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Abstract 

For  the motion of  a one-dimensional viscoelastic material of  rate type with 

a non-monotonic stress-strain relation, a mixed initial boundary value problem 

is considered. A simple existence theory is outlined, based on a novel transfor- 

mation of  the equation into the form of  a degenerate reaction-diffusion system. 

This leads to new results characterizing the regularity of  weak solutions. It  is 

shown that each solution tends strongly to a stationary state asymptotically in 

time. Stable stationary states are characterized. Stable states may contain co- 

existent phases, i.e. they may have discontinuous strain. They need not be mini- 

mizers of  energy in the strong sense of  the calculus of  variations; "metastable"  

and "absolutely stable" phases may  coexist in a stable state. Furthermore,  such 

states do arise as long-time limits o f  smooth solutions. 

Beyond the above, "hysteresis" and "creep" phenomena are exhibited in a 

model of  a loaded viscoelastic bar. Also, a viscosity criterion is proposed for the 

admissibility of  propagating waves in the associated purely elastic model. This 

criterion is then applied to describe the formation of  some propagating phase 

boundaries in a loaded elastic bar. 
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Part I. Approach to Equilibrium and Stability of Coexistent 
Phases in a Viscoelastic Bar 

1. In~oducfion 

This article deals with a number of problems concerning a model equation 

for one-dimensional motion of a viscoelastic bar which may undergo phase 

changes. I f  u(x, t) denotes the displacement at time t of a reference point x on 

the bar, the equation is 

(1.1) ut, = (tr(Ux) + #uxt)x , ,u > O. 

The stress tr(w) is taken to be non-monotonic, for example of the form indicated 

in Fig. 1. Phases of the bar correspond to maximal intervals of monotonicity 

of ~r(w). The model is directly related to equations for isothermal motions of a 

van der Waals gas and equations for shearing motions in polymeric fluid (cf. 

HUNTER dk SLEMROD, 1983). It is allied with a model of a purely elastic bar pro- 

posed by ERICKSEN (1975), and has been studied by DAFERMOS (1969), ANDREWS 

(1980), and ANDREWS & BALL (1982). 
The bulk of Part I below concerns issues of asymptotic behavior and the 

stability of states containing a mixture of phases, in a particular initial boundary 

value problem for (1.1) (see (2.3)). New results include: a simplified existence 

theory based on a transformation of problem (2.3) to one involving a semi- 

linear system coupling a parabolic partial differential equation to an ordinary 

differential equation (see (2.9)); regularity results which establish that the strain 

u~, must remain discontinuous if it is initially so, but that if the equaion is considered 

in conservation form, it is satisfied in an "almost classical" sense for t > 0 (see 

(3.2)) ; strong convergence of solutions to a stationary state as t ~ oo; and iden- 

tification of an uncountable infinity of dynamically stable stationary states (see 

(2.4), w 4 and w 6). The stability results establish that stationary states having 

discontinuous strain u~ do arise as time-asymptotic limits of solutions with smooth 

strain. 
The determination of dynamically stable stationary states given here is some- 

what at odds with traditional stability analyses of phase equilibria. Originating 

with GIBBS (1906), such analyses identify stable states as states of minimum energy 

at constant entropy. Because dynamic processes dissipate energy, one usually 
expects the system to reach such a state. Multiple-phase states found stable 

dynamically for (2.3) below need not, however, be Gibbsian equilibria, states 
which minimize energy absolutely, nor be strong local minimizers. Instead, such 
states do minimize energy in a local sense, the weak sense of the calculus of  varia- 

tions; cf. w 2 below. 
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The possibilities indicated here may have physical interest in the study of 
phase changes in metals and other condensed media. Energy minimization argu- 

ments typically predict that phases can coexist only if the energy density in each 
phase is the same, at the absolute minimum. But, for example, austenitic and 

martensitic phases coexist in many metals in broad ranges of temperature (cf. 
MtlLLER • WILMANSKI, 1981). It is considered most unlikely that these phases 
maintain identical energy densities other than at isolated values of temperature. 
As a second example, twinned martensite is composed of symmetry-related 
phases, with equal energy densities at zero stress. When placed under a load which 
favors one twin, almost certainly the energy densities of the phases differ, yet 
they are observed to coexist. GIBBS himself recognized that "obstacles" may 
hinder a system from achieving a state of minimum energy. A deeper understand- 
ing of dynamic processes in the approach to equilibrium is called for when such 

obstacles are significant. 
The remainder of this study addresses some related issues for dynamics in- 

volving phase mixtures in the model. For the viscoelastic model (1.1), hysteresis 

in stress vs. strain is exhibited in a dynamic loading-unloading process, not 
neglecting any inertial effects. A "creep" phenomenon is modeled at constant 
load. The description of these phenomena relies on the stability analysis of w 6. 

Part II explores some consequences of taking the limit of vanishing viscosity 
in (1.1). A simple admissibility criterion for propagating waves in the associated 
purely elastic model is derived on the basis of this limit. Also an accountis proposed 
for the appearance of moving phase boundaries in a bar under an increased load, 
consistent with the admissibility criterion discussed. In experiments on bars 
under an increasing end load, the appearance of new phases can be associated 

with sharply defined, slowly moving waves. JAMES (1980b) describes some ex- 
perimental literature on phase changes in polymers and metal bars. 

2. Problem Description and Discussion 

ERICKSEN (1975) suggested that the phenomena of phase transitions in bars 
might be modeled by the equation of one-dimensional elasticity, 

(2.1) utt = ct(Ux)x, 

with nonmonotone tr. At rest, tr(ux)= P constant, so that several stationary 
states exist at a given load P, including states with coexistent phases, having 

discontinuous, piecewise constant strain Ux. For strain in ranges where tr is decreas- 
ing, equation (2.1) is elliptic, making the initial value problem ill-posed. There 
is some hope that if strain is restricted to lie outside the elliptic range, the initial 
value problem might be rendered well-posed for weak solutions of the associated 
system, 

Wt ~ Vx, 

(2.2) 
t) t ~ ~ ( W ) x  
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where w = ux is the strain and v = ut the velocity. The results of Part II have 

some relevance for this issue. In any case, the problem of dynamic stability for 

equilibria of (2.1) is at present intractable. 

We consider instead the equation (1.1), a physically relevant regularization 

of (2.1), in which the stress includes a viscosity term proportional to the strain 

rate uxt. Note that (1.1) and (2.1) have the same stationary solutions, with possibly 

discontinuous strain. In this part I we study the long-time behavior of solutions 

of an initial boundary value problem corresponding to a bar in a "soft"  loading 

device. In such a device, one end of the bar is fixed, the other subjected to a 

prescribed load. Fixing # = 1 for convenience, we consider the problem 

utt = (~r(Ux) + Uxt)~ for 0 < x < 1, t > 0, 

u(0, t) = 0, 

(2.3) (cr(u~) + u~t) (1, t) = P for t > 0, 

ux(x, o) = uo(x), 

ut(x, O) = ul(x) for 0 _< x --< 1. 

These equations were first considered with monotone ~ by GREE~,mERG, 

MACCA~rv & MIZEL (1968) (see also GREENBERG (1969) and GREENBERG & MAC- 

CAMY (1970)) who showed that given smooth initial data, a smooth solution exists 

globally in time and decays to equilibrium at an exponential rate. DAFERMOS 

(1969) considered the more general equation utt = ~(Ux, Uxt ) with a parabolicity 

assumption and no monotonicity assumption in the first argument of a, but with 

a rather restrictive growth condition. He showed that smooth solutions exist 

globally in appropriate H61der classes (with u(., t), ut(', t) in C2+~(0, 1)) and found 

that the velocity ut and the total stress a(u~,, u~t) decay to zero as t--~ oo in the 

Sobolev space W1'2(0, 1). DAFERMOS also observed that the asymptotic behavior 

of  the strain was an interesting issue, arguing that ux(x, t) in general need not 

approach a continuous function as t -+  oo. 

ANDREWS & BALL (1982), following ANDREWS (1980), established global 

existence of weak solutions to the problem (2.3) for initial data with u~(x, 0) in 

L~176 1), ut(x, 0) in L2(0, 1), in particular admitting equilibria with discontinuous 

strain as data. Because of an a priori bound of ANDREWS for the strain u~, global 

existence could be guaranteed for data of limited energy for physically relevant (r 

satisfying (r(w) -+ -- oo as w ~ 0, under a mild sign condition. These authors 

showed that as t -+  0% the velocity ut ~ 0 in L 2 and the elastic part of the stress 

~r(u~) --~ P in L 2. They established weak-* convergence of the strain ux(x, t) * 

woo(x) in L ~176 But this left open the issue of whether in fact a(woo(x)) = P, that 
is, whether the strain converged to equilibrium. 

Plan o f  Part I 

The present treatment of the problem (2.3) will be mostly self-contained for 
the convenience of the reader, though it owes a sizable debt to the works above. 

In the first place, in w 3 we present a simplified local existence theory for solutions 
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of  (2.3), based on the theory of abstract semilinear parabolic equations as pre- 

sented by HENRY (1981) and the transformation in (2.9). As a consequence, we 

show that solutions of (2.3) enjoy a limited smoothing property: Given initial 
strain ux(x, 0) in Loo, and velocity ut(x, 0) in L 2, then for t > 0 the total stress 

a(ux) + #uxt is C 1 in x and t, and both sides of (2.30 represent continuous func- 

tions. However, the strain Ux and elastic stress a(Ux) need have no better regularity 

than L ~176 in x. Indeed, initial discontinuities in ux must persist for all time without 

moving. (This fact was discovered by Hove & S~IOLLER (1985) in the context 

of  isothermal gas dynamics with viscosity.) However, solutions are smooth in t 

if a is smooth. In the same abstract framework, we also establish existence of 

classical solutions with C a strain ux, given ux(x, 0) in C~(0, 1) and ut(x, 0) in 

W1'2(0, 1) with ut(O, O) = O. 

Next, in w 4 we begin to investigate the stability of equilibria having possibly 

discontinuous strain ux = w(x). On the basis of a spectral study we establish 

global existence and exponential decay to zero of small perturbations of equilibria 

satisfying the following dynamic stability criterion: 

(2.4) tr'(~(x)) ~> tro > 0, where tr(~(x)) = P. 

Perturbations in strain are required to be small in L ~176 however, so that discon- 

tinuities in the asymptotic strain must also be present in the initial data. This 

requirement is relaxed in w 6, at the expense of the exponential decay rate. 

In w 5 we investigate the asymptotic behavior of solutions for initial data 
ux(', 0) in Loo and ~/t(', 0) in L 2. As in the results of ANDREWS & BALL, if tr(w) is 

defined for all w and satisfies the mild condition (5.1), no further restrictions on 

the initial data are needed to ensure global existence of a solution with bounded 

strain. We show that solutions converge strongly to equilibrium, establishing 

the following asymptotic properties for the solution: As t--~ c~, 

(2.5) 

ut -+ 0 in W1'2(0, 1) 

O'(14x) -]- Uxt-->" P in W2'2(0,  1) 

ux(x, t)-+ woo(x) boundedly a.e., where a(woo(x)) ---- P a.e. 

Asymptotic states for smooth solutions are investigated in w 6. Here equilibria 

fi(x) with possibly discontinuous strain r~(x) ---- fix satisfying the stability criterion 

(2.4) are shown to be stable in a rather strong sense: If  the perturbation in strain 

is small except on a set of small measure e, then the solution will approach an 

equilibrium with strain equal to the unperturbed strain except perhaps on the 

same set of measure e. It follows that a large class of smooth solutions have 

asymptotic limits with discontinuous strain. 

It is important to relate the stability criterion obtained here to traditional 
energy criteria for stability of equilibria involving phase mixtures. (In the context 

of the present problem, such criteria have been discussed by ERICKSEN (1975) and 

JAMES (1980a).) Define a stored energy function 

w 

(2.6) W(w) = f tr(s)ds. 
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In the soft loading device of (2.3), the total energy 

1 

f [�89 u + W(ux) - euxl (y, t) dy 
0 

is a decreasing function of time. One expects the total stored energy functional 

I 

(2.7) I(u) ---- f [W(u~) -- eu~] (y, t) dy 
0 

to approach a minimum. In the present model, a typical function W(w) -- Pw 

as obtained from Fig. 1 might be as in Fig. 2, having two local minima g_ and fl_. 

The problem of minimizing I(u) in (2.7) is a standard one in the calculus of  

variations. Much attention has traditionally been focussed on absolute minima, 

and in particular on strong minimizers k(x). A strong minimizer satisfies 

I(~ + v) _--> I(fi) for all absolutely continuous v(x) with IlvllLoo small. At a strain 
discontinuity the Weierstrass-Erdmann corner conditions for a strong minimizer 

imply that W(~tx) -- PUx is continuous across the discontinuity. Thus in the situa- 

tion of Fig. 2, an equilibrium containing a phase discontinuity from o~_ to fl_ 

cannot be a strong minimizer unless the stored energy density is the same in the 

two phases, that is, W(o~_) -- Po~_ : W(fl_) -- Pfl_. This implies that the stress 

level P in Figure 1 is at the Maxwell line, meaning that the two bounded regions 
in Figure 1 delineated by the curves tr : P and ~r : <r(w) have equal area. 

Fig. 1. Stress-strain relation 

D 

N 

Regardless of these facts, it is clear that an equilibrium ~(x) for (2.3), whose 
strain ~x takes both values ~_ and fl_, can easily satisfy the condition (2.4) for dyna- 

mic stability even if the stored-energy densities at or and fl_ differ. Indeed, the 
condition (2.4) is the condition in the calculus of variations that the second 
variation ~2I(u) of the functional I(u) be strictly positive, and it implies that ~(x) 

is a weak relative minimizer of I(u), satisfying I(~t + v) >: I(~) whenever both 

IlvllLoo and Ilvx!lLoo are small. 
To paraphrase the conclusions, then: A positive second variation implies 

dynamic stability in the viscoelastic problem (2.3). The property of being a strong 
minimizer, on the other hand, is not necessary for dynamic stability in (2.3). 
It is common to call a state of strain metastable (respectively stable) if it provides 
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I L 

5 f l_  

Fig. 2. Stored-energy density 

7 

a local (respectively global) minimum of the stored energy density W(w) -- Pw. 

Thus for (2.3) metastable states can coexist with stable states in stable asymptotic 

limits of smooth solutions. 

Part I concludes with an application of the stability analysis of w 6 to a hypo- 

thetical load-deformation experiment. In w 7, we consider a bar-placed in a soft 

loading device, in which the end load P is raised or lowered in discrete increments, 

and "fluctuations" are imposed on the displacement and velocity at discrete inter- 

vals of  time. The fluctuations are regarded as a model accounting for unknown 

physical influences on the bar. We illustrate how hysteresis occurs dynamically 

under suitable restrictions on the load increments and fluctuations. The process 

must proceed slowly, but we do not assume it is "quasistatic"; inertial effects 

are fully taken into account. If  the load is held constant near a level of transition 

between phases and if certain assumptions are made about the fluctuations, also 

a "creep" phenomenon can occur, as inhomogeneities induced by localized fluctu- 

ations of small energy cause a slow change in the overall length of the bar. 

We conclude this section by introducing the main tools for studying (2.3). 

A certain transformation of the equations will be very useful throughout: Suppose 

we have a (smooth) solution of (2.3), and introduce quantities 

x 

p(x, t) = f ut(y, t) dy 
1 

(2.8) 
q(x, t) = UxfX, t) --  p(x, t). 

The solution u may be recovered from 

x 

u(x, t) = f (p + q) (y, t) dy. 
o 

Then p and q form a solution to the problem 

(2.9) 

p t ~ p x x - ~ ( p + q ) - - P  for O < x <  1, t > O  

qt = --a(p + q) + P 

px(0, t ) = 0 ,  p(1, t ) = 0  for t > 0  

p(x, O) = po(x), q(x, O) = qo(x) for 0 --< x _< 1. 
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I note that the "modified strain" q is the same (up to sign) as that used by 
ANDkZWS (1980) to establish global existence of solutions to (2.3) based on the 
ordinary differential equation that q satisfies. In equilibrium q is equal to the strain 
ux. The "velocity potential" p also has an interesting property. Write the visco- 

elastic equation in (2.3) as a system in the standard way: with the total stress 

(2.1o) S : a(ux) 4- uxt -- P 

we have 

W t  ~ V x 

(2.11) 
/ ) t =  8 x  

where 

W = Ux,  V ~ U t .  

Then 

0 : P x ,  S : P t "  

The fact that S is the time derivative of  p will be important for establishing 
its regularity. I remark that the structure of (2.9), a parabolic partial differential 
equation coupled to an ordinary differential equation, illustrates why the visco- 

elastic equation may be viewed as an abstract parabolic equation (even though 
the viscosity in (2.11) is "degenerate"), and exhibits explicitly a zero-speed char- 
acteristic in equation (1.1), associated with the ordinary differential equation 

for q in (2.9). 
The transformation above is our main tool for the existence and regularity 

theory. Two other ingredients are important in the study of asymptotic behavior 
and stability: the energy identity and a lemma on invariant intervals for the 
ordinary differential equation in (2.9). With W(w) the stored-energy function 

from (2.6), the energy identity for (2.3) reads 

1 t 1 

(2.12) f (�89 u2t + W(ux) -- Pux) 0', t) dy + f f Uxt(y,2 z) dy dv 
0 0 0 

1 

= f (�89 u + rV(ux) - e .x)  (y, o) dy; 
0 

in terms of  p and q, 

1 1 t 1 

f �89 p~(x, t) dy + f (W(p + q) - P(p 4- q)) (y, t) dy 4- f f pL(y, 7) dy aT 
0 0 0 0 

I 1 

(2.13) =- f �89 p~(y, o) dy 4- f (W(p + q) -- P(p + q)) (y, O) dy. 
0 0 

Provided W(w) -- Pw is bounded below, the energy identity yields an a priori 
bound on the kinetic energy, hence on p pointwise, by the estimate 

1 1 

Ip(x, t)l 2 ~ (1 -- x) f p~fy, t ) d y ~  f u2t(y, t) dy, 
x 0 
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valid since p(1, t) = 0. Control on q is to be achieved pointwise in x via the 

following easily proved lemma: 

Lemma 2.1 (Invariant intervals). Consider the ordinary differential equation 

q'(t) = --a(p(t) + q(t)) 

where a(w) is a locally Lipschitz-continuous function on an interval in R and p(t) 

is locally Lipschitz-continuous in t. Assume that e ~ 0 and w_ < w+ exist 

such that 

i) Ip(t)[ < e for 0 --< t --< T--< oo 

ii) a(w_ 9- w) -< 0 < a(w+ + w) whenever [ w I < e. 

Then the interval [w_, w+] is positively invariant for the ordinary differential equa- 

tion on the time interval [0, T]. That is i f  q(to) E [w_, w+] and 0 <: to <: T, then 

q(t) E [w_, w+] whenever to <-- t <-- T (Figure 3). 

~r{q}_p l 

Fig. 

w+ 

3. Invariant intervals for modified strain 

This lemma yields the following "principle of invariant phases": The strain 

in (2.3) cannot change phase at any point, provided only that the total kinetic 

energy of the bar remain small. The stability established in w 6 depends on con- 

trolling the conversion of potential energy to kinetic energy in a situation where 

there may be smooth transition layers joining "metastable" and "stable" phases. 

3. Local Existence and Regularity 

We consider the problem (2.3) (or equivalently, (2.9); see 3.2, 3.3 below). 

We assume that the stress a(w) is defined on an open interval J C_ R, and will 
consider cases where a) or(w) is locally Lipschitz-continuous, and b) ~r(w) is C I 

with d(w) locally Lipschitz-continuous. In the latter case we obtain greater 

regularity and existence of classical solutions for (2.3). In w 5 below, we will 
impose an additional condition (e.g., see (5.1)) on a(w) to establish global existence 
for initial data of unrestricted energy. 
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The basic existence theorem concerns the transformed problem (2.9): 

Theorem 3.1. (1) (Local existence) Suppose a(w) is locally Lipschitz-continuous. 

Assume that qo E L~176 1) and Po E Wl'2(0, 1) with po(1) : 0, and suppose 

po(X) + qo(x) E Jo a.e. where Jo C J. Then there exists T > 0 so that a unique 

(strong) solution of  (2.9) exists for 0 <~ t <~ T, with 

p E C([0, T], W 1'2)/'~ CI((0, T], L 2)/'~ C((0, r] ,  W 2'2) 

and px(O, t) = O : p(1, t) for t > O, and 

qE C'([0, T],L~) .  

(2) (Regularity) For any 8 > 0 and v ~ 1/2, the solution above has for some 

fi>0, 
p, = SE Ca([~, T], C ~'~) 

with Sx(x, t) = O = S(l,  t) for t > O, 

q,, Pxx E Ca([~, T], L~176 

(Here C a is a space of H61der-continuous functions, and C 1" is the space of  C 1 

functions on [0, I] with H6Ider-continuous derivative, with exponent v.) If  a(w) 

is C 1 with a'(w) locally Lipschitz-continuous, then also 

Pu = St E C~([8, T], C~'~), 

Ptxx = Sxx E C#([6, T], L~176 

Furthermore, if a(w) is C', r ~ 2 (respectively, analytic), then p and q are C" in t 

(respectively, analytic in t) with values in W l'z and L ~176 respectively, for t > 0. 
The result above yields "almost classical" solutions to the problem (2.3), 

X 

obtained from u(x, t) = f (p + q) (y, t) dy: 
0 

Corollary 3.2. Suppose a(w) is locally Lipschitz-continuous. Assume u o E L~(O, 1) 

with Uo(X) E Jo a.e., ~ C .1", and ul E L2(O, 1). Then a unique solution u(x, t) 

to (2.3) exists for t in some interval [0, T], T > O, with (for any ~ > O, v < �89 

and some fl > O) 

u E C([O, T], WI'~), u(O, t) = O, 

Uxt E C~([8, T], L~ 

u,, E C~([O, r] ,  C"), 

S = Uxt + a(ux) -- P for a . e . x .  

I f  a(w) is C 1 with a'(w) locslly Lipschitz-continuous, then also 

utt E Co([O, T], W~'~ 

Thus both utt and Sx are at least Hb'lder continuous for t > O, with utt = Sx, 

u(0, t) :-- 0 = S(1, t). 
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Remark 3.3. The weak solutions of  (2.3) constructed by ANDREWS & BALL with 
initial data as in 3.2 yield, by the transformation (2.8), weak solutions of (2.9) 

which are solutions pointwise a.e., with Px, q E C([t~, T],L ~ for any t~ > 0. 
By uniqueness, the solutions agree with those of  3.1. So the weak solutions of  
ANDREWS & BALL in fact have the regularity indicated in 3.2 above. (To establish 
the correspondence, write the weak form of the equation (2.3) in terms of  test 

functions 7, of the form ~p = 4~x. It follows that (2.9) holds in the sense of distri- 
butions, for L ~~ functions.) 

At the end of this section we will discuss the local existence of classical solu- 

tions of  (2.3) (having Ux in C 1 [0, 1]) by modifying a bit the framework we employ 
below. We will also make a remark concerning the persistence of initial discon- 
tinuities in ux in (2.3). Now, I present a fact that will make the study of solutions 

of  the ordinary differential equation (2.92) technically a bit easier: 

Corollary 3.4. Let (p, q) be a solution of  (2.9) as given by Theorem 3.1. Then there 

is a f ixed subset o f  [0, 1] (of  full  measure) depending on the solution, such that, for  

those x in the subset, q(x, t) satisfies (2.92)for all t, 0 < t <= T. Thus q is a classical 

solution o f  the ordinary differential equation (2.92) for t > O, for a.e. x in (0, 1). 

Proof of 3.1. My approach is to apply standard results as presented by HENRY 
(1981) concerning the abstract initial value problem in a Banach space X, 

(3.1) z t q- Az  = f ( z )  t > 0 

z ( O )  : Z 0 

and deduce pointwise properties of the solution from embedding theorems. In our 

application, z = (p, q) and the space X = ( L 2 ,  L~176 The operator A =(--A0 : )  

where A = ~2/0x2. For the boundary conditions in (2.9) the domain of A is 

taken as D(A) = (D(A), L ~) where 

D(A) = {p E W2'2(0, 1) I Px(0) = 0 = p(1)}. 

We also write D(A) ~ W~ '2. Now --A is a self-adjoint, densely defined, positive 
operator on/_,2(0, 1), so A is sectorial on X. For the sequel, we need to identify the 

domain of  the square root of  A, X�89 = D(A�89 

Lemma. 

where 

x�89 = ( w U ,  L~176 

w~ ,z = ((p ~ w',=(0, 1) ]p(1) = 0}. 

Proof. It is clear that X �89 = (D((--A)�89 L~176 Denote D((--A)�89 

space Y is the closure of  D(A) in the norm given for u E D(A) by 

1 1 
2 

Ilull~ = [I(--A) �89 ull~ = (--Au, u)= f--ux~u= f ux. 
0 0 

by Y. The 
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Therefore Y is the closure of D(A) in the W 1'2 norm, so Y Q W 1'2 and u(1) = 0 

for u E Y. Thus Y Q W~ '2. Conversely, if u E W~ '2 we may approximate u 
X 

by un E D(A) as follows: u(x) = f so let v = Ux be approximated by smooth 
1 

X 

v~ in L 2 with vn(O)= 0. With u. = f v. we have unE D(A), u. ~ u in W 1'2. 
I 

The last thing to check before applying the abstract theory is the smoothness 

of the map 

(17, q ) ~  (a(p + q) -- e ,  - a ( p  + q) + P) 

from (Wg '2, L ~176 to (L 2, L~176 Since the inclusions 

W~, 2 ~ L  ~176 ~ L  2 

are analytic (linear), the smoothness of the map above is the same as the smooth- 

ness of the map w(x) -+ a(w(x)) on L ~~ But it is clear that if a is Lipschitz- 

continuous, C" or analytic on a dosed interval [a, b], this map is Lipschitz-con- 

tinuous, C" or analytic on {w E L~176 1) [ w(x) E [a, b] a.e.]. 

We now invoke the theorem of HENRY 3.3.3 (1981) to deduce existence 

of  a unique local solution of(3.1), given zo = (Po, qo) E X�89 such that (Po + qo) 
(x) E J a.e. This solution has the following regularity at this point (see HENRY 

3.2.1 and the proof of 3.3.3): 

z(t)E C([0, T], X �89 • C'((0, T], X) A C((0, T], D(A)). 

(Continuity into D(A) follows because z satisfies (3.12) for t > 0.) Taking com- 

ponents of z establishes part (1) of Theorem 3.1. That qt E C([0, T], L ~176 follows 

from the equation (2.9)2. Note at this point that Pt exists as a distribution with 
pt(t) in L z, and (2.92) holds for each t > 0 in the sense of L z functions. Later 

in w 5 we will need more precise bounds for z(t) in the spaces above. 
The next step is to deduce greater regularity of the solution for t > 0 from 

the conclusions of HENRY 3.5.2 which imply that 
zt is locally H61der-continuous from (0, T] to X ~, for any ~ < 1. 

Now clearly XY= (D((--A)O, L~176 and it is  true that 

D((--A) ~) Q C iv if 27 > v + 3/2. 

(This follows from the conclusions of HENRY 1.6.1). Since p,,, -=- Pt -]- qt, the 

first part of (2) follows by taking components. 
Suppose now that a(w) is C 1 with a'(w) locally Lipschitz-continuous. We claim 

that then S----Pt is a strong solution of 

St -= Sxx + a(p + q)t for t > 0 
(3.2) 

sx (0 ,  t )  = o = s ( 1 ,  t ) .  

This is true because from the theorems of HENRY 3.4.4 and 3.4.6 we know S 

is a mild solution of this equation, and we can verify that the map t -+ cr(p + q), 
is locally H61der-continuous for t > 0 into L ~ Q L 2, and so from the conclusions 
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of  HENRY 3.2.2, S is a strong solution on [~, T] for any 6 > 0. We conclude that 

S = p, ~ C' ((~, rl ,  L 2) n C((~, ~ ,  W~'2). 

But now the map (t, S)--~ a'(p + q) (S  + qt) is clearly locally Lipschitz-con- 

tinuous from R • W ~'2 to L ~176 so by applying again the statements of  HENRY 

3.5.2 we may conclude that St is locally H61der-continuous into D((--A) ~) for 

any 7 < 1. Then from equation (3.2) it follows that S~x is locally H61der-con- 

tinuous into L ~176 
The remarks concerning the case when tr(w) is C r or analytic follow from the 

theorems of  HENRY 3.4.4 and 3.4.6. This finishes the proof  of  Theorem 3.1. 

Proof of Corollary 3.2. Given the solution z = (p, q) from Theorem 3.1, let 
x 

u(x, t) ---- f (p + q) (y, t) dy. Then uxt = P t  -]- q t  = P x x  is locally H61der-con- 
0 

x 

tinuous into L ~ and is C 1 into L 2 for t > O, so ut = f Pxx -= Px, whence utt = 

0 

P~t = S~ as distributions. The regularity of u. then follows from the regularity 

of  S. 

Proof of Corollary 3.4. Because q(t) satisfies (2.92) in L ~~ q E C1([0, T], L~176 

Then, in L ~ 

t t 

q(t) = qo + f q,(s) ds -- qo --  f + q) (s) -- P) ds 
0 0 

so long as the solution exists. The integral converges as a Riemann integral in 

C([0, T], L~176 Fixing a sequence of  partitions of (0, co) with norm approaching 

zero, we may delete a countable union of  sets of  measure zero in (0, 1) to guarantee 

that on a set of  full measure in x, the integral converges in the sup norm. For  x in 

this set, then, 

t 

q(x, t) = q(x, O) + f g(p + q) (x, s) as 
0 

so q(x, t) is Lipschitz-continuous in t. 

We have proved that the solution of  the problem (2.3) enjoys some limited 

spatial smoothing: The velocity ut improves f r o m L  2 at t = 0 to W 1'~176 for t > 0, 

and the total stress S gains from W -1'2 (roughly) at t = 0 to W 2'~176 for t > 0, 

if ~r(w) is smooth. But whereas the solution is smooth in time if ~r(w) is smooth, 

we observe that the strain ux is not smoothed in space: 

Proposition3.5. (Persistence o f  strain discontinuities). Suppose XoE (0, 1) is a 

point o f  discontinuity o f  the initial strain uo(x) in (2.4). Then Xo is a point of  dis- 

continuity o f  ux(x, t) for the solution u(x, t) from Corollary 3.2,for any t >~ 0 fixed, 
so long as the solution exists. 

(An observation of  this type has been made by HOFF & SMOLLER (1985) for 

the system of  isothermal gas dynamics.) 
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For the proof, recall that ux = p + q. Now p(x, t) is absolutely continuous 

in (x, t) for t ~ 0, so xo is a point of discontinuity of qo(t). The ordinary differen- 

tial equation (2.92) now implies Xo remains a point of discontinuity of q(x, t) 

for any fixed t > 0. For if not, if q(x, to) were continuous at Xo for some to > 0, 

then, running the ordinary differential equation backwards from t = to to t = 0, 

we see that continuous dependence on parameters in ordinary differential 

equations makes q(x, 0) continuous at xo, a contradiction. 
Solutions of (2.3) also preserve their initial smoothness, as established by 

DAFERMOS (1969) and GREENBERG MACCAMY & MIZEL (1968). Thus sufficiently 
smooth data yield classical solutions, for which every term in (2.3) is continuous. 

By a simple variant of the argument for Theorem 3.1, we can obtain such classical 

solutions: 

Theorem 3.6 (Classical solutions). Suppose a(w) is C 1, with a'(w) locally Lipschitz- 

continuous. Assume uoECa[0, 1] Uo(X)E Jo a.e., Jo C J, and ut E W1'2[0, 1] 

with ut(O) = O. Then for some T >  O, a classical solution u(x, t) exists for (2.3) 

for 0 <-- t <_ T, having 

u E C([O, T], C2), 

Utt , Uxt x continuous in (x, t ) for  t > O. 

2r 

Proof of 3.6. Again we consider (2.9) with initial data po(x )=  f ul(y)dy,  
1 

qo(X) = Uo(X) -- po(X), so that Po E W~ '2, qo E C 1. As in the proof of 3.1, we 
seek to apply the theorem of HENRY 3.3.3 to obtain local existence. Redefine 

X = (L 2, C1). The operator A generates an analytic semigroup on X. We seek 

to obtain solutions in C([0, T], X ~) for 3/4 < o~< 1. Since X ~ = (D((--A)~), C 1) 

and W~ "2 = D((--A) t) (D(( - -A)") ,  we have (Po, qo) E X ~, so all we must show 

is that 

f(p,  q) = (a(p + q) -- P, --a(p + q) + P) 

is locally Lipschitz-continuous from X ~ to X. But for o~ > �88 

D((--A) ~') ~ C ~ ~ L 2 . 

Thus the desired fact follows because the map w(x)--~ a(w(x)) is locally Lip- 

schitz-continuous from C 1 to C 1. Now from the theorems of HENRY 3.5.2 the 

local solution 

(p, q)E C([O, T], X ~) A C'((O, T], X~ 

for any y < 1. In particular, the functions Ptx, qtx are continuous in (x, t) for 
x 

t > 0 and so with u(x, t) = f (p + q) (y, t) dy, we find that the equation 
0 

ldtt ~ Gt(Ux) Uxx Jr- Uxt x 

is satisfied, with each term continuous in (x, t) for t > 0. 
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The proof  above suggests that in Theorem 3.1, where X = (L 2 , L ~ ) ,  we 

can find local solutions o f  (2.9) whenever (Po, qo) E X ~ for 1/4 < 0~ < 1. For 
or < �89 this would admit initial data with infinite kinetic energy �89 f pL (The 
kinetic energy would be finite at any positive time, however, since one would 
have p E C((0, T], W2'2).) 

4. Exponentially Stable States 

In this section, by means of  linearized stability analysis, we identify equilibria 

of  the problem (2.9) which are stable with exponential decay rate for perturbations 

small in the space X �89 = (/4/2'2, L~). The criterion for stability, (2,4), is positivity 
of  the second variation of  the stored-energy functional (2.7). Equilibria with nega- 
tive second variation are unstable (see 4.2 below). 

Theorem 4.1. (Exponential stability). Suppose a(w) is C l and o'(w) is locally Lip- 

schitz-continuous. Let (,o, ~) = (0, ~(x)) be an equilibrium solution of  (2.9), and 
assume 

(2.5) ~(~(x)) : P, ~'(~'(x)) ~> 0o > 0 a.e. 

Then for any 0 < rain (r,z/8, oo}, a unique solution (p, "q) of  (2.9) exists globally 

for t > 0 and satisfies, for some Co > O, 

[]P(t)lfwl,Z <: Co e-~t, IIq(t) -- I~[IL~ ~ Co e-~', 

provided that [[po[[wl,2 and I l q o  - ~lk~ are sufficiently small, with po(1) : 0. 
Here .zt2/8 = flo/2 where [30 is the first eigenvalue of  --A on (0, 1) with boundary 
conditions (2.93). 

Proof. We shall apply the statements of  HENRY 5.1.1 in the abstract framework 
of  the proof  of  3.1. Let ~ = (0, }~), z ---- (p, q). For the abstract equation (3.1) 
we have 

where f(~) = O, 

and 

f(z  + ~) --f(~) + az + g(z) 

g ( z ) = ( o ( p + q +  w) -- a(w) -- o'(~) (p + q)) ( _ l  ) .  

The smoothness assumption and (2.4) imply that the essential range of  ~(x) is 
a finite set of  values. Applying Taylor's theorem, one concludes that if (p, q) is 

small in X�89  (W2 '2, L~176 then for some C, 

[[g(z)[Ix ~ C liP + q[ [~ .  

The linear map B is bounded on (L ~, L~), so is bounded from X�89 to X. 
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Our main work is to check the last hypothesis of HENRY 5.1.1 : to show that 

the spectrum of the operator A -- B on X lies in a half plane 

{it ~ c I Re it ~ min (ao, 3o/2)}. 

This shall be accomplished in two stages. First, we will show that the essential 

spectrum of A -- B (the spectrum with discrete eigenvalues of finite multiplicity 

deleted) is concentrated on the essential range of a'(~,(x)). Second, we show that 

no eigenvalue it can satisfy Re it < min (go, flo/2). The first step will be achieved 
using the invariance of the essential spectrum under relatively compact perturba- 

tion (see HENRY, ch. 5, A. 1). The second step employs an energy method. 

We proceed with step one. Decompose B as Bp + Bq where 

1 

Then whenever it E C is not contained in the spectrum sp (--A) or the essential 

range of a'(~(x)), an explicit representation for the resolvent of the operator 

is 
[(it + A) -1 --(it + A) -1 a ' 0 ~ -  a') -1] 

(it A + B q ) ~ l  : 
[ 0 (it - ~ ' ) - J  ] " 

On the interval (0, 1) with boundary conditions (2.93), sp(--A) consists of discrete 

positive eigenvalues, so the essential spectrum of A -- Bq is the essential range 

of ~'(~x)). 
Now we claim that Bp(--A + Bq) -~ is compact on X. From the representa- 

tions above, it suffices to verify to that (--A) -1 is bounded from L 2 to Wl'~176 1), 

so that it is compact from L 2 to L ~. For this, we just verify that the Green's function 

for --A, which satisfies 

1 

( - A - y )  (x) = f G(x, y)f(y) dy 
0 

satisfies also 
1 

f G2(x, y ) @  < C independent of x. 
o 

But explicitly, G(x,y)= l - - y  if x < y ,  1 - - x  if x > y ,  so this holds. 
Now applying the statements of HENRY ch. 5, A. 1, we conclude that any point 

it in the spectrum of A -- B is either in the essential range of g'(~(x)) (a finite 

set), or is an eigenvalue on X. 
We proceed with step two. Suppose ). E C is an eigenvalue of A -- B not in 

the essential range of &(~(x)), with eigenfunction z(x)= (p, q)(x). Then the 
real and imaginary parts of p are in Wn 2'2 = D(--A), and we have 

~.P + Px~ + g'(~) (P + q) : 0 

itq -- a'(~) (p + q) = O. 



Viscoelastic Phase Transitions 369 

Solve for q in terms of  p and substitute, obtaining 

p =  + 8(4, ~'<~)) p = 0 
where 

22 

/~(4, s) = 2  - s" 

Multiply by ~ and integrate by parts, obtaining 

1 

f ha(2, ~'(w(x))) Iv(x)l ~ - Ipx(x)l ~1 a x  = o .  
o 

Now apply the sharp Poinear6 inequality valid for any p E W  v'2, p ( 1 ) =  0: 

' / i  f Jpxl 2 dx Ip l  ~ dx :> 8o = = 2 / 4 "  

0 

Then we have 

(4.1) 

! 

0 :> f [/~o - P(4, ,'(~(x)))] Ip(x)l 2 dx. 
o 

Note that in this inequality, fl may take complex values. It is clear that if 4 is 

real with 4 < t ro ,  then fl(4, #(if)) < 0 a.e., which forces p = 0, so 4 is not an 
eigenvalue. 

For  the sequel, label the points of the essential range of  a'(~(x)) in increasing 

order: sl <: s2 <: ... < SN. (In Theorem 4.1, we may assume Oo = sl.) Consider 
the imaginary part of  (4.1), 

1 

f Im  fl(2, C(w(x))) [p(x)l 2 d x  --- O. 
o 

Clearly, i f2  is an eigenvalue, Im fl must be zero or change sign as x varies. Com- 

pute 

(Im 2) 
Im 8(4, s) ----- Im 22(/~ " -- s)/[ 4 -- sl 2 -- 12 _ s[ 2 ([ 212 -- 2s Re 2). 

Since a'(~(x)) :> Sl > 0 a.e. it is immediate that if Re 4 :< 0 with Im 4 ~: 0, 

then 2 is not an eigenvalue. But furthermore, we find that if Im 4 ~ 0 and 4 is 

an eigenvalue with Re 4 > 0, then 

14 -- s~ I ----> sl and ]2 -- sly] ~ SN. 

(Square these inequalities and expand, recalling that sl ~ a'(~(x)) _< SN a.e.) 

Therefore, nonreal eigenvalues are confined to a compact set of the positive half 

plane which lies between two nested circles (see Figure 4). 

We now consider the real part of  (4.1). Actually, it is important to consider 
a mixture of real and imaginary parts: Whenever --=/2 --< 0 < =/2, we find 

0 > Re d ~ (3o -- 3( ,1, tr'(~))) Ip l  2 . 
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$1 SN 

Fig. 4. 2-plane 

We shall show that for each 2 with 0 < Re ;t < min {st, flo/2}, there is a choice 

of  0 in [--zt/2, ~/2] such that 

Re [ei~ - -  fl(;t, sj)] > 0 for j = 1, . . . ,  N. 

Geometrically, this simply means that: 

For 0 < Re2 < rain (s~, flo/2}, there is some line through the point 

(4.2) 8o = 7 r 2 / 4  in the complex plane, such that the N q- 1 numbers 0, 

8(2, st), . . . ,  8(2, SN) lie all on one side of that line. 

This then, will force p = 0, so such 2 cannot be eigenvalues, and will finish 

the proof of the theorem. (We shall see that the line may not always be chosen 

vertical in (4.2), corresponding to 0 = 0 above.) 
To establish (4.2), fix 2 = a q- ib with 0 < a < rnin (st ,  flo/2} and for 

convenience take b > 0. We will consider the curves fl(a q- it, sj) for t ~ 0, 
j = 1, . . . ,  N, describing their shape and the relative positions along these curves 

of the points fl(a + ib, sj). 

In particular, I claim: 

(1) With 

(2) 

t*(s)  = r - -  a) (for any s ~> a) one has 

I m  fl(a + it, s)  <= O for  O <_ t <_ t*(s) ,  

Im ~(a -k it, s) > 0 for t > t*(s)  

- - 0  2 

fl(a q- i t*(s),  s) = 2a, fl(a, s) = ~ < O. 
s - - a  

The curve fl(a + it, s), for s > a fixed, is convex to the left that is, 

08 
arg = arg t - ~  (a + it, s)  

is a strictly increasing function of t for t ~ 0, with 

arg t=o = --:~/2 < arg-~- < :~/2 for all t > 0. 

(Hence Re fl(a + it, s)  is increasing in t, so Re fl < 2a (respectively >2a)  

if t <  t*(s)  (respectively >t* ( s ) ) . )  
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(3) If  a < si < sj, the curves fl(a + it, s) s -~ si, s~, are nested as follows: 

If  

Re fl(a + itt ,  si) = Re fl(a + it2, sj) < 2a, 
then 

Im fl(a + it1, si) < Im fl(a + it2, sj) < O. 

(That is, the first curve lis below the second, for Re fl < 2a.) If  

Re fl(a + itl, si) = Re fl(a + it2, sj) > 2a, 
then 

Im fl(a + itt, si) > Im fl(a + it2, si) > 0 

(so the first curve lies above the second for Re fl > 2a). 

Assuming these claims hold, we establish (4.2). Since t*(s) is monotonically 

increasing in s, for each t :> 0 there exists j ,  1 ~ j ~ N, so that 

Im fl(a + it, sk) >: 0 if k ~ j ,  

Im fl(a + it, Sk) < 0 if k > j .  

Now the convexity and nesting properties (2) and (3) imply that the tangent line 

to the curve fl(a + it, sj) at t : t*(sj) (where fl : 2a) is a line with the property 

we desire: the points O, fl(a + it, Sk), k = 1, . . . ,  N lie all above this line (which 

has positive slope), and the point flo > 2a lies below (see Figure 5). (4.2) follows. 

fl(a+ib,sl/ 

Fig. 5. /~(2, sj) plane 

Remark.  If  in fact flo ---- 2a but fl(2, Sk) ~ flo for all k, the argument above shows 
again 2 is not an eigenvalue. Then a neighborhood of such a 2 must be in the 

resolvent set of the operator A -- B. 

It remains to establish the claims (1), (2), (3). Recall that when Im 2 > 0, 

sgn Im fl(2, s) = sgn (1212 - 2 s  Re2).  

For  k = a + it, this equals sgn (a(a -- 2s) + t2), which is positive or negative 

as t is greater or less than t*(s). When t = t*(s), 

Re/5(2, s) - a2(~ - s) IX 21 Re 2 -- s((Re 2) 2 -- (Ira 2) 2) 
= K e  Ix  - s l  2 = 14 - s l  2 

R e  2 ( 1 2 1 2  - 2 s  R e  4 )  + s 1412 s(a ~ + t2) 
- -  - -  ----- 2 2 .  

12 - -  s l  2 ( a  - -  s )  2 -q- t 2 
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To  check the convexity proper ty  (2), compute  

_ _  2 ( 2  - -  2s) 
o/5 (2, s )  - 
0 2  (2  - -  3') 2 

N ow 

dfl .Off 
arg -~ (a + it, s) ---- arg 1 ~ ----- -~- + arg 2 - -  2 arg (2 - -  s) + arg (2 - -  2s) 

: -- -~ + tan-~(t/a) + 2 tan -x --  tan -1 . 

Then  

d ( d f l ( a + i t ,  s ) ) =  a 2 ( s - - a )  ( 2 s - - a )  
d'-'~ arg-~- a2 + t2 -I- (s - -  a) z + t 2 (2s - -  a) 2 + t 2 

a + 2(s - -  a) - -  (2s - -  a) 
> = 0  

(2s - -  a) 2 + t 2 

�9 d/5 
i f  s > a. Since clearly l i m  arg ~ (a + it, s) = n/2, the fact  tha t  - - n / 2  

arg ~t  (a + it, s) < zt/2 follows. 

To  verify the nesting proper ty  (3), it is enough to show that  the direction of  

dr .a/5 
a.flflOs (a + it, s) is to the left (respectively right) of  the tangent  -~ = t -~ (a + it, s), 

whenever Re/5 < 2a (respectively > 2a). This follows f rom the fact 

sgn Re -~ (a + it, s) ---- sgn Im fl(a + it, s) 

which we now check: 

07 t l <:l 
o2 Os ( 2 - s )  2 = 1 2 - s l *  

0/5 0/5 
Thus sgn Re ~ -  ~ s  = sgn (] 212 --  2s Re 2) = sgn Im t5. 

o f  Theorem 4.1. 

This finishes the p r o o f  

We conclude this section with a criterion for  instability: 

Remark 4.2. I f  in 4.1 the equilibrium solution (0, ~(x)) satisfies, instead o f  (2.4), 

(4.3) a(~(x))  = P a.e., a ' (~(x))  < 0 for  x in a set o f  positive measure in (0, 1) 

then ~'(x) = (0, ff~(x)) is unstable in the sense that  there exists eo > 0 and a se- 

quence o f  initial da ta  zg ~ ; in X�89 so that  if zn(t) denotes the solution o f  (3.1) 
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with initial data zg for all n we have 

sup Ilz,(t) - ~'llx~ >-- ~o > 0, 
t > 0  

the supremum taken over the maximal interval of  existence of  z,(t). This fact is 

an application of  the statements of  HENRY 5.1.3, the point being that if (4.3) 

holds, then the essential spectrum of  A -- B intersects the unstable half plane 

(Re2  < 0), since the essential spectrum is the essential range of  a'(~(x)) as 

demonstrated in the proof  of 4.1. 

5. Global Existence and Convergence to Equilibrium 

The method we use to establish global existence of  the solution of  (2.9)is 

the same as that of  ANDREWS & BALL; we include a dicussion for completeness. 

In this method, the sign of  the stress for extreme ranges of  strain is restricted 

in a reasonable way, and also the energy of  the initial data is restricted (see 5.2 

below). However, if tr(w) is defined for all w C R, and satisfies, for some M > 0, 

(5.1) - P)  > 0 if lwl > M, 

then the energy of  the initial data is unrestricted. 

As we begin, let us first establish the energy identity: 

Proposition 5.1. Assume a(w) is locally Lipschitz-eontinuous. Suppose a solution 

(p, q) to problem (2.9) exists for 0 <-- t <_ T with Po E W l'z, po(1) = 0, and 

qo E L ~. Then the energy identity (2.13) holds and each term is continuous in t 

for t>=O. 

Proof. Multiply equation (2.90 for p by Pxx = (iv q- q)t and integrate over x. 

Using the regularity of  the solution as established in Theorem 3.1 and the bound- 

ary conditions in (2.93), we find that for t ~> 0, 

, ( /  ) f Pxxpt(x, t) dx = -- f PxPxt(x, t) dx = -- �89 p~(x, t) dx 
0 0 t 

and 

f (W(p+q)--eO,+q))(x,t) 
0 t ~ 

We integrate from t = e > 0 to T and let e ~ 0; then (2.14) follows. 

In the global existence theorem below, we fix a compact interval [w_, w+] Q J 

(the domain of  ~), and fix M, 0 < M < (w+ --  w_)/2, so that also [ w _ -  M, 

w+ + M] Q J. We require that a(w) satisfy 

c r ( w ) - - P < O  if [ w - - w _ l < M  
(5.2) 

~r(w) -- P > 0 if ] w --  w+] ,< M. 

Adjusting the stored energy function W(w) by a constant if necessary, we may 

assume min (W(w) --  Pw ] w E [w_ -- M, w+ -b M]} ---- O. 
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Theorem 5.2 (Global existence). Assume ~r(w) is locally Lipschitz-continuous. 
Suppose the initial data for (2.9) satisfy Po E W 1'2, po(1) = O, qo E L ~176 and 

qo(X) E [w_, w+] a.e. 
(5.3) 1 

f (�89 P~x + W(Po + qo)) (x) dx < M2/2. 
0 

Then the solution (p, q) of  the problem (2.9) exists globally for t >: 0 and satisfies, 

for all t ~ O, 
lp(x, t)[ < M for all x in (0, 1) 

(5.4) 
q(x, t)E [w_, w+] for a.e. x in (0, 1). 

Corollary 5.3. (Classical solutions). Suppose that a(w) is C 1 and cr'(w) is locally 

Lipschitz-continuous. In addition to the hypotheses of  Theorem 5.2, assume Po E 

W2'z(0, 1), pox(0) = 0, and qo E Ca[0, 1]. Then q(x, t) is C ~ in (x, t) for all 
t > O, so that the solution u(x, t )o f  (2.3) obtained from (p, q) remains classical for 

all t > 0 .  

The proof of the corollary will be postponed until after the proof of Theorem 5.4 

below. 

Proof of 5.2. Assume the solution exists for 0 =< t < T and T is maximal. We 

claim that the bounds (5.4) along with the inequality W(p + q) -- P(p + q) >= 0 
a.e. hold for 0 --< t < T. In particular we will show that the set of to such that 

(5.4) and (5.5) hold for 0 _< t --< to is open and closed in [0 T). Suppose (5.4) 
holds for 0 --< t --< to. Since p(x, t) is continuous, there is e > 0 so Ip(x, t)] 

< M + e, 0 < x < 1, 0 _< t --< to. Then since q is continuous into L ~176 there 

is 6 > 0  so (p + q) (x, t)E (w_ -- M, w+ + M) for O<--t<--to+~, and 

a . e . x .  This implies that W ( p + q ) - - P ( p + q ) > = O  for a.e. x, 0 _ < t _ <  

to + ~, and the energy identity (2.13) now yields 

(5.5) [p(x, t)l =< Ilpx(t)llL2 < M for 0 --< x --< 1, 0 ~ t --< to + b. 

Using Corollary 3.5, for each x in a set of  full measure we may apply Lemma 1.1 

to the function q(t) = q(x, t), x fixed, because of the hypothesis (5.2), and conclude 

that the interval [w_, w+] is invariant for the ordinary differential equation (2.92) 

for 0--<t--<to+CS. Thus (5.4) holds for 0 ~ t - - < t o + ~ .  

It is easy to verify that if  (5.4) holds for 0 ~ t < to < T then it holds for 

0 --< t --< to. Thus we have shown that (5.4) holds for 0 ~ t < T. We may now 
apply a continuation theorem of HENRY 3.3.4, to conclude that T----- + oo, 

because (5.4) implies that (z(t) I z(t) = (p, q) (t), 0 < t < T) is contained in 

a closed, bounded subset of the domain of definition of f(z) = (cr(p + q) -- P, 

--a(p + q) + P) in X �89 = ( W  1'2, L~176 on whichf i s  bounded in X = (L 2, L~176 

This completes the proof of  5.2. We note that we have shown that the solution 

satisfies, for some Ma > 0, 

(5.6) [la(p + q) (t) -- PllLoa ~ Ma. 
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The main result in this section is: 

Theorem 5.4 (Approach to equilibrium). Under the hypotheses o f  Theorem 5.2, the 

solution (p, q) o f  (2.9) has the following asymptotic behavior as t--* oo: 

[[p(t)[[w2,2 --> 0 

q(x, t )-+ woo(x) boundedly a.e., 

where woo 6 Loo and a(woo(x)) = P a.e. 

cr(p + q) (x, t) -+ P boundedly a.e. 

[[s(t)llc~,,-+o for any ~ <  I/2. 

I f  a(w) is C ~ with a'(w) locally Lipschitz-continuous, then also 

II s( t)  I w2,2-+ o.  

We shall see in w 6 that in general, one cannot expect a, the elastic part of 

the stress, to approach P uniformly in x. We note that in terms of the solution 

u(x, t) of (2.3) obtained from (p, q), the results of the theorem above yield 

[[ ut(t)[[ wl,2 --> 0 

ux(x, t)-->- w~176 boundedly a.e. 

Proof. The first step is to establish that 

(5.7) Ilp(t)[[n,l,2 -~ 0 as t -~  oo. 

From the Poincar6 inequality, using the boundary condition px(0, t ) =  0, we 

have 
1 

f pI=(x, t) dx dt < M2/2,  
0 0 0 0 

this last following from the energy identity. I claim that Ilpx(t)l122 has a bounded 

continuous time derivative on [6, oo) for any ~ > 0, so that (5.7) follows. That 

such is the case follows from Lemma A.3 in the Appendix, an abstract statement 

of smoothing which sharpens a conclusion of HENRY 3.5.2 to achieve some explicit 

bounds: For the abstract equation (3.1), it follows from A.3 and the proof of 

3.1 that zt E C((O, oo), X�89 with 

IIz,(t)lx~ < C,(T) (t -- to) -1 (IZ(to)ltx~ + sup lf(z(s))I[x] 
\ t o<s<t  ] 

for a n y t ,  towi th  0 < t - - t o < T  (T fixed). Taking t - - t o =  1 and using the 
established bounds (5.4), (5.5), and (5.6) to get bounds for z(t) and f(z(t)) ,  we 
conclude that for some M2 > 0, 

(5.8) [[pt(t)[]wl,2 <: M2 for all t ~ 1. 

This yields the desired result (5.7), put also has some independent interest since 

P t  = S ,  the total stress. 
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Step two in the proof  (perhaps the most significant) is to reconsider the 

ordinary differential equation (2.92), qt = --tr(p + q) + P. Since from (5.7), 

I[p(t)[[z. oo-+ 0 as t ~ oo, this ordinary differential equation is "asymptotically 

autonomous."  A simple lemma describes the asymptotic behavior of  its solutions: 

Lemma 5.5. Suppose q(t) is C ~ for  t 6 (0, co), with [ q(t) l <= C for  all t, p(t)  is 

continuous with p(t)  ~ 0 as t ~ co, and q, = --a(p + q) + P. Then there is 

a constant qOO such that q(t) ~ qOO as t -+ oo ,  and a(q ~176 = P. 

I thank J. BALL for the proof  below, which is simpler and more general than 
the original proof:  

Let q = lim q(t), ~ = lira q(t). Supposing q < ~, choose any qo 6 (q, q). 
t ___>  o o - -  _ 

Then there exist two sequences . t/~ ~ oo such that q(t~)  = qo and qt(t +) >= 0 

qt(ti-) for all i. Since q,(t/i) = --t;(q o + p ( t ~ ) )  + P, letting i - + o o  we find 

tr(qo) = P. Thus tr = P on [q, ~], since qo was arbitrary. But now if T is so large 

that ] p ( t ) l < e ( ~ - - q )  for t > T ,  we have q t ( t ) = O  whenever q 6 ( q + e ,  

-- e). This is not possible if q < ~. Hence q = ~ = l im q(t). 

Recall that for x is a set of  full measure in (0, 1) the ordinary differential 

equation (2.92) is satisfied classically for t > 0. With x fixed, the lemma above 

applies to q ( t ) =  q(x, t), and we conclude that as t--', oo, q(x, t ) ~  q~176 

boundedly almost everywhere pointwise in x. In particular, q~176 L~176 1), and 

tr(q~176 = P a.e. We also conclude that a(p + q) (x, t) ~ P as t ~ o~ boundedly 

a.e., so t r ~ P  i n L  2 and qt-+O i n L  2 as t -+o ~ .  

The next step is to show that as t - +  oo 

(5.9) I[pt[[cI,~--~O for any ~,< �89 

From equation (2.91) it then follows that Pxx ---- Pt -- c; -~- P -+ 0 in L 2 (but not  

in L ~176 see w 6). 

To establish (5.9) we shall regard (2.9,) as an abstract equation 

Pt = d p  -b g(p, t) 

in the space Y = L 2, with A and D(A) as in the proof  of  3.1, and with g(p, t) = 

o ' ( p + q ( t ) ) - - P .  As in w Y r =  (D(--A)  r ) < C  I'~ if  2 ~ , > , , + 3 / 2  and 

Y) = W~ '2. Observing that 

Ilq(t) - q(s)lk~ ~ g(s)  (t -- s) 

for t > s > 0 where K ( s ) - -  sup [[qt(t)[[L~---~ 0 as s - + o ~ ,  we have 
s < t < o o  

[Ig(p(t), t) -- g(p(s), s)[]L2 ~ Z(llp(t) --  P(s)IIL2 + g(to) (t --  s)) 

whenever to < s < t (where L depends on the bounds in (5.4)). Applying Lem- 

ma A.3 in this context, we find, for 0 < to < t < to + T (T fixed), and any 



Visceolastic Phase Transitions 377 

~<~ 1, 

[[P,(t)llrr_--< C . ( T ) ( t - -  to) - r - ~  (lip(to)lift + sup [Ig(p(t), t) l lr  + g(t0)). 
to <:t~T+to 

Fixing t -  to ----- 1 and letting to ~ oo, we derive (5.9). 

The last goal is to show that Pt~x ---- S=  -+ 0 in L z as t ~ 0% provided a(w) 

is C ~ and tr'(w) is locally Lipschitz-continuous. Since S is a strong solution of  

St = S~x -I- cr'(p -k q) (S  - -  cr(p -k q) -k P)  

for t ~> 0 (cfi w 3), it suffices to show that 

(5.10) [ISt(t)llL2-+0 as t---~oo. 

But the proof of  this goes the same as the proof of (5.9). This completes the proof 
of  Theorem 5.4. 

Proof of 5.3. As in the proof of  5.2, we need to show that if  T is finite, the set 

(z( t )  ] z( t )  : (p, q) (t), 0 < t < 2") is contained in a closed, bounded subset of 
the domain of  definition o f f (z )  in X ~ ~- (D((--A)~),  C j) (3/4 < o~ < 1, as in 

the proof of 3.6) on w h i c h f i s  bounded in X ---- (L 2, C1). Beyond the argument 

in the proof of 5.2, it suffices to show that the quantities IIp~xlIL2 and IIq~llL2 
cannot blow up in finite time. 

Now Pxx ~ Pt - -  a(p  -1- q) + P, so in fact IIP~IIL2 --< MI -k M2 for t ~ 1 
by (5.6) and (5.8). On the other hand, qx satisfies a linear ordinary differential 
equation, 

qxt -= --a ' (P -k q) (qx q- P~), 

with bounded coefficients and forcing so qx grows at an exponential rate at worst. 

Q.E.D. 

6. Discontinuous Asymptotic States for Smooth Solutions 

Each solution constructed in w 5 approaches some unique stationary asymptotic 

state as t ~ oo. The conclusion of  w 4 about stability identifies the asymptotic 

state when the initial data lie close to a stationary state which satisfies (2.4). 

But if the stationary state has discontinuous strain ~(x), then Theorem 4.1 applies 

only if the initial strain is close to the stationary strain in L ~176 and hence is dis- 

continuous itself. On the other hand, smooth initial data yield classical solutions 

with continuous strain for all t (DAVERMOS (1969) and Theorem 3.6 above). 

What happens if the initial data are smooth, but approximate, except in some 
thin transition layers, some stationary state satisfying (2.4) but having discon- 

tinuous strain ? The results below show that one can guarantee in this situation 

that the asymptotic state has discontinuous strain which is equal to the un- 

perturbed strain except on a small set. Essentially, we show that stationary states 
satisfying (2.4) are stable to perturbations with small energy, in a sense. 
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Fix an equilibrium state (0, ff,(x)) for (2.9), so o'(i(x)) : P a.e. Suppose 

at first that (r(w) is C ~, and that a ' ( i (x))  ~ go > 0, i.e. (2.4) holds. Then the 

essential range of ~(x) must be a finite set {wl, . . . ,  w~v}. We assume wl < w2 < ... 

�9 .. < wN. We may choose intervals Bj ---- (wf, w +) and E > 0 such that 

E <  min { [ w j -  wfl},  

(6.1) wjE (wy--, w +) for j = 1, . . . ,  N, 

a ( w ) < P  i f w  i - E < w < w j ,  

~r(w) > P if wj < w < w~ -F E. 

In the theorem below, we assume only that a(w) is locally Lipschitz-continuous, 

but require that the essential range of if(x) be a finite set as above and that (6.1) 

holds. We note that by Lemma 2.1, provided that Ip(x, t)] < E for all (x, t), 

the intervals By are each positively invariant for the ordinary differential equa- 

tion (2.92). Below, the Lesbegue measure of a set S is denoted by/~(S). 

Theorem 6.1 (Stability of  equilibria). Assume that the initial data Uo C L ~, ul E L 2 
X 

for the problem (2.3) satisfy, with qo(X) = Uo(X) -- f ul(y) dy, 
1 

(6.2) qo(X) E [wi-, w+~] a.e., 

1 1 

(6.3) f �89 u~(x) dx q- f (W(uo(X)) -- Puo(X)) dx 
0 0 

E 2  1 

< T + f Wm(qo(x)) dx, 
0 

and 

(6.4) either sup ul(y) dy < E 
O < x ~ l  

I 1 

or f (W(uo(x)) -- Puo(x)) dx ~ f Wm(qo(x)) dx, 
0 0 

where W'(w) = a(w), inf{W(w) -- ew l wC [w? - E, w + q- E]} = 0, and 

Wm(q):{W(wj) O- Pw if qE Bj for some j 

if q~ Bj for all j .  

Then the solution u(x, t) of(2.3) exists for all t > 0, and ux(x, t) converges bounded- 
ly a.e. as t--~ cx~ to an equilibrium state w~(x) with a(w~176 : P a.e., and in 
particular, 

(6.5) 

Thus, i f  

(6.6) 

then 

(6.7) 

w~ = wj if qo(x)E Bj for a . e . x .  

/z({x ] I qo(x) -- r~(x)] > E}) < s, 

t,({x I w=(x) + #(x)}) < 
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This theorem identifies a certain "basin of  stability" for a stationary state 

satisfying (6.1) and achieves pointwise control over the asymptotic state of solu- 

tions in (6.5). I emphasize that this basin contains smooth data (Uo, ul) which 
satisfies (6.3), (6.4), and (6.6), for any positive E and e. In particular, given a 
sequence ((ug, ~))  with uT--* 0 in Z 2, ug--->-l~(x) boundedly a.e., then (6.3), 

(6.4) and (6.6) must hold for n sufficiently large. I f  the stationary strain ~5(x) is 

not constant, and the initial strain Uo(X) is smooth and satisfies (6.6) fore sufficiently 

small, then qo(X) is close to if(x) except in some "transition layers" of  small 
measure. Then (6.5) identifies the asymptotic strain woo(x) pointwise from the 

initial data except in these transition layers, and in particular woo(x) must be 

nonconstant and discontinuous, since a(woo(x)) = P a.e. Since smooth initial 

data yield classical solutions with C a strain, convergence of the strain as t -+ oo 

does not occur uniformly. We note that the behavior of the strain in the transition 

layers which must persist is governed by the ordinary differential equation (2.92). 

Proof of 6.1. We work with the corresponding solution (p, q) of the system (2.9). 

Recall ut = Px, ux = p + q, and the energy identity (2.13). I claim that the solu- 

tion (p, q) exists globally in t, satisfying for t > 0 

(6.8) [p(x , t )  I < " ' <_ < 1, = [[px(t)[lL2 < E for 0 x _ 

(6.9) q(x, t)E [wi-, W~r] for a.e. x, 

(6.10) (W(p + q) -- P(p -k q)) (x, t) >= W,,(qo(x)) for a . e . x .  

As in the proof of Theorem 5.2, it suffices to establish these inequalities for 

t E [0, T), where [0, T) is the maximal interval of existence. As before, the strategy 

is to show that the set of to < T such that (6.8)-(6.10) hold for 0 ~< t _< to 

is open and closed in [0, T). It is easy to show this set is closed, using the energy 

identity to get (6.8). Now suppose (6.8)-(6.10) hold for 0 --< t --< to < T. Then 

by continuity, (6.8) holds for 0 --< t --< to -k 6 for some 0 > 0. Using Lemma 2.1, 

this implies that the intervals Bj, j = 1 . . . .  , N, and the interval [wi-, w + ] are 

all positively invariant for the ordinary differential equation (2.92) for 0 ~ t 

to + ~, for x in a set of full measure in [0, 1 ]. Thus (6.9) holds. Now certainly 

W(p + q) --  P(p -k q) >= O f o r a . e . x ,  for 0 _ < t ~ t o + O .  But also, f o r a . e . x  

such that qo(x) E B i we must then have q(x, t) E Bj for 0 _< t --< to q- ~. Using 
(6.8) and (6.1) we find that for such x, 

( W ( p +  q) -- Pfp  -k q)) (x, t) ~ W(wj) --  Pwj ---- 

inf(W(w) -- Pw[ wE [wj- -- E, w + q- E]} ---- Wm(qo(x)). 

Thus the lower bound (6.10) 

well. 
Global existence follows, 

for this solution as well. We 

for x in a set of full measure, 

Then 

ux(x, t) ---- (p q- q) 

on the stored energy holds for 0 ~< t --< to + 0 as 

and indeed the conclusions of Theorem 5.4 hold 

conclude that Hp(t)Hw2,2 -+ 0 as t -+  0% and that 
q(x, t) --~ w~176 as t -+  0% where or(woo(x)) =- P. 

(x, t) ~ w~176 as t -+  oo for a . e . x .  
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Since the intervals Bj are invariant for the ordinary differential equation (2.92), 

it follows that if qo(x) E Bj for some j, then w~(x) E Bj. But by (6.1), wj is the 

only solution of a(w) = P in Bj, so we must have w~(x) = w i . This finishes 
the proof  of  Theorem 6.1. 

Note. WEINBERGER (1982) has described the phenomenon of an uncountable 
infinity of  discontinuous, stable, asymptotic states for classical solutions in a 
population model with nearly the same structure as the system (2.9). Here, though, 
the special structure of  (2.9) makes it possible to obtain pointwise information 
about  the asymptotic state with the simple techniques used above. 

More can be said about the ultimate structure of  the transition layers if they 
are sufficiently steep at first. We consider classical solutions as constructed by 

Theorem 3.6. Suppose ~(w) is C ~ with ~r'(w) locally Lipsehitz-continuous. Suppose 
(6.1) holds. Let 

N--1  N 

So = W [wf, w~,]  = [wi-, w~ +1 \ L / s j .  
j ~ l  j = l  

Suppose, what is reasonable as in Fig. 3, that wf  and E have been chosen such 

that 

(6.11) ~r'(p q- q) < 0 if qEBo  and ]Pl < E .  

Proposition 6.2. Suppose that the initial data for (2.3) satisfy Uo E C 1 and ul E W 1'2 

with ut(O) = 0 and (6.2), (6.3), and (6.4). Given any C~ > O, there exists C2 > 0 

such that i f  II ulxl!L= < c~, then for  any f ixed x such that 

I q0x(x)[ >= C2 and qo(x) E So 

it follows that 

I qx(x, t)] > C2 whenever t > 0 and q(x, t) E Be. 

In particular, it follows from 6.2 and 6.1 that a single monotone transition layer 

[a, b] where 

[q0x(x) l >= cz for a _< x ~ b 

and 

qo(a) E Sj, 

must persist for all time, with 

[qx(x, t)[ -> C2 whenever 

and 

q(a, t )E Bj, 

qo(b) E Bj+t 

a ~ x ~< b and q(x, t) E Be, 

q(b, t)E B~+I for all t ~ 0. 

Proof of 6.2. From the proof  of 6.1 we have 

]p(x, t)l < E for all xE [0, 1], t > 0. 
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Thus Bo is negatively invariant: Let to > 0  so that q(xo, to)EBo.  Then 

q(Xo, t) E Bo for 0 --< t -< to. I claim there exists C2 such that 

(6.12) Ipx(x,t)l  <=C2 for all xE [0, 1], t >  0. 

Recall that a classical solution of  (2.9) satisfies 

(6.13) qxt = --a '(p q- q) (p~ q- qx). 

From (6.11) and (6.12) it follows that the set ( r [ [ r [  ~ C2} is invariant for 

qx(xo, t) in (6.13) for 0 --< t --< to. which is enough to prove 6.2. 

It remains to establish the bound (6.12), given that IlPox~llL~ =< C~. Set 
Y = L 2, with Yr ----- D(( - -A)  r) ( C I'~ if  29: > v q- 3/2 as in the proof of 5.4. 

Fixing such a 7' <~ 1, for any 1, < 1/2, we may choose C3 from C~ so that 

IIp01l~ --< C IlP01lw2.2 ~ Ca. 

From LemmaA.1,  for 0 --< t --< 1, and from the bound for IIP.~(t)IIL~ implied 

by (5.6) and (5.8), for t ~ 1, the bound (6.12) follows, establishing Proposi- 

tion 6.2. 

7. Hysteresis and Creep in a Load-Deformation Experiment 

The goal in this section is to exhibit hysteresis and creep phenomena in appro- 

priately idealized dynamic processes in a viscoelastic bar. 

Let us take tr(w) of the form indicated in Fig. 1 and fix some notation: 

should be locally Lipschitz-continuous, defined on R for convenience, strictly 

increasing for w < o~ and fl < w with o~ < fl and strictly decreasing for 

o~ < w < ft. Set P~ ---- tr(~), P~ ---- tr(fl). For e ~ P~ denote by w~(P) the unique 
w ~ o~ satisfying a(w)----P, and for P ~ Pt~ similarly define wa(P) as that 

w ~ f l  so t r ( w ) = P .  Also for P a < P < P ~  set 

E~(P) : �89 (Wo --  w~(?)), Ep(P) : �89 (w:(?) --  Wo), 

where w0 is the middle root of or(w) ---- P. For P < P:, set E~(P) ---- 0% and 
for P > P~, set E:(P) = o0. 

We will model the load-deformation experiment very simply, as a chain of 

initial-boundary value problems, allowing discretely imposed changes in the load 

P and small "fluctuations" imposed on the solution itself (as one model accounting 
for unknown physical influences on the bar). 

Select a sequence of loads Po, P1, ... (nondecreasing for now), a sequence 

of "fluctuations" (u~, u{), j = 0, 1, ... in (L ~176 L2), and a sequence of times 

0 ---- to < tl < ... Under suitable restrictions, we will construct global in time 

solutions uJ(x, t) to the initial-boundary value problems below, for j = 0, 1, 2 . . . .  : 

(7.1) u~tt = (tr(u~) + u~t)x , 0 < x < 1, t > tj 

(7.2) uJ(0, t) = 0, (tr(u~:) + u~,) (1, t) ---- Pj for t > tj 

uYx(x, tj) = u~-l(x, tj) + u/o(x) 
(7.3) for 0 ~< x ~< 1. 

u~(x, tj) = u~-l(x, tj) + ui(x) 
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(For j ---- 0 in (7.3), take u~ -~ ---- 0 ---- u~-I). The displacement of the bar under the 

influence of the varying loads and imposed fluctuations is represented by the func- 
tion 

u(x, t) = uJ(x, t) if tj -< t < tj+ 1 . 

As a "measurement" of  the bar, we will consider the sequence of asymptotic 

states determined by uJ(x, t): Theorem 6.1 will guarantee that there exist w~ E 

L~~ 1) so that 

u~(x, t) -+ w~(x) as t --~ to  for a.e. x in (0, 1). 

The "asymptotic length" of the bar while tj < t < tj+l may then be defined by 

1 

L J= f w~(x)dx 
0 

and may be considered to correspond to the quantity typically measured in experi- 

ment. 

Hysteresis. Let us illustrate how hysteresis can occur in this model upon 

slowly raising, then lowering, the load. Suppose the initial load is small, P0 < Pa. 

There is a unique equilibrium state at this load, for which the strain Ux is constant, 

so w~ = L ~ = w~(Po). Roughly speaking, we shall show that if the load is 

raised slowly, and the fluctuations are small, then the measured deformations L j 

increase along the curve w~(P) until P is close to P,, then jump to the curve wa(P) 
when the load P exceeds P~,. I f  then the load is decreased slowly, the observed 

deformations decrease along the curve wa(P) until P is close to Pa, then jump 

back to the curve w~(P) when P drops below Pa. 

We proceed with more precision: Given any P / <  P~, we will show that if 

the stress increments Pj+I -- Pj are small (see (7.10)), the fluctuations (u~, u{) 

are small (see (7.11), (7.12)) and the time increments tj+l --  ty large (depending 

on the solutions d(x ,  t) themselves), then the sequence of asymptotic states will 

be a sequence of constant states w~(x) ~ L j = w~(Pj) which in finitely many 

steps N can achieve PN = P/  with w~(x) ~ L N = w~(Pi). Thus, by "proceeding 

slowly and carefully enough," the asymptotic state Can be put as close as desired 

to w~(P~) = c~. 
Precise conditions on the load increments and fluctuations are as follows: 

To guarantee global existence of the uJ(x, t) and ensure that 

(7.4) w~(x) ~- w,(Pi), 

we require (cf. Theorem 6.1) 

(7.5) 

(7.6) 

1 

f (�89 u~ 2 + w(u~) - 15~ ) (y, tj) ay < �89 E~(ej) 2 + rV(w~(~,j)) - ejw~(Pj) 
0 

] / u j ( y ,  t j ) d y l <  E~(Pj) 0 ,<  x <  1 
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and 

(7.7) 

qJ(x, ty) = u~(x, tj) q- f u~(y, tj)dy E B(w~(Pj); E~(Pj)) for a.e. x in (0, 1). 
i 

If  P1 is to be chosen less than Pp, so that E~(Pj) ---- o% then no restriction 

need be imposed on the fluctuation (u~, ul) or the time tj > tj-1 to ensure (7.4). 

I f  Pj > Pp, though, E~(Pj) will be finite. We may assume (as an induction hypo- 

thesis) that w~-l(x) ~_ w~(Pj_l) and 

I 

(7.8) f (�89 u/-~2 + W(u~ -~) -- Pj_~u~ -~) (y, t) dy = Rj_I(t) + W(w~(Pj_O) 
0 

--Pj-iw~(Pj-1) where Rj_l(t)-+O as t - + t o .  

From the initial conditions (7.3) for u j, the left side of (7.5) may be expressed as 

(7.9) 

1 

l~ I + [u/-'(tj) u~ + �89 u, + w(u~-'(tj) + ud) - W(u~-~(tj)) - Pjug] f.v) dy 

+ (W(w~(Pj_3) - ?jw~(ej_~)}. 

Require that Pj satisfy 

( 7 . 1 0 )  I W ( w o ~ ( P j _ I ) )  - -  W(wo~(Pj )  ) - -  P j ( w e ~ ( P j _ I )  - -  w~(P j ) ) ]  < ~ g a ( P j )  2 . 

Indeed, the loads Pj may be chosen inductively to satisfy (7.10), achieving 

Pu : P: < P~, in finitely many steps N, since for P <= Ps, E~,(P) >= E~,(P:) > O. 
We now need to restrict tj and (u~, u~) so that the first and second brackets in (7.9) 

are each less than ~ E~,(Pj) 2, and so that (7.6) and (7.7) hold. 

For the second bracket in (7.9), it suffices to require 

1 1 
�9 1 2 (7.11) f u~' + M f  lugl < i~E=(P) 

0 0 

for some suitably large M depending only on an interval containing all values 

of  strain to be encountered. We require that the fluctuations also satisfy 

(7.12) I ug(x) I < �89 E~(Pj) 0 ~ x <_ 1. 

Now the first bracket and all the conditions (7.5)-(7.7) hold provided that tj is 

sufficiently large, depending on the solution uJ-l(x, t) at t = tj. (Note that the 

restrictions on the loads Pj and the fluctuations (ug, u{) do not depend on the solu- 
tion, however.) 

To summarize, we have shown that if the loads Pj satisfy (7.10), the fluctuations 

(ud, u~) satisfy (7.11), (7.12) and the increments t j - - t j -1 are sufficiently large, 
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then in finitely many steps N we can achieve w~(x) ~ w~(Py) for any Pi  < P~ 
(so w~(Ps) may be as close to as desired to ~). 

To conclude our discussion of hysteresis, we note that if the stress is raised more, 

so that for some M > N we have PM > P~, then we must have w~(x) ~ wo(PM), 
since this is the unique equilibrium state at stress PM. The stress may now be 

lowered slowly to any level Pr > Pa, achieving w~(x) ~ wa(Py) for some finite 

L > M, provided the fluctuations are restricted, in a manner similar to that above. 

If  now the stress is lowered further to a level less than Pa, of course the asymptotic 

strain will return to the branch w~(P) (in the o~ phase), completing a hysteresis 

loop. 

Creep. As P approaches P~ from below, the "metastable" state w~(P) becomes 

more sensitive to perturbations. That is, E~(P) ~ 0 and the "basin of stability" 

of the homogeneous state w~(P) which can be guaranteed by the restrictions (7.11), 

(7.12) becomes smaller. I f  fluctuations are larger, nonhomogeneous states may 

appear, resulting in a measured deformation L which is some average of the 

available homogeneous states w~(P) and we(P ). We will illustrate how a "creep" 

phenomenon may occur due to small-energy fluctuations of sensitive metastable 

states producing nonhomogeneous asymptotic states. (Such small-energy fluctua- 

tions might be considered a primitive model for the effect of Brownian motion in 

the bar.) 

Consider the experiment (7.1)-(7.3) carried out at a constant load P < P~, 

so Pj-----P for all j .  Suppose that P is close to P~, so that 

So that we may apply Theorem 6.1 (by verifying (6.3), (6.4)) to deduce the in- 

variance of the interval B(w~(P); E) for the modified strain q, we need two hypo- 

theses: First, we require that the fluctuations have small energy in the sense that 

(7.11) is satisfied for some suitably large M, which now may depend on how 

small Eis. Second, we assume that each asymptotic state w~(x) takes the "unstable" 

value w, (where wu is the middle solution of a(w) = P, w~(P)< wu < we) on 

a set of negligible measure. (This assumption is physically reasonable in the sense 

that an equilibrium state r~(x) having if(x) : w~ on a set of positive measure is 

unstable, by 4.2.) 
To verify that these hypotheses suffice to make (6.3) hold in the form 

(7.13) 
I 1 

f (�89 u Jr 2 + W(u~) -- ev~) (y, tl) dy < �89 E~(P) z + f Wm(qJ(y, ti) ) dy, 
0 0 

set 

observe that 

Wp(w) = W'(w) - Pw, 

1 1 

f We(u~ -x) ( t )  = f We(wJo~ ~) + Rj_ l ( t )  
0 0 
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where /}j_l(t)--> 0 as t--> 0% and write 

1 

f Wp(U~-'(tj) + ug) - Wm(qi(t2)) 
0 

1 1 

= f (We(ug-'(O § ug) - We(ug-'(O) ) + f (Wp(w~-') - Wm(WL-')) 
0 0 

1 

+ f (l'Vm(WJoo -1 )  - -  Wm(qJ(tj))) § g_ , ( t j )  = T, + 2"2 -}- 2"3 §  
0 

Now estimate 

where 

1 

IT, I < M ,  f lugl, 
0 

1I"2t < M2ff{x l w~-'(x) = wu}, 

I T3I < M~(~(S,) + if(S2 • S~)) 

Sl -= (x [ w~ -~(x) = wo,(P) and I u~ -~(x, tj) -- w~ - l (x)  [ > El4}, 

$2 ----- {x] wi~-'(x) = w~,(e) and [u~-'(x) -- w~-'(x)l < El4}, 

s~ = { x l l  u~(x)l > El4}. 

(Provided that f ui-l(tj)2 <~ E2/16, IqJ(x, t~) -- w~fP)l > E and xE  $2 imply 

x E $3.) Now if(S0--> 0 as tj ~ 0% #($2) is negligible by assumption, and 
4 l 

#(s3) =< ~ o f I ugl. Thus if tj is large, (7.13) holds. 

The third hypothesis we impose on the experiment (7.1)-(7.3) in the present 

discussion of creep is to require the fluctuations in strain to satisfy 

(7.14) lug(x)l ~ M0, where 5 E <  M 0 < 2Ea(P) -- 4E. 

Thus the restriction (7.12) is considerably relaxed, since we may take Mo >> E. 

Roughly speaking, the restriction (7.14) will imply that fluctuations cannot 

"kick" the strain from the fl phase to the ~ phase, but that they can "kick" the 

strain at some points into the fl phase from the o~ phase (but only on a small set 

compatible with (7.11)). Given suitable perturbations (see (7.16)), the result is that 

the set of points x such that w~(x) = we(P ) grows, and the set o f x  with w~(x) = 
w~(P) gets smaller, so that the asymptotic length L j slowly grows. This is the creep 
phenomenon desired. 

To be more precise, set 

s j - '  = (xll  qJ-'(x, t~) - wa(e) l < 2E} 

and observe 

{X I WJeo-i(x) = Wa~(P)} Q (S~ - I )  c = [0 ,  11 \ S j  - I  . 

We will show that if tj+l is large enough, then 

(7.1s) s~ 2 s~-' v {x I ul; > 5~}. 
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It follows that if the fluctuations satisfy, for some e > 0, 

(7.16) #((S~-1) c t% (x I u~ -1 > 5E}) ~ e#((S~-l)c), 

then /z((S~) r :< #((S~-1) c) (1 -- e), so that 

(7.17) /z((S~)*) ~ (1 -- e) j 

which implies "creep". 

It remains to establish (7.15). We assume tj is so large that qJ-l(x,  t j ) >  

w~(P) - -  E for all xE [0, 1]. Then, because of the condition on Mo in (7.14), 

and (7.11), we find that if Uio(X) ~> 5E, then qJ(x, tj) > we(P ) - -  2E~(P) q- 2E. 

Since ~(w) -- P is strictly negative on (we(P) - -  2Ea(P) + E, we(P ) --  E) and 

strictly positive on (we(P) + E, oo), we can ensure that for tj+l --  tj larger than 

some constant, we have [qJ(x, tj+t) -- we(P)] <~ 2E, that is, xE  S~. This esta- 

blishes (7.15), and concludes our discussion of creep. 

H. Admissibility and Moving Phase Boundaries in an Elastic Bar 

8. A Viscosity Criterion for Admissibility of Waves 

If  one deals with the elastic system (2.2), one must deal with discontinuous 

weak solutions. Here the ill-posedness of (2.2) is evident in the simplest initial- 

value problem involving discontinuous data, the Riemann problem: One seeks a 

centered wave solution (w, v) (x/t)  of (2.2) with initial data 

l(w_, v_) for x < 0 

(w, v) (x, 0) = { ((w+, v+) for x > 0" 

Then with ~(w) of the form in Fig. 1, JAMES (1980b) has shown that the Riemann 

problem can have a two-parameter family of centered wave weak solutions, so 

uniqueness fails in a rather bad way. 

To resolve this issue of uniqueness seems to require selecting of those discon- 

tinuous waves for (2.2) of the form 

/(w-, v_) for x < st 

(8.1) (w, v) (x, t) ----- { ((w+, v+) for x > st 

that are to be regarded as physically relevant, or admissible. The approach we will 
follow is to identify those waves which arise in the limit of vanishing viscosity. 

For the wave (8.1) to be a weak solution of(2.2), the Rankine-Hugoniot jump 

conditions must hold: 

- s ( w +  - w_)  = (v+ - v _ ) ,  

- s ( v +  - v_)  = ~(w+) - ~ ( w _ ) .  

The second equation may be replaced by 

(8.2) s 2 ( w +  - w_)  = ~ (w+)  - ,~(w_).  
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We will identify such a wave as admissible according to the viscosity criterion 

provided that 

(w, v) (x, t) = lim (w u, v u) (x, t) 
/~--->-0 + 

where (w ~, v")(x, t) are traveling wave solutions of the associated viscoelastic 

system derived from (1.1): 

w t :  vx 
(8 .3 )  

v, = (~ (w)  + # w , ) x .  

The traveling wave solutions may be taken in the form (~b, ~p) ((x -- st)I#) where 

q~, ~o satisfy 

lim (if, ~p) (~) ---- ( w + ,  v •  

(8 .4 )  --s(4~ - -  w _ )  : ~v - -  v _ ,  

- s ( w  - v_ )  = ( r (~)  - ~ ( w _ )  - s r  

The last equation may be replaced by 

(8 .5 )  s~ ' (~)  = ~r(~) - ~ ( w _ )  - s2 (4  - w_) .  

There are now two cases. If  s =~ 0 and (w+, w_, s) satisfies (8.2), then (8.5) 

is an ordinary differential equation, and it is well known and easily verified that 

a solution exists satisfying l i m  4~(~) = w• if and only if the following chord 

condition is satisfied: 

(8 .6)  The chord connecting the points (w• ~r(w• should lie above (respectively 

below) the graph of a(w) if (sgn s) sgn (w+ --  w_) is negative (respectively 

positive). 

This condition ensures that sgn if' = sgn (w+ -- w_) when ff is between w + and 

w-, and would be equivalent to LIU'S (strict) entropy condition for shocks (LIu, 

1976) if the system were strictly hyperbolic (which requies cr' ~ 0 everywhere). 

In the second case, s = 0, so (8.5) reduces to an algebraic equation 

(8.7) ~(4~) = or(w_). 

A solution with the desired property is 

w_ for ~ < 0  
(8 .8)  ~(~)  = w(~) = . 

w+ for ~ > 0  

As we have already noted, the viscoelastic equation (1.1) has the same equilibria 
as the elastic equation (2.1). Thus all elastic equilibria are trivial viscous limits. 

To summarize, the viscosity criterion for admissibility of weak solutions of  

(2.2) of the form (8.1) may be stated as follows: 

(8.9) If  s =4= 0, the wave is admissible if the chord condition (8.6) holds. 
I f  s = 0, the wave is admissible unconditionally. 
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~[w) t 
L /  l i I i I !  
/ w~. w+ w, w§ w_+w_ 

Fig. 6. Pairs (w+, w_) determining admissible waves for s _> 0 

Concerning the solution of the Riemann problem under the admissibility 

criterion (8.9), it is remarkable that a study already exists. For tr(w) as in Fig. 1, 

changing convexity at just one point, SHEARER (1982) established existence and 

uniqueness of  the solution, provided that discontinuities are required to satisfy 

exactly the admissibility condition (8.9). SHEARER appears to have admitted the 

waves with s = 0 on an ad hoc basis. Here we have shown how these waves arise 

from the viscosity criterion. 
SLEMROD (1983) has previously dismissed a viscosity criterion of the sort 

above, his analysis forbidding the waves having s----0. The waves remaining 

form a class insufficient to solve the Riemann problem. However, SLEMROO rules 

out a priori discontinuous viscous waves of the sort in (8.8). In the hindsight 

afforded by the results of w 6 above, his requirement of continuity seems clearly 

too restrictive. Discontinuous stationary waves of this sort can be stable asympto- 

tic limits of smooth solutions in the viscoelastic problem (2.4). 
SHEARER (1983) and also SLEMROD (1983) have examined admissibility criteria 

based on other forms of dissipation mechanisms in the system (8.3). SLEMROO'S 

viscosity-capillarity criterion admits just a single stationary wave, at the Maxwell 

line, where the stored-energy density at w+ and w_ are equal. (Also see AIrANTIS 

& SERRIN (1983).) Typically, for moving waves, SLEMROD'S criterion implies that 

the metastable state is overtaken by the stable state. A recent result of SHEARER 

(1986) indicates, however, that the viscosity-capillarity criterion may fail 

to imply uniqueness of solutions of some Riemann problems with states near 

the Maxwell line. 
We finish with two remarks concerning the admissible waves selected by the 

viscosity criterion developed in this section. We fix tr of the form in Figure 1, 

requiring that the convexity of a changes at just one point. 
We first remark that the closure of the set triples (w~, w_, s) which determine 

an admissible wave (2.2) form a connected continuum in R, a. That is, any two 
triples (w+, w_, s) and (r~+, ~_, ~) which determine admissible waves can be connect- 

ed by a path in this set. We leave the verification to the reader. Note that this 

includes waves with speed of any sign, so the zero speed "shocks" in particular 

are not exceptional from this point of view. 
We shall have occasion in w 9 to consider "interphase shocks," for which 

w+ and w_ lie in different components of (w I ~'(w) ~ 0). Waves of this sort exist 
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with arbitrarily small speed s. Consider the "shock structure" for these wave 

obtained from (8.5). The second remark is that if viscosity /~ > 0 is fixed, the 

smooth "transition layer" obtained from (8.5) for interphase shocks approaches 

zero thickness as s --~ O. For s > 0, w§ -< o~, and w_ > fl in Fig. 1, the condi- 
tion s---~ 0 implies w+---~ o~ and w_-+e ,  where y----wa(tr(o0) in the notation 

of w 7. Our second remark means that, fixing the phase of the wave appropriately, 

as s---~ 0 we have 

~(~) --~ r ---- [Y for $ < 0. 

o~ for $ > 0  

9. Appearance of Propagating Phase Boundaries 

In the hysteresis process discussed in w 7, a phase transition occurs approxi- 

mately when the load level P crosses the level P~. The bar, formerly in the "~ 

phase" with asymptotic strain w~(P) ,is forced into the "fl phase" with asymptotic 

strain wa(P). We describe here an idealized problem for the elastic bar indicating 

that this transition can be associated with a slowly propagating "phase boundary", 

corresponding to a wave of discontinuous strain for the system (2.2) which is 

admissible according to the chord condition (8.6). The mechanism I suggest 

has been examined by PENCE (1986) and suggested in the context of shear 

flow in polymeric fluids by HUNTER & SLEMROD (1983). However, we are able 
to assert the uniqueness of the solution to the problem (9.1) below within the class 

of  centered wave solutions satisfying the admissibility criterion (8.9) derived from 
the limit of  vanishing viscosity. 

For ease in applying the results of SHEARER (1982), we will in fact consider 

the situation in which the load P falls the below transition level Pa (notation as 

in w 7), with the bar previously equilibrated in the fl phase. 

Suppose then that at t = 0 the elastic bar lies at equilibrium at a stress 

level P > Pa, P near Pa, so w(x, O) ~ wt~(P ) > fl, v(x, 0) ~ 0 in the system 
(2.2), for 0 --< x ~< 1. Imagine that the load at the boundary x = 1 is suddenly 

lowered to a level P+ < Pa, and held constant. In the elastic model, this determines 

the strain at the boundary to be w(1, t)----w~(P+)< o~, since we must have 
~(w (I, t)) = P+. 

We now have the following initial-boundary value problem (a Riemann 
problem at the boundary): 

(9.1) Find a weak solution of  the elastic system (2.2) having initial conditions 

w(x, o) = w~(e), v(x, o) = o o < x <_ 1 

and boundary condition 

w(1, t) ---- w~(e+) 0 < t. 

(For short time, we ignore the fixed-end condition v(0, t) ---- 0.) We can construct 

a solution to this problem for short time by finding a centered 1-wave solution 

to the ordinary Riemann problem for (2.2), centered at (x, t) ---- (1, 0), connecting 
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(w_, v_) = (wa(P), 0) on the left to (w+, v+) = (w~(P), v+) on the right, for some 
v+ to be determined. That is, we seek v+ such that the solution of the Riemann 

problem for (w_, v_), (w+, v+) contains only 1-waves, which have negative speed, 

so that the boundary condition in (9.1) will be satisfied. The resulting solution 

is valid until the leading wave impinges on the boundary x = 0. 

The problem in (9.1) is now easily resolved utilizing SHEARER'S solution 

(SHEARER, 1982) of the Riemann problem for (2.2) under the admissibility criterion 

justified in w 8. We must assume cr"(w) < 0 for w < o~, ~r"(w) > 0 for w >/3.  

We find that a unique v+ = Vb < 0 with the property described above does al- 
ways exist. In SHEARER'S notation, given the point Uo = (w_, v_) in his Figure 4, 

we require that the solution involve only 1-waves, so that the state U1 = (w+, v+) 

must lie either on the curve S*(Uo) or on the curve E. The structure of the solution 

is as follows: If  w+ <= w.(w_) where the tangent to the graph of a(w) at w ---- w_ 

intersects the graph again at w. (w_)<  or then the solution is a single 1-shock 

connecting (w_, v_) to (w+, v+). If  w.(w_) < w+ < w~(Pa), then the solution con- 

sists of a rarefaction wave connecting (w_, v_) to an intermediate state (Wo, Vo), 

with fl < wo < w_, which is then immediately connected to (w+, v+) by a 1- 

shock. Here Wo is determined by the requirement w. (Wo) = w+, that is, the chord 

from (w+, ~r(w+)) to (Wo, a(Wo)) lies below the graph of a(w) and is tangent to it 

at Wo. As P+ ~' Pp, or as w+ approaches w~(Pa), clearly the slope of this chord, 

which is equal to the squared speed of the shock connecting the two phases, 

approaches zero. Thus the interphase shock which appears in the solution can 

have an arbitrarily small speed, depending on how close P+ is to Pa. We also note 

that as P+ ~ Pa, the velocity Vb -+ O. 
We conclude by illustrating a "necking" phenomenon arising out of a Rie- 

mann problem for (2.2) obtained by applying a symmetry principle to the solutions 

just described. (Actually, true "necking" would arise in the companion situation 

for loads near P~.) Denote the solution of the whole-line Riemann problem just 

used to solve (9.1), centered at (x, t) = (0, 0), by (~, v) (x, t), so that 

(ff~, ~) (x, O) = t [ (wa(P), O) for x < O. 

t (w,(P+), vb) for x > 0 

Then for t ~ 0 and all x ~ 0, we know (~, b) (x, t) --- (w~(P+), Vb) as well. Due to 

the symmetry of the equations (2.2) and the chord condition (8.6), the function 

(~, b) (x, t) for x < 0 ! 
(w, v) (x, t) 

~(ff, 2vo -- b) (--x, t) for x ~> 0 

is the (unique admissible) solution of the Riemann problem for (2.2) with initial 
states 

(w_, v_) = (w~(P), 0), (w+, v+) = ( wAt ' ) ,  2v~). 

Physically, this means starting with homogeneous strain w = wa(P) at t = 0, 

but giving the right "hal f"  of the bar a small velocity 2v b < 0. The solution then 
develops a slowly expanding region near x ---- 0 in the 0~ phase with w = w~,(P+). 
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Appendix: Some Estimates for the Abstract Parabolic Equation 

Essentially, in this section we reorganize the p roof  of  HENRY (1981), 3.5.2 

to obtain estimates needed in w 3 and w 5. Throughout,  we assume A is sectorial 

on a Banach space X, f :  U---~ X is locally Lipschitz-continuous on an open set 

U Q R •  ~ for some 0 ~ 0 ~ <  I, and z(t) is a solution on (0, T] of  

z,+az=f(t,z), z(O) = Z o  

with (0, Zo)E U. We assume 

Ilf(t, z(t)) -- f (s ,  z(s))[[ ~ K(t -- s) + L II z(t) - z(s)I1~- 

(Here II II is the norm in X, II II~ the norm in X~.) We let 

M~ = [[ Zo [l~ Mf = sup [[f(t, z(t)) ][. 
O ~ t ~ T  

Below, we rely heavily on standard estimates for fractional powers of  sectorial 

operators (HENRY 1.4.3). 

Lemma A.1 .  I f  o~ <= fl < 1, there exists C = C(~, t ,  T) so that 

[[ z(t)Itg ~ C( t~-€ Mz + Mr) for 0 < t < T. 

Proof. The solution z(t) satisfies 

t 

z(t) = e -at z o + f e-a(t-O f (s ,  z(s)) dx. 
0 

Using standard estimates (HENRY 1.4.3), we find 

The lemma follows. 

t 

[I z(t)[[~ <~ CM~t ~-~ + CMf f s -~ ds. 
0 

Lemma A.2. There exists C,  : C,(~,  T, L) such that for 0 < t < t + h < T 
we have 

[[z(t + h) - -  z(t)[[~ ~ ht -~ C,(M~ + Mr-[- K).  
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Proof .  Fix 0 < ~ <  1 and write, for  t > x ,  

/ ,+h 7+h) z(t + h) = e -a( '+h-~ z(~) -t- t /  + e-'t(t+h-~) f (s ,  z(s)) ds, 
�9 + h  / 

~:+h 

z(t + h) -- z(t) = (e -Ah - 1) e -~('-~) z(~) + f e-A('+h-s) f ( s ,  z(S)) ds 
T 

t 

+ f e-A('-~)(f(s + h, z(s + h)) - - f ( s ,  z(s))) as = r~ + r2 + r~.  
l" 

N ow 

t 

IIT311~ <= C f (t -- s) -~ (Kh + IIz(s + h) -- z(s)llD ds 
T 

t 

<= CKh + C f (t -- s) -~ II z(s + h) - z(s)II~ ds 

T + h  

If T2 I1~ =< CMf f (t + h -- s)-~ ds ~ hCMf(t -- z)-~.  
7: 

Choosing fl with o~ < / 7  < 1, and again using estimates o f  HENRY 1.4.3, we 

have 

IIT~II~ =< hC(t -- ~)n-~-I IIz(~)lla. 

Now we have 

llz(t + h) -- z(t)lI~h -I ~ (t - -  ~ ) a - ~ - I  C(llz(~)lla + M r +  K) 

t 

-k CL f (t -- s) -~ IIz(s + h) - -  z ( s ) l l ~ h  -1  ds. 

Because /7 - -  o~ --  1 > --  1 and 0 ~ o~ < 1 we may now apply the generalized 

Gronwal l  inequality (HENRY (1981), Ch. 6, ex. 4) to conclude that  

Ilz(t + h) - -  z(t)l[~ =< h f , ( t  -- T) a-~-I ([[z(~)l[~ + Mf + K) 

where C ,  = C,(o~,/7, T, L, C) is independent  of  ~. Now choose ~ ---- t/2 and 

apply Lemma A.1 to obtain the result. 

Lemma A.3. I f  0 < ~, < 1, there exists (7, = C,(o~, )x, T, L) so that for 

t < T ,  

[Iz,(t)ll~ _--< C,( t  ~-~-1 Mz + t - e ( g f  + K)). 

O <  

Proof .  F rom  the work  o f  HENRY 3.2.1 we may  write 

;) zt(t) = - -Ae -m Zo + e-At f ( t ,  z(t)) + + Ae -A(t-~) ( f ( t ,  z(t)) 
t 

- - f ( s ,  z(s))) ds = I"1 + T2 + T3 + T, .  



Viscoelastic Phase Transitions 393 

We then estimate 

IIT~II~ =< Ct a-v - '  Mz 

t 

[IT3II, <= C f (t --  s)- ' - '  ds. 2Mf <= Ct-~ Mf 
t/2 

t 

IIT, II, <= C f (t --  s) - ~ - '  (K(t - -  s) + L [ [ z ( t )  - -  z(s)ll~) ds 
t12 

t 

<= C, f (t -- s ) -"  s -1 ds (M, + Mf  + K) 
t/2 

1 

= t - ' C ,  f ( 1 - - s ) - ~ s  - l  ds(M" + M f +  K).  
1[2 

The lemma follows. 
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