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Diffusion and propagation of massive particles sur-

rounded by a bath is one very challenging problem of

condensed matter. Historically, it started with the cele-

brated Brownian motion [1] in which the interactions

between a classical particle and the microscopic motion

of the classical bath lead to a diffusion, connected by the

Einstein relation to a finite friction.

This problem gets incredibly more complicated when

the bath becomes quantum. Indeed the excitations of the

bath can lead, by Anderson orthogonality effects, to a

modification of the motion of the quantum particle or the

collective coordinate coupled to the bath [2]. One of the

realizations of such a problem is the polaron problem [3]

where the interaction with the vibrations of the lattice leads

to an increase of the mass of the particle and even poten-

tially to self-trapping. This type of problem has recently

benefitted from the recent progress in cold atomic systems

[4]. Indeed, in such systems impurities in quantum baths

can be realized in a variety of manners ranging from Fermi

or Bose mixtures to ions in condensates, and at various

dimensionalities [5–14].

A situation of special interest is provided by a one-

dimensional bath for which the bath-bath correlations can

become highly nonuniversal; i.e., they acquire an interac-

tion dependent power-law correlations characteristics of a

Luttinger liquid (LL) [15]. In that case, special effects can

potentially occur, as is clear from the static impurity case

[16] and mobile ones coupled to single baths [17,18].

In particular, it was shown recently [19] that this led to a

new universality class for the motion of the impurity, for

which, in particular, subdiffusion can occur. This very rich

situation was explored further. On the theory side, diffusive

[20–22], kicked [23,24], and driven impurities [25–27]

were considered. On the experimental side, driven impu-

rities [12], mixtures of 87Rb and 41K [13], and 87Rb experi-

ments with local addressability [14] were successful

implementations of the one dimensional problem.

In this Letter, we study the physics of a collective coor-

dinate coupled toN Luttinger baths (N � 1), e.g., a particle

position, charge of a Coulomb box, a phase of a Bose-

Einstein condensate (BEC), or a phase of a superconducting

grain, see Fig. 1. These potential experimental realizations

are further examined before the conclusions. We solve this

system allowing for both LL density fluctuations and LL

interaction and derive a novel localization-delocalization

transition, as summarized in Fig. 2. The localized and delo-

calized phases are separated by a line on which the motion

is simply diffusive. We note that the collective coordinate

represents a small system with correlations decaying in

FIG. 1 (color online). Illustrations of collective coordinates

coupled to LLs: (a) The environment of a few LLs enter a finite

Coulomb box that is under a gate voltage Vg and where the total

charge interacts with an effective capacitance. (b) A BEC

condensate with phase � is Josephson coupled to bosonic LLs,

shown by their cross section as they cross the figure plane. In a

condensed matter context, the figure could also represent a

superconducting grain coupled to one-dimensional supercon-

ducting wires, which will act as LLs.
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time. The periodic and localized phases are, therefore, of

particular significance since the collective coordinate

acquires long range order due to its interaction with the LLs.

For concreteness, the following presentation uses the

particle coordinate language. We consider a particle of

mass ~M coupled to a LL with a contact interaction ~Hint ¼
g�ð ~XÞ where ~X is the operator measuring the impurity

position and �ðxÞ the density is the LL. We study this

model in the large N limit, so the impurity becomes

coupled toN independent LLs and the interaction becomes

Hint¼g
P

N
i¼1

�ið ~XÞ. The action of the system can be com-

puted by a cumulant expansion in powers of g and only

the second order cumulant remains when g2N ¼ Oð1Þ.
Indeed, the fourth order cumulant is of order g4N � 1=N
and can be neglected. Using the expression of the

density in a LL [15] �ðx; �Þ ¼ �0 � ð1=�Þ@x�ðx; �Þþ
�0½e2i½��0x��ðx;�Þ� þ H:c:� where �ðx; �Þ is the bosonic

phase, and performing the Gaussian integration over the

LL Hamiltonian, the action becomes

Seff ¼
M

2

Z

�
ð _XÞ2� �

��2

2�

Z

�

Z

�0

cosðX� � X�0Þ
½�ð�� �0Þ�2K ; (1)

wherewe have used the dimensionless variablesX¼2��0
~X

and M ¼ ~M=ð2��0Þ2, � ¼ 2�g2�2
0
N=�2, � is the imagi-

nary time, u the velocity of excitation in the LL, and K the

Luttinger parameter that controls the power-law decay of the

correlation functions. A frequency cutoff � ¼ u=� is used

to have a dimensionless coupling � where � � 1=�0 is the

natural momentum cutoff of the LL. In the above expres-

sion, only the oscillating (backscattering) term in the density

has been retained. Indeed, the @x�ðx; �Þ interaction can be

integrated, leading at long times to ðX� � X�0Þ2=ð�� �0Þ4,
i.e., an!3 term in frequencywhich can be neglected relative

to the bare kinetic energy term of the impurity M!2.

We have used that for a LL, one obtains [15]

hei�ðX�;�Þ�i�ðX�0 ;�
0ÞiLL � f½Xð�Þ �Xð�0Þ�2 þ u2ð�� �0Þ2g�K.

We have alsomade the additional assumption, which will be

verified in what follows, that the impurity is less than

ballistic and, thus, that hðX� � X�0Þ2i � u2ð�� �0Þ2.
To solve for the thermodynamics of (1), first, we con-

sider a renormalization group (RG) process [28] valid for

large �, which was also applied to the K ¼ 1 case [29].

The action (1) is approximated by its short time form

where it becomes Gaussian

S0 ¼
1

2

Z

!
½M!2 þ �CK�

2�2Kj!j2K�1�jXð!Þj2; (2)

where
R

�ð1 � cosð!�Þ=�2KÞ ¼ �2�ð1 � 2KÞ �
sinðK�Þj!j2K�1 � �CKj!j2K�1, so that CK ¼ 1�
0:85ðK � 1Þ þOðK � 1Þ2. The cutoff � is replaced by �0

and the interaction is averagedwith S0 in the small frequency

interval �0 <!<� leading to d�=�CK��. The action

then has a renormalized coefficient �Rð�0Þ2�2K where

�R ¼ �

�

1þ
�

ð2� 2KÞ � 1

��

�

ln
�

�0

�

; (3)

with CK ! 1 to 1st order in either 1=� or 1� K. Hence, if
K 	 1, �R flows to small values, while ifK < 1, there is an

unstable fixed point at �c ¼ 1=ð2�ð1� KÞÞ. �> �c flows

to large values, while �< �c flows to smaller values of �.
One can integrate (3) when �< �c down to �

R � 1 below

which the RG is not controlled. The new cutoff is interpreted

as an effective mass [29,30]M


1

M
 � �½1� ��ð2� 2KÞ�1=ð2�2KÞ; (4)

which for��ð2� 2KÞ � 1, but�� � 1, i.e., far from the

transition point, represents an exponentially large mass

M
 � e��, as for the K ¼ 1 case [29,30].

To supplement this scenario, and study the properties of

the three resulting phases, we follow a variational scheme

[31] where we find the best quadratic action approximating

the original action (1). The corresponding Green’s function

1=fð!Þ is a solution of the self-consistent equation

fð!Þ ¼ M!2 þ 2

�
��2�2K

Z 1

0

d�
1� cos!�

�2K

� e�
R

�

0
ð1�cos!0�Þ=ð�fð!0ÞÞ: (5)

First, we note that at ! � � the solution is fð!Þ�M!2�
j!j2K�1. In the following, we focus on!�� and onK<1.

As a first option, we consider fð!Þ ¼ �
CK!
2K�1=�2K�2.

The integral in the exponent converges as � ! 1, so

it is
R
�
0
d!0=½�fð!0Þ� ¼ ½��
CKð2� 2KÞ��1; hence, (5)

reduces to

�
 ¼ �e�½��
CKð2�2KÞ��1

: (6)

This equation has solutions only if � is sufficiently

large, i.e., �CK�ð2� 2KÞ> e. A second possible

solution is fð!Þ ¼ �
j!j. The exponent behaves as
R
�
0
ð1� cos!�Þ=ð��
!Þ ¼ 1=ð��
Þ ln��, since the �

integral is dominated by long �, hence,

�
! ¼ 2

�
��2�2K�1=��
 Z 1

0

d�
1� cos!�

�2Kþ1=��
 ¼ �!; (7)

which is a consistent solution on a line ð1=��Þ ¼ 2ð1� KÞ.
The third possible solution is similar to the bare one fð!Þ ¼
M
!2, then the exponent behaves as

R1
0
ð1�cos!�Þ=

ð�M
!2Þ¼j�j=2M
, leading to M
 � M for intermediate

or weak coupling. The variational scheme can be shown to

be related to an RG process [31] from which the fixed point

line Eq. (3) is reproduced. We note that both the RG and the

variational method are valid as weak coupling expansions

where the coefficients in Eq. (3) are small, i.e., large � and

small j1� Kj.
Thus, the above methods lead to three different possible

behaviors for the system: (i) At 1� K ¼ 1=ð2��Þ the

particle propagator has the friction form ð�j!jÞ�1; i.e.,

the nonlinearity of the cosine and long range effect balance
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each other to produce an equivalent action with

�j!jjXð!Þj2. (ii) The case 1�K<1=ð2��Þ flows to small

� and eventually to an M
!2 form, with hðX� � X0Þ2i �
j�j, which corresponds to a delocalized phase. The effec-

tive mass M
 is identified by the RG flow, as in Eq. (4).

Note that even in this delocalized phase, some effects of

the underlying quasilong range periodicity of the LL with

the wave vector 2��0 are still felt by the particle. Indeed,

its correlation at that periodicity is only very slowly decay-

ing hcosX� cosX0i � ��2K. This indicates that the particle

has a much greater chance to be found at some particular

places on the chain. This can be understood qualitatively

by the argument that the particle moves in the ‘‘charge

density wave’’ of wave vector 2��0 provided by the LL;

hence, the particle diffuses predominantly by tunneling

between lattice sites spaced by 1=�0. On the mathematical

side, this property which is apparent in a first order calcu-

lation in � [31] is in fact known in general in the context

of XY models with long-range interactions [32]. (iii) The

case 1� K > 1=ð2��Þ flows to large � with eventually

fð!Þ �!2K�1; i.e., S0 of Eq. (2) is a fixed point action.

From this form, one could naively expect the correlations

of h½X� � X0�2i to be convergent and, thus, this phase to be
a localized one. The situation is, in fact, more subtle, and

we discuss this phase in more detail below.

A summary of the various regimes can be found in

Fig. 2, and the corresponding correlation functions are

indicated in Table I. At finite temperatures T and after

analytic continuation to the retarded response at real time

t [15], we find the replacements j�j�2K ! sin�Ke�2K�Tt,

j�j2K�2!sin�ð1�KÞe�ð2�2KÞ�Tt, and lnj�j ! Tt=�, i.e.,
diffusion in real time on the dissipative line.

For K < 1, we complement the above analysis by a

mean-field approach similar to the one used in the context

of XY models with long-range interactions [33]. We take

h ¼ hcosX�i as an order parameter. The interaction term

in (1) decouples as ��2�2Kh
R

� cosX�

R

�0 j�� �0j�2K ¼
��hð1=ð2K � 1ÞÞR� cosX�. The self consistency

relation, linear in h, is 1¼��ð1=2K�1ÞR�0hcos�cos�0i0¼
4�M�ð1=2K�1Þ; it yields the critical line �c¼ð2K�1Þ=
ð4M�Þ above which hcosX�i � 0. We expect the mean

field result to be more reliable near K ¼ 1=2, where the

range of the interaction increases. As K increases from

K ¼ 1=2, fluctuations will increase the critical value,

eventually joining the transition line with the variational

form �c ¼ 1=ð2�ð1� KÞÞ near K ¼ 1. Note that mean

field exponents become valid [33] when K < 3=4, e.g.,
hcosX�i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� �c

p
. In Fig. 2, we plot the transition line

as an interpolation between the mean field at K < 3=4
and the variational form at K > 3=4. We see that the point

K ¼ 1=2 plays an important role, not captured by the varia-

tional or RG approaches. Below this point, the interaction is

so long range that an ordered phase would exist, within the

mean-field solution, for arbitrary strength of the coupling�.
In the periodic phase, instanton excitations must a priori

be considered since one would have many degenerate min-

ima of the order parameter. Such instantons are known for

the K ¼ 1 case [34,35]. Assuming an instanton with width

�0, the interaction term in (1) has the form �ð��0Þ2�2KBK

while the mass term is �M=�0; hence, the action is mini-

mized at��0�ðM�Þ=½ð1�KÞ�BK�1=ð3�2KÞ for K < 1; the

numerical prefactor BK is known at K ¼ 1, B1 ¼ �. Note
that the mass term andK � 1 set a finite scale for �0, unlike
the K ¼ 1 case. The instanton action is then

Sinst � M�

�ð2� 2KÞ�BK

M�

�
1=ð3�2KÞ 3� 2K

2� 2K
: (8)

Such instantons mean that the coordinate X� can tunnel

between neighboring minima of the ordered hcosX�i.
Assuming independent instantons, this would imply that

hðX� � X0Þ2i ¼ Dj�j has a finite diffusion constant,

D� e�Sinst .

In particular, we consider K ! 1=2 and an instanton

localized at � ¼ 0. The dominant contribution for the

instanton center at j�j< �0 comes from j�0j> �0 that

involves jX�j � jX�0 j and
R

j�0j>�0
j�0j�2K � 1=ð2K � 1Þ,

which diverges at K ! 1=2, hence,

S

�

K!1

2

�

¼1

2
M
Z

�
ð _XÞ2�þ

��ð��0Þ1�2K

�ð2K�1Þ
Z

�
ð1�cosX�ÞþS0:

(9)

S0 comes from the instanton tails where X�, X�0 are small

(up to 2�) and comparable. This action is similar to thewell

TABLE I. Correlations of the phases in Fig. 1 at T ¼ 0.

Correlation Delocalized Dissipative Periodic Localized

hcosX�i 0 0 constant 1

hcosX� cosX0i �j�j�2K �j�j�ð2�2KÞ constant 1

hðX� � X0Þ2i �j�j � lnj�j 0

Dissipative

Delocalized

Periodic

Localized

0.5 0.75 1
K

1

2

FIG. 2 (color online). Phase diagram for an impurity in a bath

of LLs as a function of the LL parameter K and the interaction

parameter between the impurity and the bath �. Four regimes

can occur (see text) in which the impurity is delocalized, just

dissipative, periodically localized, or localized. Dashed lines

indicate boundaries out of the control of the perturbative RG.

The corresponding correlation functions are given in Table I.
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known sine-Gordon system, identifying BK � ð2K � 1Þ�1

whose instanton (or soliton) solution has a width �0 �
ð2K � 1Þ1=2 and action Sinst � ð2K � 1Þ�ð1=2Þ. Assuming

independent instantons, the diffusion constant would di-

verge at K ¼ 1=2, i.e., lnD� ð2K � 1Þ�ð1=2Þ. We propose

that the whole range of the periodic phase in Fig. 2 has

instanton solutions with a finite action, with an explicit

solution provided by the sine-Gordon system at K ! 1=2.
However, given the long range form of the interaction

within the tail term S0, to ascertain the correct behavior of

hðX� � X0Þ2i at large time requires further study of how

these instantons interact, which is left for the future.

Next, we consider the system at K < 1=2. This case has
been studied in the context of discrete XY models [36–38]

and was shown to have a phase transition in the limit that

the coupling vanishes as a power of the system size, which

in our case is � ¼ 1=T; i.e., there is a critical value for

�ð�Þ1�2K. Hence, at T ¼ 0 the system is fully ordered and

hcosX�i ¼ 1. Furthermore, instanton excitations would

involve the effective coupling �ð�Þ1�2K; hence, they will

have diverging action. Extending the mean-field analysis to

K < 1=2 yields a critical temperature Tx where ð1� 2KÞ�
ðTx=�Þ1�2K ¼ 2M��; fluctuations would render Tx into a

sharp crossover temperature.

Let us conclude this part by noting that the hypothesis

made at the beginning to neglect X� � X0 compared to � is,
indeed, justified in all the phases. Furthermore, note that

although the results of the present Letter are derived in the

large-N limit, we, of course, expect them to extend to a

finite number of components as well. For example, for the

Coulomb box case, deviations due to finite N appear at

exponentially small temperatures [39].

Finally, we discuss possible realizations of our model

with various collective coordinates that are potential candi-

dates for experimental studies. (i) A first example that yields

our action (1) is a fermion Coulomb box [40]. Following the

Ambegaokar-Eckern-Schön mapping [41], one introduces a

phase X� such that _X� measures the charge in the box while

the charging energy corresponds to 1=M. The kernel in (1) is

then
P

�G�;ið�� �0ÞPkGk;ið�0 � �Þ where i is the channel
index,�, k are internal quantum numbers of the dot and LL,

respectively, and the Green’s functions are for either free

fermions on the dot,�1=ð�� �0Þ or for fermions in the LL

(with Luttinger parameter Kf) �j�� �0j�ð1=2ÞðKfþ1=KfÞ.
Hence, an effective action of the form (1) with 2K ¼ 1þ
ð1=2ÞðKf þ 1=KfÞ, realizing only K > 1 cases.

(ii) A variation of realization (i) is a system of LLs

that terminates in a Coulomb box, i.e., a region where all

LLs have long range Coulomb interactions with an effec-

tive capacitance, as illustrated in Fig. 1(a). In this case, a

boundary Green’s function [15] is neededGx¼0;ið�� �0Þ �
j�� �0j�1=Kf , hence, K ¼ 1=Kf and the interesting regime

of Fig. 1 with K < 1 is realizable with attractive interac-

tions Kf > 1. In case that Coulomb box region is a normal

metal, we obtain 2K ¼ 1þ ð1=KfÞ.

(iii) A 3rd realization [Fig. 1(b)] corresponds to a BEC

with a phase �� that weakly couples to bosonic LLs with

boson operators �nð�Þ as gei���nð�Þ þ H:c. The average

now involves the boson’s Greens function �j�� �0j1=2Kb ,

Kb ! 1 for noninteracting bosons and Kb decreases to 1

for on-site repulsion U ! 1. Hence, (1) is realized with

K¼1=4Kb and the localized regime (Fig. 1) with K < 1=2
is realizable.

(iv) In analogy with the BEC, a superconducting grain

can Josephson couple to superconducting one-dimensional

wires [Fig. 1(b)]. For attractive short range interactions,

2K ¼ 1=K� and K < 1 can be realized by fermions (spin

full in this example) with long range repulsive or attractive

interactions allowing for the interesting regime K < 1.

This case could potentially be realized with the new super-

conducting LaAlO3=SrTiO3 nanostructures [42].

(v) Finally, the mobile impurity case may be realized

by an impurity confined in between LL chains forming,

e.g., a hexagon. In this case, the interestingK < 1 regime is

realized by repulsive fermion interactions.

In conclusion, we have studied the physics of LL envi-

ronments that couple to a collective coordinate such as an

impurity position, charge of a Coulomb box, a phase of a

BEC, or that of a superconducting grain. We have shown

that the coupling to the bath leads to various phases for the

collective coordinate ranging from delocalized, dissipa-

tive, periodic, and localized. Our results are summarized

in Fig. 2 and Table I, showing the distinctions among the

various phases. We believe that the large set of realizations

for the collective coordinate and the various phase transi-

tions will stimulate further research.
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