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Phase Transitions and Volunteering in Spatial Public Goods Games
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We present a simple yet effective mechanism promoting cooperation under full anonymity by allowing
for voluntary participation in public goods games. This natural extension leads to ‘‘rock-scissors-paper’’–
type cyclic dominance of the three strategies, cooperate, defect, and loner. In spatial settings with players
arranged on a regular lattice, this results in interesting dynamical properties and intriguing spatiotemporal
patterns. In particular, variations of the value of the public good leads to transitions between one-, two-,
and three-strategy states which either are in the class of directed percolation or show interesting analogies
to Ising-type models. Although volunteering is incapable of stabilizing cooperation, it efficiently prevents
successful spreading of selfish behavior.
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in the absence of repeated interactions, under full anonym- site as well as on the neighboring sites. For the sake of
In behavioral sciences and more recently in economics
the evolution of cooperation among unrelated individuals
represents one of the most stunning phenomena [1,2]. The
prisoner’s dilemma (PD) has long been established as a
paradigm to explain cooperative behavior through pairwise
interactions [3]. While the PD attracted attention from
biologists and social scientists, most studies in experimen-
tal economics focused on the closely related but more
general public goods game (PGG) for group interactions
[4]. In typical PGG experiments, an experimenter endows,
e.g., four players with $10 each. The players then have the
opportunity to invest part or all of their money into a
common pool. They know that the total amount in the
pool is doubled and equally divided among all participants
irrespective of their contributions. If everybody cooperates
and contributes their money, each player ends up with $20.
However, every player faces the temptation to defect and to
free ride on the other players’ contributions by withholding
the money since every invested dollar returns only 50 cents
to the investor. Obviously, defection represents the domi-
nating strategy leading to the ’’rational’’ equilibrium where
no one increases the initial capital. Such strategical behav-
ior prescribed to homo oeconomicus is frequently at odds
with experimental findings [5] and lead to the decline of
this rationality concept.

Note that for pairwise encounters with a fixed invest-
ment amount, the PGG reduces to the PD. PGG interac-
tions are abundant in animal and human societies [6–8].
Consider, for example, predator inspection behavior,
alarm calls, and group defense, as well as health insurance,
public transportation, or environmental issues, to name
only a few.

Recently it was demonstrated that voluntary participa-
tion in such public enterprises may provide an escape hatch
out of economic stalemate and results in a substantial and
persistent willingness to cooperate even in sizable groups,
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ity, and without secondary mechanisms such as punish-
ment or reward [9].

The voluntary participation in the PGG is modeled
by considering three strategical types of players:
(i) cooperators C and (ii) defectors D, both willing to
join the PGG, though with different intentions. While the
former are ready to contribute a fixed share to the common
pool, the latter attempt to exploit the resource. Finally there
are the so-called (iii) loners L, who refuse to participate and
rather rely on some small but fixed income. The loner
strategy is thus risk averse. These strategies lead to a
‘‘rock-scissors-paper’’ dynamics with cyclic dominance:
if cooperators abound, they can be exploited by defectors;
if defectors prevail, it is best to abstain; and if no one
participates in the PGG, small groups can form and it
pays to return to cooperation. Therefore, voluntary partici-
pation provides a simple yet natural way to avoid dead-
locks in states of mutual defection. In well-mixed
populations, i.e., in mean-field type models with replicator
dynamics [10], this system can be solved analytically [11].

In this Letter, we consider a spatially extended variant of
the voluntary PGG where players are arranged on a rigid
regular lattice and interact only with their local neighbor-
hood. Each player is confined to a site x on a square lattice.
The size of the neighborhood therefore determines the
maximum number of participants N in the PGG. We re-
strict our investigations to the von Neumann neighborhood,
i.e., to N � 5. But note that the qualitative results remain
unaffected by the underlying geometry of the regular lat-
tice. The state variable s�x� 2 fC;D; Lg determines the
player’s strategy at any given time. The score achieved in
PGG interactions denotes the reproductive success, i.e., the
probability that one of the neighbors will adopt the player’s
strategy. In the rigorous sense of the spatial PGG, this score
is accumulated over N � 5 games, i.e., by summing up the
player’s performance in PGGs taking place on the player’s
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FIG. 1. Frequencies of cooperators C (open squares) and
defectors D (open diamonds) as a function of the multiplication
rate r for � � 1 and � � K � 0:1. The solid line shows the
frequency of defectors in pair approximation. The arrow indi-
cates rC where cooperators vanish.
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simplicity, we assume that the score P�x� is determined by
a single, typical PGG involving the player and its four
nearest neighbors. This simplification accelerates the
simulations and makes the pair approximation more con-
venient while causing minor modifications in the system’s
dynamics.

The score P�x� depends on the five strategies. Namely, if
nc, nd, and nl (with nc � nd � nl � N � 5) denote the
number of participants choosing C, D, and L, then

P�x� �

8><
>:

rnc
nc�nd

� 1 if s�x� � C;
rnc

nc�nd
if s�x� � D;

� if s�x� � L;
(1)

where the cooperative investments are normalized to unity
and r specifies the multiplication factor on the public good.
Note that r > 1 must hold such that groups of cooperators
are better off than groups of defectors—hence to establish
a social dilemma. The loner payoff � with 0<�< r� 1
denotes a small but reliable source of income with a lower
performance than mutual cooperation but better than mu-
tual defection. Solitary C or D players (nc � nd � 1) are
assumed to act as loners.

Players reassessing and updating their strategies are
randomly chosen (e.g., at site x) and compare their score
to a randomly chosen neighbor y. x adopts the strategy of y
with a probability [12]:

W	s�y� ! s�x�� �
1

1� expf	P�x� � P�y� � ��=Kg
; (2)

where � > 0 denotes the cost of strategy change and K
introduces some noise to allow for irrational, i.e., non-
payoff-maximizing choices. For K � 0 the neighboring
strategy s�y� is always adopted provided the payoff differ-
ence exceeds the cost of strategy change, i.e., P�y� >
P�x� � �. For K > 0, strategies performing worse are
also adopted with a certain probability, e.g., due to imper-
fect information. K determines the half-width of this
probability distribution.

By means of Monte Carlo (MC) simulations comple-
mented by pair approximation, we determine the equili-
brium frequencies of the three strategies when varying r
while keeping �, K, and � fixed. For the pair approxima-
tion we determine analytically the doublet density, i.e., the
probability of all configurations of two neighboring sites
[12]. Through moment closure, i.e., by approximating
higher order densities (e.g., triplets) with doublet densities,
a set of equations of motion is obtained which is solved
numerically.

Qualitatively the dynamics remains unaffected when
changing �, K, and � within realistic limits. Henceforth,
we thus concentrate on the general features of spatiotem-
poral patterns and transitions. As we shall see, the cyclic
dominance of the strategies acts as a driving force for
traveling waves and leads to persistent and robust coex-
istence of all three strategies over a wide parameter range.
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Similar results have been found for an externally driven
variant of the spatially extended PD with three strategies
[13] or if sites are allowed to go empty [14]. The simu-
lations are performed under periodic boundary conditions
on an M�M lattice with 400  M  2000.

Let us first briefly consider the compulsory PGG, i.e.,
with C and D only. The spatial extension may enable
cooperators to persist by forming clusters and thereby
minimizing exploitation by defectors. This is a well-known
result from other cooperation games [12,15,16]. For suffi-
ciently high r > rC cooperators survive with frequencies
quickly increasing with r because C is favored for an
increasing number of local configurations. In contrast,
below the threshold rS the system eventually reaches the
homogeneous D state (see Fig. 1). Henceforth, the sub-
script � of r� refers to the vanishing strategy.

In the close vicinity of rC, the visualization of strategy
distribution shows isolated colonies of C. These colonies
move randomly and can coalesce or divide. Consequently,
this system becomes equivalent to a branching and annihi-
lating random walk [17] which exhibits a transition belong-
ing to the directed percolation (DP) universality class
[12,18–20]. According to MC simulations for r ! rC
from above, the frequency of C is proportional to
�r� rC�

� with rC � 4:526�1� and � � 0:55�3� for � � 1
and K � � � 0:1. The pair approximation predicts a sig-
nificantly lower critical value r�p�C � 2:694. This difference
refers to the enhanced role of n-point (n > 2) correlations.

In the case of voluntary participation, the loners induce
significant changes most pronounced at low r. The result-
ing dynamics can be divided into three regimes (see Fig. 2):
(a) For r < rD � 1� � it is trivial that only loners survive
since they perform better than groups of cooperators.
Note that solitary C and D are eliminated by noise. (b) For
118101-2



1 2 3 4 5
r

0.0

0.5

1.0

fr
eq

ue
nc

ie
s 

of
 s

tr
at

eg
ie

s

FIG. 2. Frequencies of cooperators C (open squares), defectors
D (open diamonds), and loners L (open triangles) as a function
of r for � � 1 and � � K � 0:1. The results of pair approxi-
mation are shown as dotted (C), solid (D), and dashed (L) lines.
The values of rD and rL are indicated by arrows.

FIG. 3. Distribution of cooperators (white), defectors (black),
and loners (gray) on a 200� 200 portion of a larger lattice. The
parameters are � � 1, � � K � 0:1, and r � 2:035, i.e., slightly
above the transition to homogeneous states of loners.
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FIG. 4. Log-log plot of the frequency fluctuations � vs r� rD
(symbols and parameters as in Fig. 2). � denotes the square of
average fluctuation amplitudes produced by the system of size
M2. The solid line shows the fitted power law with � � 1:72.
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rD < r < rL the three strategies coexist and produce fas-
cinating spatiotemporal patterns including traveling waves.
Such values of r almost invariably result in homogeneous
D states in the compulsory PGG. Thus, the loners provide
vital protection to cooperators against exploitation. (c) For
r > rL cooperators again thrive on their own as in the
compulsory PGG. Loners go extinct because they no lon-
ger provide a valuable alternative.

In the remaining text we discuss the coexistence regime
in greater detail. According to our numerical analysis, the
extinction of loners for r ! rL also exhibits a DP transition
[19,21,22]. The frequency of L is proportional to �rL � r��

in the vicinity of rL � 4:6005�5� with � � 0:58�3� in
agreement with previous data [20]. The increase of fluctua-
tions in the frequency of loners is consistent with a power
law divergence predicted by the scaling hypothesis [21,22].

The robustness of DP transitions is well demonstrated by
noting that the two critical transitions belong to the same
universality class despite remarkable differences. The ex-
tinction of C, leaving a homogeneous D state behind,
contrasts with the extinction of L on a time-dependent,
inhomogeneous C�D background. Field-theoretic argu-
ments indicate that the main features of DP remain un-
changed if the spatiotemporal fluctuations of the random
environment are uncorrelated [22]. Our numerical results
support this expectation.

In the region of coexistence, the frequency of C remains
within narrow limits compared to the trends observed for D
and L. Figure 2 indicates that the pair approximation yields
a suitable quantitative description. In particular, D van-
ishes linearly with r ! rD. This behavior is strongly re-
lated to pattern evolution observed for low D frequency
(see Fig. 3). The D strategy forms small black islands
invading the territory of C. At the same time, defectors
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are in turn invaded by loners paving the way for the return
of cooperators. The cyclic dominance maintains this self-
organizing pattern. But defectors can easily die out if the
system size is not large enough. The occasional extinction
of D results in a homogeneous C state. Therefore, this
requires extremely large system sizes and a careful prepa-
ration of the initial state. Interestingly, the fluctuations of
the D frequency remains constant while the frequency
itself vanishes linearly (see Fig. 4).

The typical domain size increases when r goes to rD.
Figure 4 illustrates that this is accompanied by a power law
118101-3
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FIG. 5. Log-log plot of the correlation length � vs r� rD for
the three strategies (parameters as in Fig. 2). The solid line
denotes the fitted power law with an exponent �0:99.
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divergence of the frequency fluctuations for C and L
strategies �c ’ �l / �r� rD���. The numerical fit gives
an exponent close to � � 7=4 which is characteristic to the
order parameter fluctuations in the Ising model when ap-
proaching the critical point from above [23]. One might
argue that the multiplication factor r is related to an
external field stimulating cooperation and the noise term
K to temperature; however, a direct mapping seems im-
possible due to the additional dependence on the loner’s
payoff �.

Another curiosity of this model refers to the equal
frequencies of C and L in this limit. Moreover, the corre-
lation length � (derived from the density-density correla-
tion function; see Fig. 5) appears to be proportional to
1=�r� rD�. The formation of larger and larger domains
in the two-dimensional, zero-field Ising model exhibits
similar behavior when decreasing the temperature to the
critical point [23]. This suggests that the universality of this
Ising-type transition determines constraints on the size
distributions of C and L domains. In this case the defectors
with vanishing frequency contribute to maintain suitable
domain dynamics.

To conclude, we introduced a spatial evolutionary PGG
model demonstrating that the successful spreading of self-
ish behavior is efficiently prevented by allowing for vol-
untary participation. In the compulsory PGG, i.e., in the
absence of loners, cooperators thrive only if clustering
advantages are strong enough, which requires sufficiently
high multiplication factors r. The introduction of loners
leads to a cyclic dominance of the strategies and promotes
substantial levels of cooperation where otherwise defectors
dominate.
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