poly-N-isopropylacrylamide (PNIPAM) particles to obtain direct 

images of the short-range order of the liquid at the interface to the solid. The PNIPAM and 

its derivative particles have the advantage that their size is directly controlled with 

temperature, allowing direct control over crystal growth and melting [14] and glass-

formation [15]. These particles enabled us to achieve large, equilibrated crystal-fluid 

interfaces that are well suited to elucidate the structural crystal-fluid transition. The crystal 

growth was studied in the last chapter. Here, we focus on the stationary interface after the 

crystal has been fully grown. We switched off the temperature gradient, and use confocal 

microscopy to image the equilibrium crystal-fluid interface on the particle scale. We show 

that the predominant building blocks of the liquid are large fragments of icosahedra that 

are broken and reformed by thermal fluctuations, and we elucidate changes of the short-

range order as we approach the crystal. We establish a direct link between the structure 

and the free energy to measure the free energy change across the interface directly from 

the three-dimensional particle configurations [16]. The resulting interfacial energy is 

 ~ 0.65kBT per particle, in very good agreement with simulation results of slightly soft 

spheres. We then use thermal fluctuations of the interfaces to resolve even the small 
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anisotropy of the interfacial tension. We obtain an anisotropy of ~2%, surprisingly larger 

than values obtained in simulations.  

 

4.2 Free energy measurement of hard sphere configurations.  

The free energy of hard-sphere systems is directly related to the geometry of the packing, 

and can be determined conveniently from the positions of the particles [16]. The free 

energy measurement is based on the insertion of an additional particle into the given 

particle packing. To find the free regions available for the insertion of an additional 

particle, exclusion spheres are created around the particles; these exclusion spheres have a 

radius of one particle diameter and demarcate the region from which the center of the 

additional particles is excluded. The volume unoccupied by the excluded spheres is 

defined as available volume V0 to insert the additional sphere into the system without 

disturbing its neighbors. The surface area of this volume is defined as available surface 

area A0, (see Fig.4.1).  

In thermal equilibrium, the reversible work per unit volume needed to squeeze an extra 

particle into a volume V0 is related to the pressure p and it is expressed in terms of A0 and 

V0 as 

p =kBT [1 + (rA0/3V0)]    (4.1) 

 

Figure 4.1: A 2D illustration of V0 (gray area) and A0 (black lines). The dark and white circles, respectively, 

represent the hard spheres and the corresponding excluded volume spheres [16]. 
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where ρ is the particle number density and r is the particle radius. On the other hand, the 

energy required for adding an extra particle into the system is the chemical potential µ  and 

it is determined as 

=0 - kBT ln(V0/V)      (4.2) 

where µ0 is ideal gas chemical potential and V is the total volume of the system. The free 

energy per unit volume is directly determined from the pressure and the chemical potential 

as 

f = -p +       (4.3) 

In principle, using this method, all thermodynamic quantities are determined just using 

particle geometry in real space. This has been exploited in recent confocal microscopy 

measurements by Dullens et al [16]. They used confocal microscopy to obtain three-

dimensional snapshots of a colloidal hard-sphere suspension. From the experimental 

snapshots, particle positions are located using a particle tracking software and the 

excluded spheres are defined and mapped onto a fine lattice. Three types of lattice sites 

(pixels) are distinguished from which V0 and A0 are directly determined: A0 equals the 

number of lattice sites at the edges of the excluded volume spheres, and V0 equals the 

remaining lattice sites outside the excluded volume spheres. The resulting values of free 

energy determined with equations (4.1) to (4.3) is in good agreement with the results of 

Monte Carlo simulation and the free energy obtained from integration of the Carnahan-

Starling equation of state. 

We use this method to measure the free energy change across crystal fluid interfaces 

directly from the structure; this free energy change can then directly be related to the 

interfacial free energy using Gibb’s argument of the dividing surface between two 

thermodynamic phases.  

 

4.3 Measurement of anisotropy of the crystal-fluid interfacial tension.  

The anisotropy of the interfacial free energy of crystal-fluid interfaces is a crucial 

parameter that determines the morphology of the growing crystal and the morphological 

stability of the growth. However, the anisotropy is difficult to measure since it is small, 

typically of the order of a few percent of the interfacial free energy. Therefore, direct 
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measurements of the free energy such as the one discussed in the last section, cannot 

resolve this small anisotropy. Recently, Hoyt et al. presented a method to compute 

accurately the crystal-fluid interfacial tension γ and its weak anisotropy from the 

orientation-dependent fluctuations of the interfaces [17]. The method is based on 

monitoring interfacial fluctuations to extract the interfacial stiffness which is typically an 

order of magnitude more anisotropic than the interfacial tension itself.   

In thermal equilibrium, interface fluctuations are described by interface waves along the y-

direction as        (   )       (4.4) 

were Aq is the Fourier amplitude of the interface height fluctuation with wave vector q. 

These fluctuations increase the interfacial free energy by         (    )        (4.5) 

Here it is assumed that the thickness of the interface b is much smaller than the width l of 

the imaged section [2,17]. The term      corresponds to the interfacial stiffness, where    is the second derivative of γ as a function of the angle α of the local interface normal 

relative to its average orientation. Note that    originates from the energy cost of bending 

locally the interface away from its macroscopic orientation. That is the reason why the 

fluctuation spectrum measures directly the stiffness. Because of the equipartition, in 

thermal equilibrium energy mode is excited with thermal energy, kBT. Therfore, the 

interfacial stiffness is related to the mean square of the Fourier amplitude as 〈|  | 〉        (    )                (4.6) 

By measuring the spectrum of interfacial fluctuations, we can directly measure the 

interfacial stiffness (    ). The crystals made up of colloidal pNipam particles consist 

of a random stacking of hexagonal close-packed layers (see chapter 3). Such random 

hexagonal close-packed (rhcp) crystals exhibit sixfold symmetry around the axis 

perpendicular to the hcp planes. The interfacial tension thus depends on the angle  

between a crystal lattice direction and the normal to the interface within the hcp plane as  ( )     (        ).     (4.7) 
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Figure 4.2: Crystal and fluid. (a) Confocal microscope image of crystal (left) and fluid (right) focussed at 

the interface (solid line). (b) Pair correlation function of a colloidal crystal (open circles) and a colloidal 

fluid (solid squares). 

 

Here γ0 and ε are the average interfacial tension and its anisotropy, respectively. The 

orientation-dependent interfacial stiffness follows as          (          )      (4.8) 

The last equation indicates that the anisotropy of the interfacial stiffness is 35 times larger 

than the anisotropy of interfacial tension itself. Therefore, measuring the anisotropy of 

interfacial stiffness can be measured with high accuracy.  

 

4.4 Colloidal crystal-fluid equilibrium and particle configurations 

In the following, we describe our direct observations of the equilibrium crystal-fluid 

interface. We use the crystals growth procedure outlined in the previous chapter to 

nucleate and grow crystal following a fixed temperature protocol (see Fig. 3.1a). After a 

few hours, a few crystals have grown to centimeter lengths. By holding the sample at 

T = 34°C and switching off the temperature gradient, we achieve equilibrium of 

macroscopic crystal and liquid phases separated by a stationary interface. We use confocal 

microscopy to image individual particles in a 65m by 65m by 20m volume at the 

interface, and determined their positions with an accuracy of ~0.02m in the horizontal 

and ~0.03m in the vertical direction. To obtain this high accuracy, we used full 1024 by 
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1024 pixel images with a pixel density of 250 m-2, a factor of 4 higher than usually 

achieved. A small section of a confocal image is shown in Fig.4.2a. A clear distinction 

between crystal (left) and fluid (right) is observed. We measure the pair correlation 

functions g(r) of particles on the left and on the right side of the image separately and 

show the results in Fig. 4.2b. Open circle symbols, corresponding to g(r) of particles on 

the left, show characteristic peaks of the hcp crystal plane while solid square symbols, 

corresponding to g(r) of particles on the right, show the characteristic short range-order of 

the fluid.  

To pinpoint the interface, we distinguish crystal and fluid particles from their nearest-

neighbor environment. For each particle, we find the nearest neighbors as those separated 

by less than the first minimum of the crystal pair correlation function. The nearest 

neighbor vectors, di, are then compared with those of the reference crystal lattice, Di. 

Deviations from the reference positions are determined using the order parameter        ∑ |     |   ,     (4.9) 

the mean square difference between the actual and the average crystal nearest neighbor 

vectors [17] (see Fig.4.3a). We plot the average order parameter as a function of x in Fig. 

4.3b. In the crystal, the normalized order parameter (cryst/d)
2 ~ 0.02 , reflecting the small 

lattice distortions due to thermal fluctuations, while in the fluid, (fl/d)
2 ~ 0.12, 

demonstrating the loss of crystalline order. The order parameter appears constant on both 

 

Figure 4.3: Order parameter. (a) Illustration of the determination of the order parameter from the nearest-

neighbor vectors di, and the reference vectors Di. (b) Order parameter as a function of x across the interface. 

The dashed lines indicate the interface position. 
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crystal and fluid sides and shows a sharp rise at x ~ 35.5m, indicating the crystal-fluid 

interface. We use this rise of δ2 to define the interface position and distinguish crystal and 

fluid particles (see dashed lines in Fig. 4.3b).  

We plot a 40m by 35m by 15m reconstruction of the crystal-melt equilibrium in Fig. 

4.4a. Large red spheres indicate particles with (/d)
2 < 0.07, while small blue spheres 

indicate particles with (/d)
2 > 0.07. Red spheres demarcate the regular crystal lattice for 

x < 33 µm, while blue spheres reveal the disordered structure of the liquid for x > 38m. 

We observe that, even on the fluid side, small patches of red particles appear indicating 

spontaneously ordered particle configurations that are not stable and disappear. Fig.4.4a 

shows the coexisting bulk crystal and fluid phases, and their interface. To show the 

interface more clearly, we reconstructed the two-dimensional interfacial surface as the 

 

Figure 4.4: Reconstruction of crystal and fluid and their interface. (a) 40 μm × 35 μm × 15 μm 

reconstruction of the crystal–fluid equilibrium. Large red spheres show particles with a crystalline 

environment and small blue spheres show particles with a fluid environment. Fluid particles are depicted 

with small spheres for clarity. (b) Reconstructed solid/fluid interfacial plane. The interface roughness is 

roughly five particle diameters. (c,d) Particle configurations in the colloidal fluid and crystal. (c) 

Icosahedrally coordinated particles (large spheres, left) and fragment of an icosahedron consisting of 10 

particles (large spheres, right) embedded in the colloidal fluid. (d) Tetraherdral (left) and octahedral 

configurations (right) in two unit cells of the face-centered cubic lattice. 
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surface along which (/d)
2 ~ 0.07. In more detail, we divided the image volume into cubes 

of size a = 0.5d, and calculate the average order parameter for each cube from the order 

parameter values of all particles with centers within 2d of the center of the cube. We then 

connect the centers of all cubes with order parameter values  2 ~ 0.07d
2.  A reconstruction 

of the interface is shown in figure 4.4b. The interface is rough, due to thermally excited 

interface fluctuations. Its width is about five particle diameters. 

The direct three-dimensional imaging of the interface provides a unique opportunity to 

investigate how the long-range order of the crystal goes over into the short-range order of 

the fluid. To elucidate the structural solid-fluid transition, we investigated local packing 

configurations at the interface. We connected the centers of nearest neighbor particles into 

polyhedra, and identified tetrahedral and octahedral particle configurations, which have 

been suggested to be local building blocks of liquid and crystal [7]. Reconstructions of 

local configurations in the fluid and crystal are shown in Fig. 4.4c and Fig.4.4d, 

respectively. The figures show particles with tetrahedral coordination in the fluid (large 

blue spheres in Fig. 4.4c) and with tetrahedral and octahedral coordination in the crystal 

(large red spheres on the left and right of Fig.4.4d, respectively). In the fluid, tetrahedral 

configurations join into units of 13 particles (Fig. 4.4c, left) or less (Fig. 4.4c, right). We 

 

Figure 4.5: Relative frequency of particle configurations: icosahedral fragments, octahedra, and 

tetrahedra. (a) Relative volume occupied by icosahedral fragments as function of fragment size in the 

colloidal fluid (open bars) and in a close-packed suspension of millimeter-sized particles (solid bars). (b) 

Relative frequency of particle configurations as a function of x across the interface: tetrahedral 

configurations (triangles), octahedral configurations (squares), and other polyhedral configurations 

(pentagons). Also shown is the volume fraction of icosahedral fragments with size larger than 10 particles 

(solid squares and scale on the right). 
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identified these units as complete and fragmented icosahedra, respectively. Because of 

particle diffusion, however, the neighborhood of a particle changes rapidly giving rise to a 

relative change of the fragment size in the colloidal fluid. We focused on a single three-

dimensional image stack to determine the relative volume occupied by icosahedral 

fragments of a particular size. We plot the volume fraction as a function of fragment size 

in Fig. 4.5a (open bars). Remarkably, full icosahedra occur only rarely, and icosahedral 

fragments containing ~10 particles are most frequent. We also investigated a random close 

packed suspension of millimeter-size, athermal particles of similar polydispersity [18], and 

find that in this athermal suspension, complete icosahedra occur most often, in contrast to 

the colloidal fluid (Fig. 4.5a solid bars). This difference suggests that in the colloidal fluid, 

icosahedral configurations are constantly broken by thermal fluctuations. Moreover, in 

contrast to the crystal, no single octahedral configuration is observed in the fluid 

indicating the strong preference of the fluid for maximum short-range density. 

To elucidate the structural transition from solid to liquid, we determine the number of 

tetrahedral, octahedral, and icosahedral configurations as a function of x. We pinpoint the 

center of mass of each polyhedron, bin the centers of all polyhedra in 2m intervals along 

the x-direction, and determine the relative number of polyhedra for each interval. Their 

relative frequency as a function of x is shown in Fig. 4.5b. A sharp rise in the number of 

tetrahedra and icosahedra demarcates the transition from the solid to the fluid at 

x 35.5m, in good agreement with the interface position determined from the order 

parameter. Towards the crystal, the relative frequency of tetrahedra and octahedra 

approaches that of ~70% and 30%, in good agreement with the relative frequency of 2/3 

and 1/3, expected for face-centered cubic crystals [10]. The change from the characteristic 

packing of the liquid to that of the crystal occurs within ~3.5m corresponding to ~5 

particle diameters, in good agreement with estimates from particle density profiles [19].  

 

4.5 Measurement of free energy at colloidal crystal-fluid interfaces 

The three-dimensional imaging of liquid configurations allows us to directly measure the 

free energy change at the interface. To achieve this, we measure the free volume V0 and 

the free surface area A0 available for insertion of additional particles (chapter 4.2). We 
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determine the effective radius of the particles from their average nearest neighbor distance 

dnn in the crystal using 

reff = (dnn/2) (m/cp)
1/3     (4.10) 

where we used m=0.54 and cp=0.74, the volume fractions of hard-sphere crystals at 

melting and close packing, respectively. The resulting value reff = 0.35m agrees well with 

static light scattering measurements in dilute suspensions, and is roughly 30% smaller than 

the hydrodynamic radius r ~ 0.5m determined with dynamic light scattering, indicating 

that these particles are still slightly compliant [20, 21] . We show the resulting particle 

volume fraction,  as a function of x, determined from particle counting in Fig. 4.7a. 

Within an interfacial region of width ~5 d, the volume fraction changes between the values 

m~ 0.54 and f ~ 0.49, the melting and freezing volume fractions of hard spheres [22].  

 

Figure 4.6: Free energy change at the interface. (a) Particle volume fraction as a function of x. The 

interface (vertical dashed line) is determined by balancing the number of excess and deficit particles in the 

liquid and solid, respectively (dot and dash shaded areas in a). (b) Free energy density as a function of x. The 

black solid curve shows the measured free energy, and the solid lines show the hypothetical values in Gibbs’ 

model. 
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To determine the free energy as a function of distance to the interface, we focus on thin 

sections parallel to the interface and measure the total V0 and A0 in these sections. We then 

use equations (4.1) – (4.3) to determine the free energy for each section. The resulting free 

energy density, f, as a function of x is shown in Fig. 4.6b. The free energy density drops 

from 4.9 (kBT/v) to 3.6 (kBT/v), in agreement with the expected free energy density 

difference f  1.5 (kBT/v) of hard-sphere crystal-fluid equilibrium [23]. Here, v =d
3/6 is 

the particle volume. This decrease of the free energy density reflects the increasing 

entropy associated with the increasing number of packing configurations towards the 

liquid. We can now determine the interfacial free energy: It is defined as the difference in 

free energy between the system containing the interface, and a hypothetical reference 

system, in which the bulk free energy of crystal and liquid are extended up to the dividing 

surface [24] (dot and dash lines in Fig. 4.6b). We pinpoint the position of this hypothetical 

surface by balancing the number of excess particles in the fluid (dot shaded area in 

Fig.4.6a) with the number of deficit particles in the crystal (dash shaded area). We obtain 

the interface position xI = 35.4m (dash vertical line in Fig. 4.6), in very good agreement 

with the position determined from the order parameter. Unlike the number of particles, the 

excess and deficit free energies in fluid and crystal (dash and dot shaded areas in Fig. 

4.6b) do not balance, and exhibit a net excess on the fluid side. This excess free energy per 

unit area is the interface tension, . We obtain a value of = 0.65 kBT / d
2 by numerical 

integration, in good agreement with values found in simulations of hard and slightly soft-

spheres [25], which are between 0.50 and 0.8kBT / d
2. 

 

4.6 Direct measurement of the anisotropy of the crystal-fluid interfacial 

free energy 

Because of its structural origin, the interface tension depends on the direction of the 

interfacial plane with respect to the crystal lattice, and is anisotropic. This anisotropy plays 

an important role in crystal nucleation and the morphological stability of crystal growth; 

however, its direct experimental measurement is prohibitively difficult, and this anisotropy 

has mostly been inferred from macroscopic measurements [26]. We used thermally 

excited interface fluctuations to measure the small anisotropy of the interface tension 

directly [17, 27]. We acquired 200 images, and followed the fluctuations of the one-
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dimensional trace of the interface. A reconstructed image focusing on the interface is 

shown in Fig. 4.7a. Gray dots show particles with order parameter values 2<0.07d
2, while 

open circles indicate particles with 2>0.07d
2. The black line is obtained by connecting all 

points with order parameter 2 ~ 0.07d
2, and indicates the trace of the crystal-fluid 

interface in the plotted section. A few traces of reconstructed interfaces are shown in fig. 

4.7b. The solid black line indicates the time-averaged interface while the gray lines 

indicate instantaneous interface profiles. These results show that the interface strongly 

fluctuates around its average position. We determine the average spectrum Aq of interfacial 

fluctuations by Fourier transformation of the individual interface profiles. This analysis is 

then repeated for several different interface orientations to determine the orientation-

dependent interface stiffness. Average interface spectra <|Aq|
2>  as a function of q

2 for 

 

Figure 4.7: Equilibrium interface and interface fluctuations. (a) Reconstruction of the crystal-fluid 

equilibrium and interface. Gray dots represent particles with a crystalline environment, while circles 

represent particles with a fluid-like environment. The black solid line indicates the interface. (b) Snapshots 

of the interface (gray) demonstrating fluctuations around the average position (black). (c) Log-log plot of the 

fluctuation spectra for the crystal orientations α = 2◦ (squares), 10.5◦ (circles), and 14.9◦ (stars). The solid 

lines indicate a slope of –1. (d) 1/bl<|A(q)|2> vs q2 for the three crystal orientations. The solid lines indicate 

best linear fits to the data. 
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three selected interface orientations are shown in Fig. 4.7c. The data confirms the decay 

22  qAq  for all orientations. We notice a systematic shift of the data in the double-

logarithmic representation; this shift indicates the change of the interface stiffness with 

orientation. To determine the corresponding stiffness values, we plot (<|Aq|
2> lb)-1 as a 

function of q
2 in a linear representation in Fig. 4.7d. A clear distinction of three slopes 

indicates the clear difference of interfacial stiffness for the three orientations. Values of 

the interface stiffness are obtained from the best linear fit to the data (solid lines in Fig. 

4.7d). We analyzed interfacial spectra of many more interface orientations and show the 

corresponding stiffness values and error margins, obtained from a linear regression 

analysis of the data in table 1. These values vary systematically with crystal orientation. 

Our measured values are in excellent agreement the expected dependence (4.7) and (4.8) 

of the hexagonal symmetry as shown by plotting the interface stiffness as a function of  

in Fig. 4.8a.  

From the best fit with Eq.4.8 (solid line), we obtain values of 0 = ( 0.70 0.05) kBT / d
2 and 

= (0.016 0.004). The value of 0  is in good agreement with the value obtained from the 

direct free energy measurement and with values determined in simulations of soft sphere 

colloidal crystal-fluid interfaces, which are between 0.55 and 0.8 kBT/d2 depending on the 

particle softness [28]. The magnitude of the anisotropy, however, is much larger than 

simulation values of anisotropies within the hexagonal close-packed plane. By using the 

directions ][ 101  and ][ 112  for the face centered cubic (fcc) lattice, we determine that  

 

Table 1: Orientation-dependent interface stiffness. Measured interface stiffness (γ+γq”) for several crystal 

orientations α. α enotes the angle between the normal of the crystal-fluid interface, and a nearest-neighbor 

vector in the hcp plane. 
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Figure 4.8: Anisotropy of interfacial stiffness and interfacial tension. Interfacial stiffness (a) and 

interface tension (b) as a function of crystal orientation. Inset: Schematic illustrating the angle α between the 

interface normal, nI , and a crystal lattice direction, D. 

 

simulations predict an anisotropy of ~0.4% within the hcp plane for hard sphere fcc 

crystals [29] and by using the planes (1120) and (1010) of the hexagonal lattice, we 

determine that simulations predict an anisotropy of ~0.2% for the hexagonal metal 

magnesium [30]. Our measured value is significantly larger than these predictions. Finally, 

we plot the resulting interfacial free energy according to equation (4.7) in Fig. 4.8b. 

 

4.7 Discussion 

It has been discussed that at high volume fraction, the method of particle insertion faces 

limitations because the available volume for insertion of a particle becomes very small 

[16, 31]. Other methods based on the free volume between particles (rather than the 

available volume) might then be better suited at such high density. For the crystal-fluid 

interface investigated here, however, we find that the method of particle insertion still 

provides a good approach to determine the free energy: the free energy density difference 

between crystal and fluid f = 1.3 kBT is only about 13 % smaller than the expected value 
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for hard-sphere crystal-liquid equilibrium. Moreover, the surface tension  = 0.65 kBT / d
2 

is in good agreement with the value  = 0.70 kBT / d
2 found using interface fluctuation 

method and with values found in simulations of hard- and slightly soft-spheres, which 

were between 0.50 and 0.8 kBT / d
2. Further confirmation of the reliability of the free 

energy measurement can be obtained by comparing with the free volume methods 

suggested in the literature. These methods have been recently successfully applied to 

glasses at high density [32], being able to reproduce the correct equation of state, thereby 

lending credence to the method. A comparison of the different methods will be the subject 

of further investigation.  

 

4.8 Conclusions 

Our results establish a direct connection between the liquid short-range order and the 

interfacial free energy of crystal-liquid interfaces. Direct real-space imaging of particle 

configurations at the interface enabled us to follow changes in the short range order, and 

measure the corresponding interfacial free energy barrier directly. The measured interface 

tension agrees well with simulation values of hard and slightly soft spheres, while the 

anisotropy is surprisingly larger than that found in simulations. We consider this 

difference significant since it greatly exceeds the error margin of our measurements. 

Finally, while our measurements provide an immediate link between structure and free 

energy for the solid-liquid transition, similar relations applied to supercooled liquids and 

glasses should provide the important missing link between structure, free energy 

landscape, and structural relaxation of glasses. 
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Chapter 5 

Colloidal phase transitions induced by 

critical Casimir forces 

 

 

The critical Casimir effect is a thermodynamic analogue of the well-known quantum 

mechanical Casimir effect. It acts between two surfaces immersed in a critical binary 

liquid mixture, and results from the confinement of concentration fluctuations of the 

liquid. Unlike the quantum mechanical effect, the magnitude and range of this attraction 

can be adjusted with temperature via the solvent correlation length, thus offering new 

opportunities for the assembly of nano and micron-scale structures. In this chapter, we 

demonstrate the active assembly control of equilibrium phases using critical Casimir 

forces. We guide colloidal particles into analogues of molecular liquid and solid phases 

via exquisite control over the particle interactions. We measure the critical Casimir pair 

potential of the particles directly by following density fluctuations in the colloidal gas. 

This allows us to elucidate the applicability of continuum models to the colloidal assembly 

process. We apply the Van der Waals model of molecular liquefaction to show that the 

colloidal gas-liquid condensation is accurately described by the Van der Waals theory, 

even on the scale of a few particles. We then use the experimentally measured particle pair 

potentials as input to Monte Carlo simulations to map out the entire phase diagram of 
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colloids interacting via critical Casimir forces. The calculated phase diagram agrees well 

with measurements of the experimental system, indicating that many body effects are 

limited. This phase diagram is qualitatively similar to those of molecular system. These 

results open up new possibilities in the active assembly of micro and nanostructures. 

 

5.1 Introduction 

The critical Casimir effect provides an interesting analogue of the quantum mechanical 

Casimir effect [1-4]. Close to the critical point of a binary liquid, concentration 

fluctuations become long-range, and the confinement of these long-range fluctuations 

between two surfaces gives rise to critical Casimir interactions. This offers new 

opportunities to achieve active control over the assembly of colloidal particles [5-8]. At 

close distance, solvent fluctuations confined between the particle surfaces lead to an 

effective attraction that adjusts with temperature on a molecular time scale. Because the 

correlation length depends on temperature, temperature provides a unique control 

parameter to control the range and strength of this interaction [1]. The advantage of this 

effect is its universality: as other critical phenomena, the scaling functions depend only on 

the symmetries of the system and are independent of material properties, allowing similar 

interaction control for a wide range of colloidal particles [9]. Such assembly control would 

have important applications for the design of structures at the micrometer and nanometer 

scale. In principle, by tuning critical Casimir interactions with temperature, analogues of 

molecular liquid and solid phases should be directly observable, and such direct control 

would offer new opportunities to actively guide the assembly of particles into 

nanostructures.  

In this chapter, we demonstrate the direct control of equilibrium phase transitions with 

critical Casimir forces. Through exquisite control of the particle pair potential with 

temperature, we assemble colloidal particles into phases that are analogues of molecular 

liquid and solid phases, and we visualize these phases in three dimensions and on the 

single particle level. The direct imaging allows for direct measurement of the critical 

Casimir pair potential, and we elucidate the relation between critical Casimir attraction 

and gas-liquid condensation, a crucial step in the equilibrium assembly process. Gas-liquid 

condensation reflects the competition between the energy cost for compression of the 

particles against their entropic pressure, and the energy gain from the condensation of the 
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attractive particles. At some critical attraction, the energy released by condensation 

exceeds the energy needed for compression, and the system can lower its free energy by 

condensation into the liquid phase, thereby reducing the pressure of the remaining gas. As 

the attraction increases, an increasing portion of the gas condenses.  

We measure important parameters of the condensation process: equilibrium densities of 

liquid and gas phases, and relative amount of gas and liquid. These microscopic 

observations provide a unique opportunity to test the applicability of mean field models of 

liquefaction. We find that the widely used Van der Waals model of molecular liquefaction 

also describes the particle condensation in our colloidal system remarkably well, even on 

the scale of a few particles, indicating that this mean-field model applies also to describe 

the condensation of nanoparticles in the formation of nanostructures.  

We also combine the experimentally measured potential and Monte Carlo simulation to 

investigate phase equilibria due to critical Casimir forces. We locate colloidal gas, liquid 

and solid phases as a function of temperature and colloidal volume fraction. The resulting 

colloidal phase diagram agrees well with experiment, indicating that many body 

interactions play a secondary role and that pair potentials describe the experimental system 

well. The phase diagram has the characteristic topology of the molecular systems similar 

to that obtained with the Lennard-Jones potential, but occurs over a very narrow 

temperature range due to the strong temperature-dependence of the critical Casimir 

interactions. 

 

5.2 Gas-liquid transition in the van der Waals model 

In 1873, to describe attractive molecules of finite size, Johannes Diderik van der Waals 

modified the ideal gas equation of state pV=NkBT that relates the pressure p, volume V and 

temperature T to [10, 11, 12] 

   TNk
V

aN
PNbV B










2

2

    (5.1) 

The attraction between molecules reduces the pressure by N2
a/V2, where a accounts for the 

attractive potential of a particle due to all other particles. The finite molecule size reduces 

the volume accessible to the molecules by Nb, where b indicates the volume around a 
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particle which is inaccessible all other particles. If the number of molecules is fixed, 

molecular gases are condensed to liquid either by compression or by lowering the 

temperature, and by measuring P, V and T, the parameters a and b can be determined. An 

example of van der Waals isotherms is sketched in Fig. 5.1a. At high temperature, the 

isotherms show a pure gas phase. While at low temperature, the double-loop of the 

isotherms indicates the characteristic gas – liquid coexistence: at equal pressure, a low 

density phase and high density phase coexist. By rewriting Eq. 5.1 to     (     )          ,   (5.2) 

we see that the pressure is a cubic polynomial in V: There is a region in which the 

polynomial has three real roots. As we increase T these roots move closer together, and 

merge at the critical point (point C in Fig.5.1a) when T = Tc, the critical temperature. At 

the critical point the gas and the liquid have equal density and specific entropy and the 

equation of state must be of the form (    )          (5.3) 

where Vc is the critical volume. Combining Eq. 5.2 and Eq. 5.3 we obtain the critical 

pressure Pc, the critical volume Vc and the critical temperature Tc as                  (5.4) 

 

Figure 5.1: (a) van der Waals isotherms; at high temperature, the isotherms show a pure gas phase. At low 

temperature, the double-loop of the isotherms indicates the characteristic gas – liquid coexistence. The 

critical point is at C. (b) Maxwell equal area rule; two hatched regions are equal. Gas and liquid coexist at 

specific volumes vgas and vliq, respectively.  ̅ is an average specific volume of the system. 
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               (5.5)             (5.6) 

To understand the gas-liquid condensation in more detail, let us consider a single isotherm 

containing a double-loop, as shown in Fig 5.1b. Along the isotherm, there is a portion 

(from e to d) where a compression gives rise to decreasing pressure, which indicates a 

physically unstable situation. The van der Waals equation fails to describe real substance 

in this region because the equation always assumes the fluid to be uniform, while between 

a and c on the isotherm, the stable state of the system is a coexistence of low density gas 

and a denser liquid phase. Thus, in 1875 James Clerk Maxwell replaced the isotherm 

between a and c by a horizontal tie line positioned so that the areas of the two hatched 

regions are equal. He argued that the work done on the system in going from c to b should 

equal work released on going from a to b. The flat line portion of the isotherm now 

corresponds to gas-liquid equilibrium [11, 13]. This tie line intersects the isotherm at vliq 

and vgas, the specific volumes of coexisting liquid and gas phases, which bound the gas-

liquid coexistence regime.  

The model predicts that a system with an average specific volume v  inside the 

coexistence regime will separate into phases with specific volumes vliq and vgas, and with 

relative fraction                            (5.7) 

                           (5.8) 

The Van der Waals equation provides a universal model for molecular gas-liquid 

condensation. However, most experimental confirmation comes from macroscopic 

measurement of pressure and volume; the parameters a and b are then fit parameters to the 

measured isotherms. The direct observation of colloidal gas-liquid transition presented in 

this chapter allows us to determine values of a and b from microscopic measurement. The 

parameters a and b are directly related to the attraction and microscopic volume of the 

particles as [10]      ∫  ( )                                      (5.9) 
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              (   )                  (5.10) 

where r0 is particle radius, U(r) is the particle pair potential and the lower limit of the 

integration r1 is defined as the position where potential becomes negative.  

 

5.3 Observation of colloidal phase transitions induced by critical Casimir 

forces. 

We use colloidal pNipam particles suspended in the binary mixture of 3-mp and water 

(chapter 2.3). Sufficiently far below Tcx
 = 52.2 oC, the phase separation temperature of the 

binary solvent, the particles are uniformly suspended and form a dilute gas phase (Fig. 

5.2a). At T = 0.3°C below Tcx, the particles condense and form spherical aggregates that 

 

Figure 5.2: Confocal microscope images of colloidal gas-liquid transitions induced by critical Casimir 

forces: colloidal gas (a), and gas - liquid coexistence (b). 

 

Figure 5.3: (a) Pair correlation function of colloidal particles in aggregates, the dashed line indicates the 

nearest-neighbor separation. (b) Mean-square displacement of particles in the dilute phase (circles) and in 

the aggregates (dots). The linear fits to the data yields diffusion coefficients, Dgas and Dlid that differs by a 

factor of 10. 
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coexist with a low-density colloidal gas (Fig. 5.2b). Within the aggregates, particles show 

the characteristic short-range order of a liquid as shown by the pair correlation function in 

Fig. 5.3a. We further confirm the liquid nature of the aggregates by tracking the motion of 

the particles, and comparing their mean-square displacement with that of the particles in 

the dilute gas in Fig. 5.3b. The mean square displacement grows linearly with time, similar 

to that of the motion of molecules in liquids. Moreover, it is factor of 10 slower than that 

of the gas particles, indicating the confinement of the particles in the dense liquid 

environment. When we raise the temperature further to T = 0.2 °C, the particles inside the 

aggregates form an ordered face-centered cubic lattice (Fig. 5.4): the colloidal liquid has 

frozen into a crystal. These observations appear as analogues of gas-liquid and liquid-solid 

transitions, driven by critical Casimir interactions. Because of the exquisite temperature 

dependence of critical Casimir interactions, these phase transitions occur with only small 

changes in temperature, and they are reversible: the crystals melt, and the liquid drops 

evaporate when the temperature is lowered below the characteristic thresholds. Such 

reversible control offers new opportunities for guiding the growth of perfect structures 

from colloidal building blocks [14]. The exquisite temperature dependence and 

reversibility allows precise control over the growth and annealing of perfect equilibrium 

structures, in analogy to the growth of atomic materials.  

To elucidate the gas-liquid phase coexistence, we show three-dimensional reconstructions 

in Fig. 5.5. These reconstructions correspond to the confocal microscope images in Fig. 

5.2. Red spheres indicate particles with more than 4 neighbors and small blue spheres  

 

Figure 5.4: Confocal microscope image of colloidal crystal. Inset illustrates the relation between the imaged 

particle configuration and the structural motif of the face-centered cubic lattice. 
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Figure 5.5: Three-dimensional reconstructions of gas and liquid correspond to the confocal images (Fig. 

5.2). Red and blue spheres indicate particles with a large and small number of nearest neighbors, 

respectively. Red particles demarcate density fluctuations in the colloidal gas (a) and colloidal liquid 

aggregates coexisting with the colloidal gas (b).  

 

indicate particles with 4 or less neighbors.  Interestingly, at T=0.5°C, small clusters of 

red particles appear and disappear, indicating spontaneous fluctuations in the density of 

the colloidal gas (Fig.5.5a). These density fluctuations become more pronounced as the 

temperature approaches Tcx. Then, at T=0.3°C, after 10 min, red spheres form stable 

connected clusters (Fig. 5.5b), indicating stable liquid nuclei that grow to become large 

drops.  To determine gas and liquid equilibrium densities, after 30 min, we measure the 

density of particles in the liquid and gas phases from the number of red and blue particles 

per volume, and obtain liq=3.0m-3 and gas=0.1m-3, respectively.  

 

5.4 Direct measurement of particle pair potential 

We elucidate the mechanism that drives the condensation of particles by measuring the 

particle pair potential directly from the density fluctuations in the gas. The potential of 

mean force, Umf, is related to the pair correlation function g(r) which indicates the 

probability of finding two particles separated by r as [15] 

 g(r) ~ exp[-Umf(r) / kBT]      (5.11) 

We acquire 3000 images of particle configurations of the colloidal gas to determine the 

average pair correlation function at different temperatures, which we show in Fig. 5.6a. An 
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increasing peak arises at r ~ 2.7r0, indicating increasing particle attraction as the 

temperature approaches Tc. For dilute suspensions, UmfU, and the pair potential is 

obtained directly from the measurement of g(r) as 

U(r) / kBT= -ln g(r)      (5.12) 

 

Figure 5.6: Particle pair correlation function (a) and corresponding particle pair potential (b) measured at 

different temperatures. The symbols indicate room temperature (black circles), ∆T=0.5 oC (red squares), 0.4 

oC (green rhombi), 0.35 oC (blue hexagons) and 0.30 oC (magenta stars). The solid black line in (b) indicates 

the best fit with a screened electrostatic potential. 

 

 

Figure 5.7:  Attractive critical Casimir potentials extracted from the potential curves in (Fig. 5.6). Inset: 

range lattr (black filled square) and amplitude Aattr (red open circle) of the critical Casimir potential as a 

function of ∆T. Dashed lines are guides to the eye. 
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The resulting pair potentials at different temperatures are shown in Fig. 5.6b. An attractive 

minimum emerges as the temperature approaches Tcx. This minimum reflects the 

competition between the critical Casimir attraction Uattr, and the screened electrostatic 

repulsion Urep of the charged particles. We consider the total pair potential as [7] 

U = Urep + Uattr       (5.13)  

where the screened electrostatic potential associated with the charged particles is described 

by [10] 

 
  )/exp( repreprep llAlU 

 
     (5.14) 

where Arep~ 2r0kBT / lrep is the amplitude, lrep is the Debye screening length and l = r - 2r0 

is the distance between particle surfaces. The attractive critical Casimir potential can be 

approximated by [7] 

  )./exp( attrattrattr llAlU        (5.15) 

Here Aattr ~ 2r0kBT / lattr and lattr are the amplitude and the range of the critical Casimir 

attraction, respectively. We determine Arep and lrep from the potential at room temperature, 

where critical Casimir interactions are negligible. Excellent agreement with the data is 

obtained for Arep= 4.3 kBT and lrep = 0.36 r0 (black circles and solid line in Fig. 5.6a). The 

values of Aattr and lattr are then determined from the best fit of U to the measured potentials; 

these parameters are shown as a function of temperature in Fig. 5.7, inset. The data 

indicates that lattr grows linearly with temperature, while the amplitude Aattr ~ 1/lattr, as 

expected for the critical Casimir force between two spheres [7]. We use these parameters 

to determine the critical Casimir component, Uattr, of the pair potential, which we plot in 

Fig. 5.7, main panel.  

 

5. 5 Experimental study of gas-liquid coexistence using the van der 

Waals model 

The precision of these pair potential measurements allows us to make direct comparison 

with continuum models. We do this by applying the van der Waals equation of state to our 

attractive colloidal system.  In contrast to molecular gases where values of a and b can 

only be inferred from macroscopic measurements, for our colloidal system, we can 
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determine the parameters a and b directly from the measured particle pair potential and 

particle size. Furthermore, while for molecular gases, the value of a is temperature-

independent, and the only change with temperature occurs in the thermal energy, kBT, for 

our colloidal system, temperature changes directly the value of a via the critical Casimir 

interactions. We determine values of a by numerical integration of the measured pair 

potentials using Eq. 5.9 and b from the measured particle radius using Eq. 5.10. The 

results are listed in table 1.We plot the resultant P as a function of V/Nb in Fig. 5.8. The 

values of a result in four isotherms; red and green curves show isotherms characteristic of 

a gas, while blue and pink curves show the double-loop characteristic of gas-liquid 

coexistence.  

To test the van der Waals model, we determine the average volume per particle from the 

volume fraction using 4/bv  , and indicate the resulting value bv 5.12  with a vertical 

dashed line. This line falls within the coexistence regime of only the pink isotherm, 

indicating that gas-liquid coexistence should occur only for ∆T = 0.30oC, in agreement 

with our direct observation (Fig. 5.2). Further confirmation of the model comes from 

comparison of the measured and predicted values of vliq and vgas. We determine the 

specific volumes of gas and liquid particles from the measured volume fractions liq=0.25 

and gas=0.005 and obtain vliq/b=1 and vgas/b=50, in good agreement with the predicted 

values vliq/b=1.25 and vgas/b=43 determined from Fig. 5.8.  

Furthermore, the relative amount of liquid and gas is fliq=0.69 and fgas=0.31, again in very 

good agreement with the values fliq=0.72 and fgas=0.28 obtained using Eq. 5.7 and Eq. 5.8. 

These results indicate that the van der Waals model provides a quantitatively accurate 

description of the colloidal gas-liquid equilibrium. 

 

Table 1: Temperature-dependent Van der Waals coefficient 

Values of the Van der Waals coefficient, a, determined for several temperatures by integration of the 

measured particle pair potential (see Fig. 5.8, inset).  
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Molecular gas-liquid condensation typically entails measurement of the equilibrium vapor 

pressure, Peq(T). For our colloidal system, this pressure is small and difficult to measure. 

However, we can estimate Peq from the intersection of the horizontal tie line with the y-

axis. From Fig. 5.9, we find Peq = 0.025(kBT/b) yielding an equilibrium vapor pressure of 

210-4 Pa, 109 times smaller than typical vapor pressures of molecular gases at room 

temperature, which are of the order of ~105 Pa, the atmospheric pressure. This difference 

reflects the 109 times lower colloidal particle density associated with the ~103 times larger 

colloidal particle diameter. Therefore, the gas-liquid transitions in the colloidal and 

molecular systems are comparable. Vertical dashed black line indicates the average 

volume per particle,  ̅. Inset: Enlarged section of the particle pair potential at ∆T=0.35 oC 

illustrates the determination of the Van der Waals parameter a by integration. The lower 

integration boundary, r1, is indicated by a dotted line. 

 

 

Figure 5.8: Van der Waals isotherms of the colloidal gas-liquid transition. 

Van der Waals isotherms of the colloidal system for T=0.5°C (red), 0.4°C (green), 0.35°C (blue), and 

0.3°C (pink). A transition from a gas (green and red isotherms) to gas-liquid coexistence (blue and pink 

isotherms) is observed. Horizontal lines indicate tie lines, constructed following the Maxwell rule of equal 

chemical potential (equal areas included by the tie lines and isotherms). Intersections with the isotherms 

delineate the gas-liquid coexistence regimes.  
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5. 6 Monte Carlo simulation study of colloidal phase behavior induced by 

critical Casimir forces 

In this section, we use the experimentally measured particle pair potentials and Monte 

Carlo (MC) simulations to fully examine the phase behavior of colloids in binary liquid 

solvents. This combination allows us to simulate phase equilibria due to critical Casimir 

forces. We locate colloidal gas, liquid and solid phases as a function of temperature and 

colloid volume fraction. In contrast to standard MC simulations where the temperature T 

only enters via the thermal energy,         , our simulations need to account explicitly 

for the temperature-dependent potential. The resulting colloidal phase diagram agrees well 

with experiment, indicating that many body interactions play a secondary role and that 

pair potentials describe the experimental system well. The phase diagram has the 

characteristic topology associated with molecular potentials like the Lennard-Jones 

potential, but occurs over a very narrow temperature range due to the strong temperature 

dependence of the critical Casimir interactions. These results highlight a novel way to 

control colloidal assembly by temperature-dependent critical Casimir interactions. 

Simulating the phase behavior of the critical Casimir colloidal system requires a 

computationally efficient model. While in principle it is possible to compute the phase 

behavior from the ternary system of colloids in the liquid mixture, in practice this is 

prohibited by the large differences in length scales between the solvent molecules and the 

colloidal particles. We therefore model the colloidal system as particles interacting with 

effective potentials which implicitly account for solvent effects. We thereby assume that 

many-body effects are negligible and that interactions are well-described by pair 

potentials; this choice is validated by the close agreement between the simulated phase 

diagram and our experimental observations.  

As discussed in section 5.4, we consider the measured potential to consist of a screened 

electrostatic repulsion Urep(r) and a critical Casimir attraction Uattr(r;T). Assuming the 

critical Casimir attraction to be negligible at room temperature, and Urep(r) to be 

independent of temperature allows us to determine Arep, lrep, Aattr, and lattr directly from 

U(r) according to equations (5.13)-(5.15). The results of those parameters were shown in 

Fig. 5.7, inset. Using those parameters we reproduce total pair potentials and overlay them 

onto the experimental data in Fig. 5.9. The observed difference between the reproduced 

and the measured potentials at short interparticle distances arises because the pNipam 
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particles are soft and thus easily compressed below their diameter at infinite dilution (note 

that the potentials shown in Fig.5.9 are still finite at r < 2r0), and the chosen potential form 

does not account for this effect. We show in the following that this apparent shortcoming 

of the chosen potential, however, introduces only a small error in the calculated phase 

diagram: 

We confirm this by calculating the normalized second virial coefficients B2 for both types 

of potentials. The second virial coefficient is a rough estimator of the phase behavior that 

should arise from a given potential [16]: a B2 that is positive correlates with net repulsion 

between the particles, indicating that a phase transition should not occur; a strongly 

negative B2 indicates the opposite. A B2 that is close to zero indicates little net attraction or 

repulsion between the particles, so a phase transition is not expected. It follows that if the 

experimental and reproduced potentials at the same temperature lead to second virial 

coefficients of the same sign and comparable magnitude, the phase diagrams resulting 

from those potentials are expected to have the same topology and show only quantitative 

differences. We calculate B2 according to [17]:             ∫   [   (   ( ))   ]       (5.16) 

 

Figure 5.9: Experimental (circles) and fitted (lines) pair-potentials between colloids in a 3mp-water mixture 

at room temperature (green), T = -0.4 oC (black), T = -0.35 oC (red), and T = -0.3 oC (blue). The green 

line effectively is the fitted electrostatic potential. 
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In this expression           ⁄  is the second virial coefficient for a system of hard 

spheres of diameter  . For 0 < r ≤ 1.5 r0 the potential is too repulsive to be accurately 

measured in experiment. To integrate Eq.5.16 we thus used U(r) = ∞ for 0 < r ≤ 1.5 r0.  

The upper integration boundary is set to r = 7 r0 because all potentials are approximately 

zero. The resulting normalized second virial coefficients are given in Table 2. At the 

lowest temperature |  |         for which potential was measured experimentally, the 

calculated B2 coefficients for the fitted and experimental potentials are close to zero, 

indicating that phase transitions should not yet occur. This result is in line with our 

experimental observation: at this temperature, phase transitions do not occur yet. At the 

two highest temperatures for which the potentials were measured experimentally ( |  |         and |  |        ), the B2 coefficients for both fitted and experimental potentials 

are negative, so we expect that the fitted potential will lead to the qualitatively correct 

phase behavior. Furthermore, at |  |       , the B2 corresponding to the experimental 

potential is almost identical to that for the fitted potential at |  |        . These finding 

suggest that approximating the experimental potentials with the fitted ones will result in a 

calculated phase diagram with the correct topology, but shifted relative to the true one by 

no more than 0.05 oC.  

Obtaining a complete phase diagram from simulations requires more closely-spaced 

potentials in a wider temperature range than is possible to measure experimentally. We 

therefore interpolate the critical Casimir potentials using a linear fit of the parameter lattr 

as a function of temperature and Aattr~1/lattr. Using this linear fit, we also extrapolate the 

critical Casimir potentials at lower and higher temperatures. We apply these potentials in 

Gibbs Ensemble MC simulations to investigate the gas-liquid transition of the colloidal 

system. For each temperature, we determine the associated pair potential U(r;T) and 

compute the equilibrium gas and liquid volume fractions. The resulting gas and liquid 

volume fractions bounding the gas-liquid coexistence region are shown in Fig. 5.10. Close 

to Tcx, e.g. at |  |       , the critical Casimir potential induces a separation into a dilute  

 

Table 2: B2 coefficients for the experimental and fitted potentials at three different temperatures. 
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gas phase and a dense liquid phase with volume fraction around  = 0.004 and  = 0.45, 

respectively. As the temperature decreases, the critical Casimir potential becomes weaker, 

and the gas-liquid coexistence region shrinks, until near T =0.336 oC, the binodal curve 

ends in a critical point (determined as described below) with a volume fraction = 0.136. 

For temperatures |  |        the particles stay homogeneously suspended. Very similar 

behavior is observed in the experiments described in section 5.3. At |  |        , the 

colloidal particles remain uniformly suspended, while at |  |        and |  |        , phase separation into gas and liquid was observed. The volume fractions of gas 

and liquid measured by confocal microscopy are in reasonable agreement with the 

simulated phase diagram given the large uncertainty in the determination of  and |  |(see Fig. 5.10). Note that as our simulations are based on effective pair potentials 

from dilute solution, the observed agreement between experiment and simulation indicates 

that many body effects are limited, even at high colloid volume fractions.  

We further investigated the occurrence of crystal-liquid equilibria. As the Gibbs ensemble 

is not easily applied to solid-liquid coexistence, we instead employ Kofke’s Gibbs-Duhem 

integration technique [18]. Here the full coexistence curve is computed by numerically  

 

Figure 5.10: Colloidal phase diagram induced by the critical Casimir forces.  

The circles denote the gas-liquid coexistence curve. Blue- and red circles represent the gas phase (G) and the 

liquid (L) phase, respectively. The black star indicates the gas-liquid critical point. The blue and red squares 

denote the fluid-crystal (F-C) coexistence curve. The black squares and error bars are experimental 

coexistence points of gas-liquid (T =  oC) and gas-crystal (T = -0.20 oC). 
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integrating the Gibbs- Duhem equation (or equivalently, the Clausius-Clapeyron equation) 

starting from a known reference coexistence point. For our system, the relevant reference 

point is the hard sphere system coexistence at a pressure of βP/3 = 11.67 [19] and volume 

fractions l = 0.494 and s = 0.545, for the liquid and the face-centered cubic (fcc) crystal 

phase, respectively. The resulting fluid-solid coexistence curve is shown in Fig. 5.10. This 

coexistence curve connects well with the gas-liquid phase boundary: the two curves 

intersect at the temperature |  |        , the triple point, where the liquid-crystal 

coexistence pressure almost vanishes [20]. These observations are consistent with our 

experiments: at temperatures |  |between 0.25 and 0.20 oC, face-centered cubic (fcc) 

crystals formed inside the liquid drops; at |  |         they consisted entirely of fcc 

crystals (see Fig. 5.4), exhibiting a volume fraction of  ~ 0.5, in agreement with the 

simulations (see Fig. 5.10).  

The phase diagram shown in Fig. 5.10 mirrors the well-known gas-liquid-solid phase 

diagram of Lennard-Jones systems [21, 22], lattice-based Ising models [23], and systems 

with square-well potentials [24, 25]. The diagram is inverted with respect to the known 

phase diagrams of Lennard-Jones systems, because U becomes stronger as we approach 

the solvent phase separation from below, instead of U becoming weaker with increasing 

temperature, as is the case in Lennard-Jones systems. Because for our system, the 

interparticle potential is explicitly strongly temperature dependent, the entire phase 

diagram extends only over a very small temperature range of ~ 0.3 oC. 

 

5.7 Influence of the solvent composition 

In this section, we investigate the influence of the solvent composition on the range and 

amplitude of particle pair potential. To do this, we increase the mass fraction of 3mp, in 

the water-3mp mixture, from 0.25 to 0.28 and use equal amount of H2O and D2O. The 

increase of 3mp lowers the solvent phase separation temperature to Tcx=39.5 °C. We 

measure the particle pair potential directly from the density fluctuations of the colloidal 

particles as described earlier. The resulting particle pair potential at different temperatures 

is shown in Fig. 5.11a. Similar to the system with 0.25 mass fraction of 3mp, the range 

and the amplitude of attraction increase when the temperature approaches the solvent 

phase separation temperature. We compare pair potentials of the two solvent 
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compositions, measured at the same T. We see that the range of attraction increases as 

the 3mp fraction approaches the critical composition. These observations are in good 

agreement with earlier experimental results [1, 9]. We used this system to investigate 

colloidal phase behavior as before. We found that the system exhibits the gas-liquid 

coexistence at a larger temperature difference of T = 0.40 oC to the critical temperature. 

These results suggest that as the range of attraction increases, the gas-liquid coexistence 

appears at lower attraction strength, as expected from the second virial coefficient. 

Therefore, solvent compositions closer to the critical point may be advantageous, since 

they allow investigation of colloidal phase behavior in a wider temperature-range. 

Finally, we investigate the potential depth as a function of temperature by plotting 

potential depth as a function of T in Fig. 5.11b. The results show that the potential depth 

increases strongly as the temperature approaches the solvent phase separation temperature. 

The data suggest an exponential relation between the potential depth and T. This 

exponential dependence is in good agreement with results of Bechinger et al. for critical 

Casimir force between a single colloid and a planar surface [1, 9]. 

 

Figure 11: Critical Casimir attractions.  

(a) Pair potentials at different temperatures of pNipam particles suspended in binary solvent consisting of 28 

% 3mp. (b) Potential depth as a function of T below the solvent separated temperature Tcx. The data points 

are the minima of the pair potentials in (a). Solid line indicates the best exponential fit to the data. 
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 5.8 Conclusions 

In this chapter, we have demonstrated the formation of equilibrium liquid and solid phases 

using critical Casimir forces. Using Monte Carlo simulations with experimentally 

determined pair particle potentials as input, we have completed the phase behavior 

numerically, and mapped out the corresponding phase diagram. This active and reversible 

control of colloidal gas-liquid and liquid-solid equilibria lays the groundwork for novel 

assembly techniques making use of critical Casimir forces by a unique procedure of 

precise temperature control. Because of the reversibility of the interactions, one can 

imagine using temperature gradient and zone melting techniques to grow perfect 

equilibrium structures, in analogy to atomic crystal growth. The presented close 

correspondence of the colloidal and the molecular gas-liquid transition suggests further 

studies of equilibrium and non-equilibrium phenomena using these colloidal systems as 

models with active potential control. The close agreement between the molecular Van der 

Waals theory and the colloidal phase separation that we observe on the scale of just a few 

particle diameters suggests that such mean field models may also be applied to describe 

the condensation of nano particles in the assembly of nanostructures. Moreover, the 

agreement between the simulation phase diagram and experimental data suggests that the 

critical Casimir interactions between colloids are sufficiently well described by two-body 

potentials. In contrast to other temperature-dependent colloid-colloid potentials, the 

critical Casimir effect allows temperature control of colloidal phases in a new, reversible 

and universal fashion. We foresee that more complex structures can be obtained by 

particle surface patterning to create anisotropic critical Casimir interactions. Together with 

the tunable solvent correlation length, such surface modification might allow mimicking 

“atomic orbitals” to assemble colloidal particles into structures similarly complex as those 

of molecules. 
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Chapter 6 

Visualizing colloidal liquid nucleation 

by critical Casimir forces 

 

 

In the preceding chapter, we have investigated colloidal phase transitions induced by 

critical Casimir forces. We have shown that with precise temperature control of critical 

Casimir forces we achieved reversible control of colloidal gas-liquid and liquid-solid 

equilibria. In this chapter, we focus on the formation of the liquid phase and investigate 

liquid nucleation and growth with real and the reciprocal space techniques down to the 

single particle level. This allows us to obtain direct insight into the nucleation of liquids, 

which is difficult to study at the atomic scale. We directly visualize critical liquid nuclei 

and study their structure. We then measure the size-dependent surface tension and 

chemical potential directly from the distribution of droplet sizes. Using classical 

nucleation theory, we elucidate the relation between size-dependent surface tension, 

chemical potential, and thermal fluctuations that governs the nucleation of the liquid. 

Because of the similarly between the critical Casimir potential and molecular potentials, 

we argue that these observations allow insight into the nucleation of molecular liquids as 

well.  
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6.1 Introduction 

Nucleation is the formation of a thermodynamically stable phase in a metastable phase, 

produced by a first order transition. The nucleation of a liquid from its saturated vapor 

phase provides an archetypical example of nucleation, and has been studied for nearly 100 

years because of its importance to processes in the earth atmosphere, and many industrial 

applications. Nucleation reflects the competition between the energy cost Gsurf to create 

an interface between the liquid and vapor phases, and the energy gain Gbulk from the 

condensation of particles into the thermodynamically stable phase [1-4]. The total 

nucleation energy reaches a maximum G
* at a critical nucleus radius r

*, where both 

contributions balance. Nuclei are only stable and grow if their radius r > r*. The maximum 

G
* represents the energy barrier for liquid nucleation, and depends sensitively on the 

amount of supersaturation determining Gbulk [5]. An important question concerns the 

relation between the liquid structure and the surface tension and chemical potential. The 

normal application of classical nucleation theory assumes the values of macroscopic liquid 

phases to apply at small scales; however, both Gsurf and Gbulk depend on the liquid 

structure inside the nucleus that itself can depend on the nucleus size; direct imaging of 

atomic configurations in molecular liquids, however, is prohibitively, difficult. While 

macroscopic expansion and diffusion measurements allow determination of the average 

nucleation rate, the structure of critical nuclei and the interplay of size-dependent surface 

tension, chemical potential and thermal fluctuations are extremely difficult to observe 

directly in atomic systems.  

In this chapter, we report the direct visualization of liquid nucleation in colloidal system 

induced by critical Casimir forces. The temperature-dependent critical Casimir force 

allows us to change directly the interaction energy U between the particles; this enables us 

to adjust the amount of supersaturation of the colloidal gas. Moreover, the direct imaging 

of the individual particles allows us investigate the structure of critical nuclei directly in 

three-dimensional (3D) space. These microscopic observations provide a unique 

opportunity to elucidate the relation between size-dependent nucleus structure and 

nucleation energies, and to test the applicability of nucleation theories.   
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6.2 Free energy barrier in classical nucleation theory 

Nucleation of the liquid phase from a supersaturated vapor phase is an activated process 

that involves the formation of a critical nucleus of the thermodynamically stable liquid 

phase within the metastable vapor phase. The free energy of formation of the liquid 

nucleus is determined by the free energy gain due to condensation of the attraction 

particles and the free energy cost due to the creation of the gas-liquid interface. The 

classical nucleation theory (CNT) [1-4] uses these two terms to obtain an expression for 

the free energy difference between a homogenous bulk gas and a system containing a 

spherical liquid nucleus of radius R as 

lRRG   32

3

4
4 ,     (6.1)  

where  is the interfacial tension of gas-liquid interface,  is the chemical potential 

difference between gas and liquid, and l is the number density of particles in the liquid. In 

Eq. 6.1, the first term is referred to as surface energy, Gsurf, and the second term is 

referred to as the bulk energy, Gbulk. For small nuclei, Gsurf is larger than Gbulk, and 

spontaneously formed nuclei are unstable and disappear. With increasing nucleus size, 

Gbulk grows faster than Gsurf, until, at the critical nucleus size, the bulk energy 

dominates over the surface energy and spontaneously formed nuclei are stable and grow. 

The critical radius is 
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and the free energy cost to create the critical nucleus is 
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From the critical radius, and the particle density l, we determine that the number of 

particles in a critical nucleus is 
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In thermal equilibrium, the probability Pn for a particle to be in a cluster containing n 

particles is  








 


Tk

G
P

B

n
n exp       (6.5) 

Therefore, in the nucleation stage, the occurrence of clusters of size n allows us to directly 

determine the free energy cost Gn of formation of the liquid cluster. One of the most 

important predictions of classical nucleation theory is the prediction of nucleation rates. 

Such prediction needs accurate estimates of  and. Both quantities, however, depend on 

the structure of the liquid phase, which, for small nuclei of the order of a few part icle 

diameters, might no longer be that of the bulk liquid phase. There has been much 

discussion about the size-dependence of the surface tension for small nuclei [5-7]. Our 

direct observation of nucleation allows us to image the 3D structure of critical nuclei as 

they form. Furthermore, from density fluctuations of the gas, we can directly determine 

the particle pair potential (see chapter 5). This allows us to elucidate the relation between 

the liquid structure, particle pair potential and coarse-grained quantities like surface 

tension and chemical potential.  



6.3 Surface tension in Kirkwood and Buff theory 

According to the thermodynamic definition, surface tension is the isothermal work of 

formation of unit area of interface. However, Kirkwood and Buff found that the 

mechanical definition of surface tension in terms of the stress transmitted across a strip of 

unit width offers the most direct approach to a molecular theory. Let’s consider a system 

of coexisting gas and liquid, where the two phases are separated by a planar surface (Fig. 

6.1a-b). The density of the gas and the liquid are g and l, respectively. In thermal 

equilibrium, the pressure in the bulk gas and liquid phases is constant and equal to P0. In 

the interfacial region, pressure is a function of z. Let Pt(z) be the normal pressure exerted 

by one element of volume of the fluid on a neighboring element across a plane parallel to 

the z-axis. Far away from the surface region,   ( )    ;       (6.6) 

whereas, within the surface region (Fig. 6.1c) 
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Figure 6.1: Representation of gas-liquid interface and its pressure deficit. 

(a) Surface layer model. (b) Variation of density across the surface region; the density of the gas and the 

liquid are g and l, respectively. (c) Variation of the normal pressure, pt, on the plane parallel to z-axis. The 

pressure deficit is indicated by the hatched region. 

   ( )           (6.7) 

The pressure deficit {     ( )} in the surface layer manifests itself macroscopically as a 

tension exerted by the molecules along the surface plane. The magnitude of this tension, 

per unit length, is the surface tension, and is given by [8]:    ∫ {     ( )}          (6.8) 

This equation is quite general and rigorous. However, its application to real situations is 

difficult because the pressure Pt(z) is not known. To avoid this difficulty, Kirkwood and 

Buff relate the pressure Pt(z) to the kinetic and the potential energy as    ( )     ( )    ∫   ( )   ( )       (6.9) 

where k is Boltzmann’s constant, (z) is the local density, g(r) is the molecular pair 

distribution function, and U(r) is the molecular pair potential.  

Far away from the surface, P
t(z) becomes equal to P

0, the equilibrium pressure in the 

system. Hence, we have 
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          ∫   ( )    ( )        (6.10a) 

               ∫   ( )    ( )        (6.11b) 

where gg(r) and gl(r) are the molecular pair distribution functions in the gas and in the 

liquid, respectively. 

We can now employ (6.8) to evaluate γ. We have    ∫ {     ( )}       ∫ {     ( )}       (6.12) 

Using equations (6.10a) and (6.10b) and assuming the gas is infinitely dilute and the liquid 

is homogenous right up to the dividing surface, the surface tension is simply determined as        ∫   ( )    ( )           (6.13) 

Since published in 1949, the Kirkwood-Buff theory has become the most general 

statistical mechanical theory which is applicable to all types of intermolecular interactions. 

In this thesis, we apply this theory to relate the surface tension of liquid clusters to the 

measured liquid density, particle pair distribution, and particle pair potential.  

 

6.4 Observation of liquid nucleation and growth by dynamic light 

scattering 

We use dynamic light scattering to obtain an overview over the liquid nucleation and 

growth process. This technique allows us to measure the average size of liquid droplets 

from fluctuations of the scattered intensity due to their diffusion (see chapter 2 and chapter 

5 for more detail). We use a suspension of pNipam particles in a binary solvent of 3mp 

and water, with 3mp mass fraction of 28%. As discussed in the last chapter, this solvent 

composition offers a wide temperature range to investigate the colloidal gas-liquid 

transition. To obtain reproducible results, we follow a fixed temperature protocol; we first 

equilibrate the sample at a temperature 0.7°C below Tcx where critical Casimir forces are 

negligible, and hold it for 30 minutes to achieve a homogeneous particle suspension. We 

then increase the temperature towards Tcx and fix the temperature at T = 0.3°C, well 

inside the gas-liquid coexistence regime, to observe the nucleation and growth of the 

liquid phase. 
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Dynamic light scattering allows us to follow the growth of aggregates in time. The 

dynamic light scattering setup and technique is described in chapter 2. We record the 

scattering intensity at an angle of 90o to the incident beam. In order to follow the aggregate 

size in time, we evaluate the fluctuations of the scattered intensity after different waiting 

times, tw. This allows us to determine the average aggregate radius at different stages of 

growth. 

We show the reduced correlation function of the scattered intensity at different waiting 

times in Fig. 6.2a. All curves show a double-exponential decay Ct()  =  exp(-Dq
21) + 

exp(-Dq
22); the first exponential decay, at time constant τ 1 ~ 0.01ms, is independent of 

waiting time while the second decay  2 increases with waiting time.  We interpret the first 

decay as the result of the fluctuations of the binary solvent. Using the solvent viscosity 

= 1.2mPas [9, 10], we obtain the size of the solvent fluctuation Rfluc. ~ 30 nm, which is 

close to the correlation length obtained by fitting the measured pair potential described in 

chapter 5. For the second decay, the increase of the time constant  2 with waiting time can 

 

Figure 6.2: Light scattering measurement of the growth of the colloidal liquid phase.  

(a) Reduced correlation as a function of delay time  for different waiting times tw measured at T = 0.3 oC 

revealing the fluctuations of the binary solvent (first decay at short times), and the diffusion of the colloidal 

liquid drops (second decay at longer times). (b) Average radius of colloidal liquid droplets as a function of 

time, determined from the second decay of the time correlation of the scattered intensity. The solid lines 

delineate an initial nucleation regime (blue dashed line), and two growth regimes <R>t
(1/2) (red line), and 

<R>t
(1/3) (black line), which are associated with diffusion limited and surface limited growth, respectively 

[11- 13].  
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Figure 6.3: Large clusters grow by merging of small clusters. (a) Two small clusters start to merge. (b 

and c) The clusters are merging. (d) Merging completed. 

 

be interpreted as the growth of particle aggregates. We use  2 to determine the mean 

aggregate radius <R> and show the resulting <R> as a function of time in Fig. 6.2b. The 

data indicates three regimes: the first regime, at t < 10 minutes, shows <R>~r0, the 

radius of a single particle. Apparently, the growth of liquid phase is delayed, and we 

interpret this regime as the initial nucleation stage. The second regime, at 10 < t < 60 

minutes, shows a growth according to <R>~ t
1/2. This time dependence agrees with that of 

surface-limited growth. Finally, the third regime, at t > 60 minutes, shows <R>~ t
1/3, 

reflecting diffusion-limited growth [11, 12]. These three growth regimes are confirmed by 

direct observation using confocal microscopy. The nucleation delays for 10 minutes after 

the desire temperature is reached, after that clusters form by aggregating of single 

particles, finally, large clusters form mostly by merging of small clusters growth (see Fig. 

6.3). These observations of the time-dependence cluster size agree reasonably well with 

Ostwald’s prediction of the cluster growth of molecular liquids and solids [14]. The large 

droplets grow at the expense of small ones. The agreement between our measurement and 

those of molecular liquids suggests that the growth of the liquid phase in the two systems 

follow similar mechanisms. 

 

6.5. Confocal microscopy observation of liquid nucleation 

To obtain insight into the nucleation of the colloidal liquid phase, we use confocal 

microscopy to image individual particles during the nucleation stage. This allows us to 
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follow the formation of nuclei and image their structure directly in three-dimensional 

space. We follow the same temperature protocol described in the dynamic light scattering 

measurement and use confocal microscopy to follow the appearance and disappearance of 

liquid nuclei. We show confocal microscope images at fixed temperature T = 0.3°C, and 

different waiting times in Fig. 6.4 a-c. After 10 minutes of waiting, a nucleus is clearly 

visible as indicated by the arrow in the confocal microscope image shown in Fig.6.4a. 

Interestingly, this nucleus breaks up again after a few seconds. After ~15min, a stable 

nucleus finally forms and grows (Fig. 6.4b). Subsequently, more stable nuclei form and 

grow, until after ~30min, small colloidal droplets coexist with a low density of particles 

outside (Fig. 6.4c).  

 

Figure 6.4: Colloidal liquid nucleation and growth.  

(a-c) Confocal microscope images of colloidal liquid nucleation and growth: (a) arrow indicates a liquid 

nucleus that disappears within a few seconds. (b) Arrow indicates a nucleus that is stable and grows. (c) 

Colloidal liquid-gas equilibrium after 30min of growth. (d-f) Reconstructed images of liquid formation 

correspond to the confocal images (a-c). Red and blue spheres indicate particles with a large and small 

number of nearest neighbors, respectively. Red particles demarcate the unstable (d) and stable liquid nucleus 

(e), and the fully grown liquid drops (f). 
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We elucidate the nucleation of the liquid phase in more detail by showing three-

dimensional reconstructions of the stable and unstable nuclei in Fig. 6.4d and e. We also 

show a reconstruction of the stable colloidal drops in Fig.6.4f. Large red spheres indicate 

particles with more than four nearest neighbors, and small blue spheres indicate particles 

with four or less nearest neighbors. Red particles accumulate in clusters demarcating a 

local high particle density. We elucidate the structure of the nuclei and fully grown drops 

by measuring the particle density  as a function of distance r from the nucleus center of 

mass. We show the result for selected nuclei in Fig. 6.5. Inside the fully grown drop, the 

density is constant to very good approximation, and exhibits a rather sharp decay to the 

density of the gas. From the plateau, we obtain the density lid = 3.3 m-3 inside the liquid 

drops. For the two nuclei, there is no longer a plateau of constant density indicating that 

the density inside the nucleus is not uniform, while still the position of the surface can be 

determined from the rapid decay of . These microscopic observations provide a unique 

opportunity for direct measurement of the critical radius r* of liquid nucleation. The data 

shows that the radius of the unstable aggregate is approximately 4r0, while that of the 

stable nucleus is 6r0. Thus, rc  5r0, in very good agreement with values found in computer 

simulations for Lennard-Jones liquids which are between 4 and 8r0, depending on the rate 

of cooling [5, 15, 16].  

 

Figure 6.5: Particle density as a function of distance from the center of mass for the unstable liquid nucleus 

(squares), the stable nucleus (circles), and the fully grown droplet (triangles).  
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6.6 Free energy barrier as a function of supersaturation 

We can also measure the nucleation barrier directly from the distribution of nuclei sizes. In 

thermal equilibrium, the probability Pn for a particle to be in a nucleus containing n 

particles is given by eq. (6.5). We can therefore measure the Gibbs free energy of nuclei 

directly from the observed frequency of particles to be in a cluster of size n. To do so, we 

image a large field of view, much larger than that used for the reconstruction of individual 

nuclei. An example of a large 3D reconstruction is shown in Fig. 6.6a. Many different 

cluster sizes are apparent, indicating a thermally equilibrated cluster size distribution. We 

count the total number Nn of clusters containing n particles to determine their probability 

of occurrence Pn according to Pn = Nn/N, where N is the total number of particles in the 

field of view. We show the resultant Pn as a function of cluster size in Fig. 6.6b, inset. The 

probability decreases exponentially with increasing cluster radius.  We use this 

distribution to determine the Gibbs free energy G as a function of cluster size, according 

to eq. (6.5). The resulting G as a function of r is shown in Fig. 6.6b (open squares). They 

show the expected dependence of G on nucleus size: For small nuclei, the Gibbs free 

energy increases with increasing radius R indicating the dominance of the surface energy 

 

Figure 6.6: Cluster distribution and Gibbs free energy of clusters.  

(a) 3D reconstruction gives an over view of cluster size distribution. Many different cluster sizes are 

apparent, indicating a thermally equilibrated cluster size distribution. (b) Gibb’s free energy as a function of 

cluster size R, where r0 is the particle size, at T = 0.4 oC (dots) and at T = 0.3 oC (open squares). Solid 

lines indicate fitting of CNT to the data. Dashed line indicates the critical radius of nuclei at at T = 0.3 oC. 

Inset, Occurrence probability Pn of cluster containing n particles as a function of cluster size R. 
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over the bulk energy. The Gibbs free energy reaches a maximum TkG B10*
1  at the 

critical cluster radius of 0
*
1 5.05 rR   and a critical particle number of 530*

1 n , after 

which it starts decreasing as a result of the dominance of the bulk energy. This critical 

radius is in very good agreement with the direct observation of stable nuclei, see Fig. 6.4. 

The measured form of G versus r allows us to directly estimate the surface tension  and 

chemical potential We fit the G(r) curves with the function predicted by CNT (eq. 

6.1). Assuming lid = 3.3 m-3 determined from Fig. 6.3, the only free parameters are  and 

. We obtain  = 0.40 kBT and  = 0.25 kBT/d0
2, where d0 is the particle diameter; the 

corresponding curve fits the measurements very well. The values and  are in good 

agreement with simulations of Lenrd-Jones liquids, which find values in the range of  = 

0.10-0.7 kBT and  = 0.1-1.0 kBT/d0
2
 [5, 15-17]. However, these values should depend on 

the attraction of the particles. To elucidate this dependence, we perform the same 

measurement at T = 0.4 oC corresponding to lower attractive potential between the 

particles. The resulting Gibbs free energy is indicated by solid circles in Fig. 6.6b. As 

result of the lower attraction, the nucleation barrier increases to ,8.11*
2 TkG B while the 

critical cluster radius becomes 0
*
2 5.02.7 rR  corresponding to 1075*

2 n particles. The 

best fit from the data with CNT gives us  = 0.12 kBT/d0
2 and  = 0.16 kBT. Both values 

are smaller than the ones obtained at higher particles attraction. The lower values of  

reflect directly the lower degree of supersaturation associated with the lower attractive 

potential. The lower value of  associates with weaker particle bonds. Again, this trend of 

is in good agreement with simulations in Lennard-Jones system and hard sphere colloidal 

crystallization [18].  

 

6.7 Surface tension and the structure of critical nuclei 

In this section, we aim to link the structure of critical nuclei and the particle pair potential 

directly to the measured surface tension. Following Kirwood and Buff theory eq. (6.13), 

the surface tension can be related to the pair potential U(r) and the pair correlation 

function of the liquid structure [8, 19, 20]. To explore this relation, we measure the pair 

correlation function of liquid particles and show the results in Fig.6.7. Open squares show 

the pair correlation functions at T = 0.3 oC (strong attraction) and solid circles show the  
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Figure 6.7: Pair distribution function of colloidal liquid at T = 0.4 oC (dots) and at T = 0.3 oC (open 

squares). Stronger attraction at T = 0.3 oC gives rise to the higher peak of g(r) indicating higher degree of 

short-range order. Lines indicate polynomial fit to the data. 

 

pair correlation functions at T = 0.4 oC (weaker attraction). Remarkably, a clear change 

of the pair correlation function is observed: at stronger attraction (higher degree of 

supersaturation) the first peak of g(r) is higher indicating higher degree of short-range 

order associated with the stronger bonds. The pair potentials corresponding to these 

temperatures have been shown shown in Fig. 5.11a. To calculate the integral (6.13) we fit 

g(r) and U(r) with polynomial functions and insert these functions into the Kirkwood-Buff 

integral. We then set the lower limit of the integration to the position where the particle 

pair potential reaches its minimum, since only the attractive part of pair potential 

contributes to the surface tension [20]. Doing so, we obtain values of surface tension 

2
01 /40.0 dTkB

KB   and 2
02 /20.0 dTkB

KB   at T = 0.3 oC and T = 0.4 oC, respectively, 

which show the same trend as the surface tensions  = 0.25 kBT/d0
2 and  = 0.12 kBT/d0

2 

determined from the cluster size distribution but are almost factor of two larger. This 

difference is reasonable given the crude assumptions of an infinitely dilute gas and an 

infinitely narrow interfacial width. The second assumption of constant density inside the 

liquid in particular does not hold as shown in Fig. 6.5. The data shows that the width of the 

interface and the density distribution changes with the nucleus size, leading to a size-

dependent surface tension [21, 22]. In contrast, CNTassumes the surface tension is 

independent of the cluster size. Nevertheless 21 /  and KBKB

21 / are quite similar 
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confirming the surface tension is proportional to the well depth of the pair potential and 

the nucleation and growth process is finely tuned by controlling critical Casimir forces. 

 

6.8 Conclusions 

In conclusions, by using critical Casimir forces to control particle interactions, we 

investigated the nucleation and growth of colloidal liquids. The use of the complementary 

techniques, light scattering and confocal microscopy allowed us to follow all stages of the 

nucleation and growth process, and to test classical theories of nucleation and growth. We 

used dynamic light scattering to have an overview of the nucleation and growth process. 

The result shows that the growth process is divided into three regimes: initial nucleation, 

surface limited growth, and diffusion limited growth. The latter two regimes are in very 

good agreement with Ostwald ripening for molecular liquids and solids.  On the other 

hand, we used confocal microscopy to follow the formation and break up of liquid nuclei 

directly in real space and we determined the critical radius above which nuclei are stable 

and grow. We then used the cluster size distribution to reconstruct the Gibb’s free energy 

barrier of nucleation, assuming thermal equilibrium of cluster sizes. This measured free 

energy curve could be very well fitted by the classical nucleation theory prediction, and 

we used the fit to determine the important parameters surface tension and chemical 

potential. Furthermore, we showed that the exquisite temperature control of the particle 

pair potential via critical Casimir forces allowed us to even change the amount of 

suspersaturation. We determined that at lower attraction, the energy barrier for nucleation 

becomes larger, reflecting the lower degree of supersaturation. Finally, using Kirwood and 

Buff theory, we linked the structure of critical nuclei and the particle pair potential directly 

to the measured surface tension. While we find qualitative agreement, the value of surface 

tension computed from the structure and pair potential is a factor of two larger, indicating 

the need for a more refined model. Our results, from different methods, are consistent and 

in good agreement with simulation results on Lennard-Jones liquids suggesting that this 

colloidal system is a good model for molecular liquids.  
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Chapter 7 

Out-of-equilibrium assembly by 

critical Casimir forces 

 

 

Active control over the aggregation of particles has important applications for the design 

of new nanostructured materials. In the two preceding chapters we have investigated phase 

equilibria due to critical Casimir forces. Here, we explore structures formed out-of-

equilibrium by quenching the particles into a strongly attractive state. We demonstrate that 

via active control of the particle pair potential, we can quench the particles into well-

defined aggregate structures with direct control of their morphology. By imaging the 

morphology in three dimensions, we show that the resulting structures are fractals, with a 

fractal dimension that is controlled precisely by the temperature quench. We use Monte 

Carlo simulations of diffusion-limited aggregation to relate the aggregate morphology to 

the particle pair potential. These results open a new route of control in the assembly of 

colloidal and nano-scale structures. 
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7.1 Introduction 

Controlling the structure of aggregates is important for applications as diverse as filters, 

catalyzers, and electronic devices. The functionality of devices requires aggregate 

structures with specifically designed surface to volume ratio, morphology, and 

characteristic structural length scales. However, achieving specific aggregate structures by 

design is a difficult task, and there is no general framework to achieve active control over 

the aggregation process. In fact, usually such aggregation processes are irreversible with 

very little control over the resulting structures. Because of its importance, colloidal 

aggregation has been investigated intensely. The important low-density regimes of 

diffusion-limited aggregation (DLA) and reaction-limited aggregation (RLA) [1], where 

the particles stick irreversibly due to strong attractive interactions, have been much 

investigated in simulations and shown to exhibit universal features with well-defined 

fractal dimensions. In experiments, it is rather diffusion and reaction limited cluster 

aggregation that is observed [2, 3]. In this case, it is the growing fractal clusters that get 

attached to each other rather than single particles. This leads to lower fractal dimensions 

compared to DLA. Much more relevant for applications, however is the regime of lower 

attractive potential, where because of particle detachment denser structures can form; this 

regime is much less explored [4, 5]. Consequently much less is known about the structures 

formed, and their dependence on the attractive potential. The reversible control of particle 

attraction by critical Casimir forces offers new opportunities to explore this regime, and to 

control the morphology and fractal dimension of colloidal aggregates by design.  

In this chapter, we investigate the morphology of fractal structures that form when 

particles can detach from the growing aggregate with a finite probability. We combine 

experimental- and simulation studies of colloidal aggregation: In the experiment, we use 

critical Casimir forces to quench the particles in a state of well-defined attraction. We 

follow the diffusion-limited cluster aggregation as a function of the quench depth. We find 

that we can assemble the particles into aggregates with well-defined morphology and 

fractal dimension. We elucidate the relation between their fractal dimension, characteristic 

cluster length scale, and the depth of temperature quench by imaging the resulting 

structures at the particle scale. In the simulation, we use Monte Carlo simulations of 

diffusion-limited aggregation (DLA) with finite particle dissociation probability to model 

the aggregation process. This allows us to link the change of morphology and fractal 
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dimension directly to the attractive potential strength. We show that even at finite 

attractive potential, the aggregation exhibits universal properties: the change of fractal 

dimension with particle pair potential appears to be independent of the nature of the 

interaction, the type of aggregation, and the dimensionality. 

 

7.2 Experimental control of the aggregate morphology with critical 

Casimir forces 

The temperature dependence of the critical Casimir force allows us to explore out-of-

equilibrium behavior by actively quenching the particles into states of different attractive 

strength. To do so, we use pNipam colloids suspended in a binary solvent consisting of 28 

%wt 3mp (see chapter 5), and we employ a special heating setup consisting of two 

independent water circles to quench the system quickly and reliably to a temperature T 

below the phase separation temperature Tcx. We first equilibrate the suspension at T =  

0.7oC, where critical Casimir forces are still negligible. Then, by switching the water 

cycle, we jump to the desired final temperature to achieve a well-defined attractive critical 

 

Figure 7.1: Tuning the morphology of colloidal aggregates by critical Casimir forces. Confocal 

microscope images and three-dimensional reconstruction of aggregates resulting from temperature quenches 

to T = 0.12 oC (a, d), 0.14 oC (b, e), and 0.2 oC (c, f) below the phase separation temperature of the binary 

solvent. 
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 Casimir potential. After an hour, we image the resulting structures with confocal 

microscopy and obtain 3D reconstructions of the aggregate structures. The controlled 

temperature quench allows us to form aggregates with well-defined morphologies. This is 

demonstrated in Fig. 7.1, where we show confocal microscope images and three-

dimensional reconstructions of typical aggregates obtained at various T. With increasing 

T, the structure of the aggregate changes from open, ramified (Fig. 7.1a, d) to dense and 

compact (Fig. 7.1c, f). These morphologies remain essentially unchanged over several 

hours as long as we hold the temperature fixed. We characterize the compactness of the 

structures by determining the number N of particles within a distance r to the cluster 

center. The data in Fig. 7.2a shows that, in good approximation, fd
rN ~ , indicating that 

the structures are fractals on intermediate length scales. We conclude that even when the 

morphology becomes more compact, the fractal structure persists. We find, however, that 

the fractal dimension increases with T as shown by the increasing slopes in Fig. 7.2a. 

This is confirmed when we analyze many more clusters, and plot the fractal dimension as 

a function of T in Fig. 7.2. The fractal dimension increases continuously from df ~ 2.1, at 

small T to df ~ 3 at larger T, confirming that the structures become more dense as the 

attractive strength decreases. These results demonstrate that by controlling the temperature 

quench, we can assemble structures with well-defined morphology and fractal dimension. 

By varying the temperature quench, we can continuously tune the morphology and 

structural properties of the aggregates. 

 

Figure. 7.2:  (a) Scaling of the number of particles N(r) with distance r/r0 from the cluster center for selected 

temperatures: T = 0.12 oC (circles), 0.14 oC (diamonds), and 0.2 oC (hexagons). (b) Fractal dimension as a 

function of temperature T, determined from the slopes in (a). A continuous increase of the fractal 

dimension towards the spatial dimension D = 3 is observed. 
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7.3 Monte Carlo simulation study of the fractal morphology 

To elucidate how the change in morphology is related to the particle attractions, we 

perform Monte Carlo simulations of diffusion-limited particle aggregation. We carry out 

simulations in two and three dimensions, and model finite bond energies by a finite 

dissociation probability  with which particles can detach from the growing cluster. The 

particles move on two and three-dimensional square lattices following a random walk, 

until they get attached to the cluster. Singly bonded particles can dissociate from the 

cluster with probability , and the detached particle then diffuses until it sticks to the 

cluster again. This procedure is repeated until there is a collection of 104 particles in the 

cluster. We first generate clusters, using 2D simulations, for a wide range of dissociation 

probabilities; different dissociation probabilities lead indeed to very different 

morphologies, as shown by the renderings of the final clusters in Fig. 7.3. Clear changes in 

the cluster morphology from a highly ramified fractal structure at 0=α  to increasingly 

compact structures at higher α  are observed. We measure the fractal dimension as before 

from the scaling of the number of particles as a function of distance from the cluster 

center. Two examples are shown in Fig. 7.4a. Indeed, fd
RRN ~)(  over almost the entire 

range of R, in agreement with our experimental observations. The resultant fractal 

dimension is shown as a function of  in Fig. 7.4b; it increases continuously from the 

DLA limit df
DLA=1.66 [6] to the dimension of space D = 2, see Fig. 7.4b, main panel. We 

plot D – df as a function of  in Fig. 7.4b (inset). Interestingly, for sufficiently large  the  

  

Figure 7.3:  Diffusion limited aggregate cluster generated for various values of rate of dissociation a. 
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fractal dimension is well described by           , where the exponent  = 0.650.01 

(solid line in Fig. 4b). At lower , this power-law relation no longer holds, possibly 

because at small , the structure does no longer adjust on the simulation timescale. 

The changing morphology leads to a dramatic change in the number Np of particles at the 

perimeter of the cluster, see Fig. 7.5. In the highly ramified structures ( ~ 0), most of the 

particles sit at the perimeter of the structure, while with increasing , the number of 

perimeter particles drops rapidly, in agreement with the decreasing surface to volume ratio 

observed in the experiments. This change in the number of perimeter particles provides a 

 

Figure. 7.4:  2D Monte Carlo simulations of cluster. (a) Representative graphs of N(R)versus R  on log-log 

scale for the DLA cluster for =0.005 and 0.5. (b)  Plot of variation of fractal dimensions df versus rate of 

dissociation a. Inset graph shows variation of (D-df) VS a on log-log scale, with linear fit in the region from 

a = 0.03 to 1.  

 

Figure 7.5:  2D Monte Carlo simulations results of the number of particles at the perimeter of the structure 

as a function of dissociation probability a demonstrates dramatic change of the cluster morphology. The low 

dissociation probability is directly reflected in the large number of particles at the perimeter. 
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Figure 7.6:  3D Monte Carlo simulations of clusters: Variation of the fractal dimensions df with rate of 

dissociation . Inset shows the variation of (D-df) versus  on a log-log scale, with linear fit in the region 

from  = 0.03 to 1. 

 

crucial link between  and the changing fractal structure. At small dissociation 

probability, many more particles sit at the perimeter where they are relatively stable and 

dissociate only slowly. At higher dissociation probability, fewer particles sit at the 

perimeter, as a result of the higher dissociation rate that allows for structural 

rearrangement. The final aggregate structure results from the balance of morphology-

dependent dissociation and restructuring due to re-attachment of particles. We perform 

similar simulations on a three-dimensional lattice. We find that, similarly, a relation of the 

form           holds, where D = 3 (see figure 7.6). However, the value of exponent 

in this case is found to be            . 

 

7.4 Discussion 

To compare quantitatively the cluster morphology change observed in the experiments and 

simulations, we relate the dissociation probability to the particle pair potential. Assuming 

thermally activated dissociation of particles, we can link the dissociation probability  in 

the simulations directly to an effective pair potential V(r), using            , where, the 

energy barrier V0 is associated with depth of the potential V(r). This effective pair potential 

can be extrapolated from direct measurement: as shown in chapter 5, at low attraction, the 
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potential can be measured from the pair distribution function in dilute systems. Here, we 

use these measurements to extrapolate the potential depth to somewhat stronger attraction. 

We show the potential depth -V0 as a function of T in Fig. 7.7. Filled symbols indicate 

the experimental measurements. To extrapolate to stronger attraction, we follow the 

observation of Bechinger et al [7] that the potential depth increases exponentially with T. 

We fit the experimental data points with an exponential function, and extrapolate to lower 

T, see the solid line in Fig. 7.7. The exponential function does indeed fit the 

measurements well. The resulting extrapolated potential depths, which correspond to the 

temperature quenches used in this chapter, are shown as open symbols in Fig. 7.7.  

We can now compare the experimental and simulated aggregate structures; we do this by 

plotting the variation of the fractal dimensions (D-df) as a function of  for both 

experiments and 2D and 3D simulations in Fig. 7.8. Two crucial points can be noticed: 

first, by choosing b, we can collapse the two- and three-dimensional simulations and the 

experiments, indicating a common underlying mechanism. Second, for large , a linear 

relation between (D-df) and  is observed, indicating that the aggregate structure changes 

continuously, and in a surprisingly linear way with the attractive potential. These 

observations highlight a general feature of the aggregation: although the different 

mechanism of aggregation, DLA in the simulations and DLCA in the experiment, results 

in different values of the fractal dimension, the relative changes of the fractal dimension 

are similar. Moreover, simulations by Shih et al [8] on a reversible growth model for  

 

Figure 7.7:  Experimental potential depth -V0 as a function of DT: solid circles are measured values, open 

squares are extrapolated values, line is an exponential fit. 
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Figure 7.8: Variation of the fractal dimensions (    )  ⁄  versus for experiments and simulations in 2D 

and 3D. Here,   is a scaling factor. 

 

cluster-cluster aggregation and experiments by Pusey et al [9] for a system of colloid-

polymer mixtures, have reported that the fractal dimension is almost constant at large 

attraction energy E, but it increases drastically with decreasing E when E ≤ 3kBT. In both 

cases, they observed fractal dimensions from df =1.9 to df =3 which is in good agreement 

with our experiments as well as simulations. Our direct comparison of experiments, and 2 

and 3D simulations demonstrates that the morphology change exhibits universal 

properties, being independent of dimensionality, nature of the underlying lattice and the 

specific aggregation process. 

 

7.5 Conclusions 

In conclusion, we have shown that we can tune the morphology of colloidal aggregates 

continuously with exquisite control over their fractal dimension by combining critical 

Casimir forces with controlled temperature quenches. The controlled temperature quench 

forces the system in a state of well-defined attraction, allowing us to elucidate the 

formation of out-of-equilibrium structures. Comparison with simulations of diffusion-

limited aggregation in two and three dimensions demonstrates that the underlying relation 
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between fractal dimension and attractive particle potential exhibits universal properties. 

Direct potential control such as that afforded by the critical Casimir effect can thus be used 

to precisely tune the average architecture of such out-of-equilibrium structures to yield 

specific branch thickness, surface-to-volume ratio, and fractal dimension. Such direct 

morphology control offers new opportunities for applications as for example to design 

specific structures required to reach specific functionality in devices.  
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Summary 

 

 

Colloids are widely used because of their exceptional properties. Beside their own 

applications in food, petrol, cosmetics and drug industries, photonic, optical filters and 

chemical sensor, they are also known as powerful model systems to study molecular phase 

behavior. In this thesis, we have examined both aspects of colloids using temperature-

sensitive colloidal systems to fully investigate colloidal phase behavior and colloidal 

assembly. The thesis contains two major subjects; in the first part, we have investigated 

the crystal-fluid transition and the free energy at colloidal crystal-fluid interfaces. In the 

second part, we have studied colloidal phase transition and assembly induced by critical 

Casimir forces.  

The direct observation of the crystal-fluid interface is difficult because it is buried between 

two dense phases of closely similar densities, but different structural order. We overcome 

this difficulty using a refractive-index matched system, containing pNipam colloids and 

water, and recent confocal microscopy techniques. Since the size of the pNipam particles, 

and therefore, the volume fraction of the suspension change with temperature, large 

crystal-fluid interfaces are achieved by using a temperature-gradient technique. We use 

confocal microscopy to follow directly the heterogeneous crystal nucleation, the 

advancing interface and the stationary interface at the particle scale. For the advancing 

interface, we measure the growth velocity of the crystal and diffusion coefficient of fluid 

particles and use them to determine the chemical potential difference between crystal and 

fluid phases. We investigate the effect of impurities on the advancing interface and 
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determine the critical force needed to overcome impurity particles from the local interface 

curvature. 

For the stationary interface, we follow the changes from the short-range order of the fluid 

to the long-range order of the crystal. Our result is in very good agreement with simple 

atomic systems; the maximum short-range density of the fluid is achieved with icosahedral 

configurations. These icosahedral units exhibit five-fold rotational symmetry that is 

incompatible with a periodic filling of space. This incompatibility leads to a first-order 

transition that separates crystal and fluid phases. At the interface to the crystal, the number 

of possible packing configurations of the fluid is reduced with respect to the bulk fluid, 

resulting in a loss of configurational entropy that provides the dominant contribution to the 

interfacial energy.  

We establish a direct link between structure and free energy by measuring the free energy 

change across the interface from the 3D particle configurations. The 3D imaging allows us 

to directly measure the free volume and the free surface area available for insertion of 

additional particles; thus the interfacial free energy and the interfacial tension of crystal-

fluid interfaces are determined. Because of its structural origin, the interfacial tension 

depends on the direction of the interfacial plane with respect to the crystal lattice and is 

anisotropic. This anisotropy plays an important role in crystal nucleation and the 

morphological stability of crystal growth; however, its direct experimental measurement is 

prohibitively difficult, and this anisotropy has mostly been inferred from macroscopic 

measurements. We used thermally excited interface fluctuations to measure the interfacial 

tension and its small anisotropy. The measured interfacial tensions, from both methods, 

agree well with simulation values of hard spheres and slightly soft spheres, while the 

anisotropy is surprisingly larger than that found in simulations.  

In the second part of the thesis, we demonstrated the active assembly control of 

equilibrium and out-of-equilibrium phases using attractive critical Casimir forces. These 

forces arise due to concentration fluctuations of the critical binary solvent, and therefore, 

the magnitude and range of this attraction is set by the solvent correlation length, and can 

be adjusted with temperature. Using a low quench rate, we guide the colloidal particles 

into analogues of molecular liquid and solid phases via exquisite control over the particle 

interactions. We measure the pair distribution and pair potential of the particles directly by 

following density fluctuations in the colloidal gas. This allows us to elucidate the 
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applicability of continuum models to the colloidal assembly process. We apply the van der 

Waals model of molecular liquefaction to show that the colloidal gas-liquid condensation 

is accurately described by the Van der Waals theory, even on the scale of a few particles.   

The microscopic insight of the experiment provides direct input for simulations to 

investigate the full phase behavior of colloids induced by the critical Casimir forces. We, 

therefore, use experimentally measured particle pair potentials and Monte Carlo 

simulations to fully investigate the phase behavior of colloids in binary liquid solvents. 

This combination allows us for the first time to simulate phase equilibria due to critical 

Casimir forces. We locate colloidal gas, liquid and solid phases as a function of 

temperature and colloid volume fraction. The resulting colloidal phase diagram agrees 

well with experiment and has the characteristic topology associated with molecular 

potentials like the Lennard-Jones, but occurs over a very narrow temperature range due to 

the strong temperature dependence of the critical Casimir interactions. 

The homogeneous nucleation of a liquid from its vapor is of fundamental interest to our 

understanding of the formation of phases in first order transitions. Despite its importance, 

direct observation of the nucleation of the liquid phase is prohibitively difficult at the 

molecular scale. Here, we show that the application of critical Casimir forces on a 

colloidal gas provides direct images of liquid nucleation in real time and on the single 

particle level, allowing us to visualize the effects of thermal fluctuations in the nucleation 

fluctuations. We implement a new way to measure the free energy of the liquid cluster, 

surface tension and chemical potential difference between gas and liquid phases directly 

from the cluster size distribution. We also determine the surface tension directly from the 

particle pair potential and structure of liquid cluster at different degrees of supersaturation. 

These results provide a unique opportunity to test the applicability of nucleation theories. 

Finally, we study in detail the morphology change of fractal structures by complementing 

experimental control via critical Casimir forces with Monte Carlo simulations of diffusion-

limited aggregation. On the one hand, with high quench rate we quench the particles into a 

state of high attraction and assemble them into aggregates with well-defined morphology. 

We elucidate the relation between the fractal dimension and the potential depth by 

imaging the resulting structures. On the other hand, we use Monte Carlo simulations of 

diffusion-limited aggregation with finite particle dissociation probability to model the 

aggregation process, and relate the resulting structures to the particle dissociation 
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probability and, therefore, to the attractive potential strength. A good agreement between 

simulations and experiments allows us to conclude that the diffusion limited aggregation 

exhibits universal properties, being independent of the nature of the interaction and the 

dimensionality. 

Our results confirm that the temperature-sensitive colloidal system, on the one hand, is a 

powerful model system to study molecular phase behavior, and on the other hand, opens 

up new possibilities in the active assembly of micro and nanostructures. 
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Samenvatting 

 

Colloïden worden op vele gebieden gebruikt voor hun exceptionele eigenschappen. Naast 

hun toepasbaarheid in de voedsel, petrochemische, cosmetische en farmaceutische 

industrie en in de fotonica, optische filters en chemische sensoren, staan ze ook bekend als 

een zeer sterk model systeem voor moleculair fasegedrag. In dit proefschrift hebben we 

deze beide aspecten van colloïden onderzocht door gebruik te maken van temperatuur 

gevoelige colloïdale systemen om het colloïdale fasegedrag en de colloïde organisatie vast 

te leggen. Dit proefschrift bestaat uit twee hoofdonderwerpen: in het eerste deel hebben 

we de kristal-vloeistof overgang en de vrije energie op het colloïdale kristal-vloeistof 

grensvlak onderzocht. In het tweede deel, bestudeerden we colloïdale faseovergangen en 

organisatie geïnduceerd door kritische Casimir krachten.  

Het direct observeren van het kristal-vloeistof grensvlak is moeilijk omdat het begraven 

ligt tussen twee fasen met een zeer hoge en gelijkwaardige dichtheid, maar met 

verschillende structurele ordening. We lossen dit probleem op door zowel gebruik te 

maken van een systeem van pNipam colloïden in water waarbij de brekingsindex van de 

deeltjes gelijk is aan het oplosmiddel, als van recente confocale technieken. Omdat de 

grootte van de pNipam deeltjes afhangt van de temperatuur, en daarmee dus ook de 

volume fractie van de dispersie, kunnen grote kristal-vloeistof grensvlakken verkregen 

worden door gebruik te maken van een temperatuurgradiënt. We gebruiken confocale 

microscopie om het heterogene nucleatieproces, het zich voortbewegende grensvlak en het 

stationaire grensvlak direct te volgen op de schaal van een enkel deeltje. Voor het zich 

voortbewegende grensvlak hebben wij de groeisnelheid van het kristal en de 
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diffusiecoëfficiënt van de vloeistofdeeltjes gemeten en gebruikt om het verschil in 

chemische potentiaal tussen kristal en vloeistof fase te bepalen. We hebben ook het effect 

van onzuiverheden op het voortbewegende grensvlak onderzocht en de kracht die nodig is 

om langs deze onzuiverheden te komen bepaald vanuit de locale kromming van het 

grensvlak.  

Voor het stationaire grensvlak hebben we de verandering van de orde over korte afstand 

van de vloeistof naar de orde over langere afstanden van het kristal gevolgd. Het resultaat 

is goed in overeenstemming met wat gevonden word voor simpele atomaire systemen: om 

een maximale dichtheid over een korte afstand te krijgen nemen de deeltjes in de vloeistof 

een icosahedrische configuratie aan. Deze icosahedrische eenheden vertonen een 

vijfvoudige rotatiesymmetrie die een periodieke vulling van de ruimte onmogelijk maken. 

Dit leidt tot een eerste orde faseovergang die de kristal en vloeistof fases van elkaar 

scheidt. Aan het grensvlak worden de mogelijke manieren om te ordenen van de vloeistof 

beperkt in verhouding tot de bulk vloeistof. Dit resulteert in een verlaging van de 

configuratie entropie die daadoor het meest bijdraagt aan de grensvlak energie.  

Verder vormen we een directe link tussen de structuur van de vloeistof en kristal fase van 

de colloïden en de vrije energie van het grensvlak. Dit doen we door de verandering in 

vrije energie over het grensvlak te meten vanuit de driedimensionale configuratie van de 

deeltjes. Het in drie dimensies vastleggen van de posities van de deeltjes zorgt er voor dat 

we direct het vrije volume en het vrije oppervlakte kunnen meten dat beschikbaar is om 

extra deeltjes toe te voegen. Op deze manier wordt de energie en de spanning van het 

grensvlak tussen het kristal en de vloeistof bepaald. Door zijn structuur hangt de 

grensvlakspanning af van zijn richting ten opzichte van de vlakken van het kristal en is 

daardoor anisotroop. Deze anisotropie speelt een grote rol in de vorming en stabiliteit van 

de groei van kristallen. Het direct meten van deze anisotropie is echter zeer moeilijk. In 

veel gevallen wordt deze afgeleid van metingen gedaan voor het gehele macroscopische 

systeem. Wij maken gebruik van thermische fluctuaties aan het grensvlak om de 

grensvlakspanning en de anisotropie daarin te meten. De gemeten gemiddelde 

grensvlakspanningen, verkregen door beide methoden, komen goed overeen met waarden 

verkregen uit simulaties van harde bollen en ietwat zachte bollen. De gemeten anisotropie 

daarin daarentegen, is veel groter dan wat in de simulaties werd gevonden. 
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In het tweede deel van dit proefschrift laten we zien dat we een actieve controle hebben 

over het organiseren van colloïden in zowel evenwichtsstructuren als in structuren die ver 

van het evenwicht gevormd worden. Dit doen we door gebruik te maken van attractieve 

kritische Casimir krachten. Deze krachten ontstaan door fluctuaties in de concentratie van 

een binair mengsel van oplosmiddelen. De sterkte en de afstand waarover deze krachten 

werken, hangt af van de correlatie lengte van het mengsel en wordt daardoor bepaald door 

temperatuur. Door de temperatuur zeer langzaam te veranderen en daarmee uitermate 

nauwkeurig de interacties tussen de deeltjes te beheersen, kunnen we de deeltjes colloïdale 

versies van moleculaire vloeistoffen of vaste fasen laten vormen. De paar-interacties 

tussen de deeltjes en de paar-distributie kunnen direct gemeten worden door de 

dichtheidsfluctuaties van de deeltjes in de gasfase te volgen. Hierdoor kunnen we 

onderzoeken of de huidige continuüm modellen wel van toepassing zijn op het colloïdale 

organisatie proces. We passen het model voor het condenseren van gassen van Van der 

Waals toe om aan te tonen dat deze theorie het condenseren van een colloïdaal gas precies 

beschrijft, zelf op de schaal van maar een paar deeltjes.  

De inzichten verkregen uit de experimenten kunnen direct gebruikt worden in simulaties 

om het volledige fasegedrag van colloïden met attractieve kritische Casimir krachten te 

kunnen onderzoeken. De experimenteel bepaalde paar-potentialen tussen de deeltjes 

werden daarom gebruikt in Monte Carlo simulaties om het volledige fasegedrag van 

colloïden in binaire mengsels te onderzoeken. Deze combinatie stelde ons voor het eerst 

instaat om evenwichten tussen fasen te simuleren ontstaan door het kritische Casimir 

effect. In de simulaties vonden we een colloïdaal gas, vloeistof en een vaste stof als functie 

van de temperatuur en de volume fractie van de deeltjes. Het gevonden complete fase 

diagram komt goed overeen met wat er in experimenten gevonden is. Het heeft de 

karakteristieke vorm van diagrammen voor moleculaire potentialen, zoals bijvoorbeeld 

Lennard-Jones, maar voor maar een zeer klein temperatuur bereik. Dit komt door de 

sterkte temperatuursafhankelijkheid van de kritische Casimir interacties. 

De homogene nucleatie van een vloeistof vanuit zijn damp is van fundamentele interesse 

in het begrijpen van de formatie van fasen in eerste orde fase overgangen. Ondanks zijn 

belangrijke betekenis, is het direct observeren van de nucleatie van de vloeistoffase op 

moleculaire schaal zeer moeilijk. Wij laten zien dat door de toepassing van het kritische 

Casimir effect op colloïdale schaal een direct beeld gekregen kan worden van de vloeistof 



Samenvatting 

 

 

108 
 

nucleatie, zelfs op de schaal van een enkel deeltje. Dit stelt ons in staat om de effecten van 

thermische fluctuaties van de deeltjes aan het oppervlak te zien op de fluctuaties in de 

grote van de nucleus. We passen een nieuwe manier toe waarin we de vrije energie van de 

vloeistof clusters, de oppervlaktespanning en het chemische potentiaal verschil tussen het 

gas en de vloeistof direct bepalen vanuit de gemeten grootteverdeling van de clusters. Ook 

bepalen we de oppervlaktespanning direct vanuit het paar-potentiaal van de deeltjes en de 

structuur van de vloeistof clusters bij verschillende mate van oververzadiging. Deze 

resultaten geven een unieke kans om de toepasbaarheid van nucleatietheorieën te testen.  

Als laatste bestuderen we in detail de verandering van de structuur van fractale aggregaten 

door experimentele controle over de interacties te complementeren met Monte Carlo 

simulaties voor diffusie gelimiteerde aggregatie. Aan de ene kant springen we 

experimenteel in een temperatuur gebied waarin de deeltjes een zeer hoge attractieve 

kracht ondervinden waardoor ze direct aggregaten vormen met een goedgedefinieerde 

structuur.  We leggen de relatie vast tussen de fractale dimensie van deze aggregaten en de 

diepte van de interactie potentiaal door beelden te nemen van de ontstane aggregaten. Aan 

de andere kant, gebruiken we Monte Carlo simulaties van diffusie gelimiteerde aggregatie 

met een eindige kans op dissociatie om het aggregatie proces te modeleren en de ontstane 

structuren te koppelen aan een kans op dissociatie van een deeltje en dus aan de 

aantrekkingskracht tussen de deeltjes. Uit de goede overeenstemming tussen experimenten 

en simulatie concluderen we dat voor een diffusie gelimiteerd aggregatie proces het 

gedrag universeel is: dezelfde aantrekkingskracht leidt tot dezelfde structuur, ongeacht het 

type deeltje en de dimensie van het systeem.  

Onze resultaten bevestigen dat het temperatuurgevoelige colloïdale systeem aan de ene 

kant een sterk model systeem is om moleculair fasegedrag de bestuderen. Aan de andere 

kant bied het nieuwe mogelijkheden voor het actief en gecontroleerd samenstellen van 

micro- en nanostructuren.  
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