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Abstract

One of the major limitations of relational learning is due to the complexity of verifying
hypotheses on examples. In this paper we investigate this task in light of recent published
results, which show that many hard problems exhibit a narrow “phase transition” with
respect to some order parameter, coupled with a large increase in computational
complexity.

First we show that matching on ground instances a class of artificially generated Horn
clauses presents a typical phase transition in solvability with respect to both the number of
literals in the clause and the number of constants occurring in the instance to match. Then,
we demonstrate that phase transitions also appear in real-world learning problems, and that
learners tend to generate inductive hypotheses lying exactly on the phase transition.

On the other hand, an extensive experimentation revealed that not every matching problem
inside the phase transition region is intractable; but, unfortunately, the identification of the
feasible ones cannot be done on the basis of a static analysis of the order parameters only.
To face this problem, we propose a method, based on a Monte Carlo algorithm, to estimate
on-line the likelihood that the current matching problem will exceed a granted amount of
computational resources. The impact of the above findings on relational learning is
discussed.



1. Introduction

Recent investigations have uncovered that several classes of computationally difficult

problems, notably NP-complete problems, show a “phase transition” with respect to some

typical order parameter, i.e., they present abrupt changes in their probability of being

solvable, usually coupled with a peak in computational complexity [Cheeseman, Kanefsky

& Taylor, 1991; Williams & Hogg, 1994; Hogg, Huberman & Williams, 1996; Walsh,

1998]. This phenomenon is typically true for search problems, and it seems to be largely

independent from the specific search algorithm used [Hogg, Huberman & Williams (Eds.),

1996]. Phase transitions have been previously observed, for instance, in the K-

Satisfiability problems (K-SAT) [Cheeseman, Kanefsky & Taylor, 1991; Crawford &

Auton, 1996; Freeman, 1996; Selman & Kirkpatrick, 1996], in Constraint Satisfaction

problems [Smith & Dyer, 1996; Williams & Hogg 1994; Prosser, 1996], in graph K-

coloring problems [Cheeseman, Kanefsky & Taylor, 1991; Hogg, 1996], and in the

decision version of the Travelling Salesperson problems [Gent & Walsh, 1996; Zhang &

Korf, 1996].

The detection and location of a phase transition in a problem class may have important

consequences in practice. In fact, the standard notion of computational complexity of a

class of problems is a pessimistic evaluation, based on worst-case analysis. Actually, many

problem instances can be solvable (or proved unsolvable) with reduced computational

efforts. The investigation of phase transitions can provide information on single instances

of the class, shifting the focus of the complexity analysis from the maximum complexity to

a “typical” one. A phase transition divides the problem space into three regions: one, the

NO-region, in which the probability that a solution exists is almost zero, and, hence,

unsolvability is “easily” proved. Another one, the YES-region, where problems have many

alternative solutions, and finding one is “easy”. Finally, a region where the probability of

solution changes abruptly from almost 1 to almost 0, potentially making very difficult to

find one of the existing solutions or to prove unsolvability.  This region is called the

“mushy” region [Smith & Dyer, 1996; Prosser, 1996].

In the present work we explore the emergence of a phase transition in the matching

problem: possible models of a First Order Logic (FOL) formula are searched for in a given

universe, in order to decide its satisfiability. Our basic motivation for studying the

matching problem is the basic role it plays in learning structured concept descriptions from



examples [Michalski, 1980; Bergadano, Giordana & Saitta, 1988; Muggleton, 1992;

Anglano et al., 1997, 1998; Giordana et al., 1998]. The exponential (in time and/or space)

complexity of this task severely limits the classes of concepts that can be learned and used.

An effort to better understand the source of this complexity might suggest new and more

effective heuristics or learning strategies.

Learning has been defined, since long, as a search problem in the space of possible

“hypotheses” [Mitchell, 1982], and concept learning problems are known to be NP-hard

even in a propositional setting [Hyafil & Rivest, 1976]. The situation is worse in relational

learning, because the complexity for searching the hypothesis space is combined with the

complexity of verifying any single hypothesis against all positive and negative instances.

Most relational learners adopt more or less strong biases, in order to limit such complexity,

focusing on hypotheses that are easy to verify. We will propose here an alternative method

to overcome this problem, allowing for weaker biases. Some relations between this

approach and other approaches to taming complexity in relational learning will be discussed

later.

The matching problem is firstly framed as a Constraint Satisfaction Problem (CSP)

[Williams & Hogg, 1994], so that existing theories can be applied for interpreting the

experimental results. A thorough experimentation, involving the generation of thousands of

problems, according to a specified probability distribution, has been carried out. The

parameters chosen as order parameters are different from (but related to) those usually

adopted in generic CSPs. The reason is that we favored parameters with a more direct

meaning in Machine Learning (ML). Also, the variability range of the parameters is close to

the one occurring in ML practice.

Yet, one might legitimately wonder whether the results obtained for artificial classes of

problems bear any relation to concrete learning problems. To answer this question we

selected for examination two real-world learning tasks, and found, surprisingly as it might

appear, that the results from the artificial cases still hold.

Having shown that the emergence of a phase transition may be relevant for learning, we

try, as a second step, to predict where the mushy region might be, either to avoid it, or to

design strategies better suited to limit the search complexity. A major finding of this

analysis is that relational learners are attracted by the “mushy” region, making thus very

difficult avoiding it. At the same time, a large variability in complexity emerged inside this



region, and, hence, many problems are tractable, in practice. In order to uncover which

ones, we describe a stochastic algorithm for on-line estimation of the complexity of a single

matching problem.

The body of this paper is organised as follows: Section 2 recalls previous theoretical

analyses on  Constraint Satisfaction Problems [Smith & Dyer, 1996; Williams & Hogg

1994; Prosser, 1996]. Section 3 links matching to CSP, and discusses the results of an

extensive experimentation supporting the emergence of a phase transition in matching.

Section 4 presents two real-world case-studies, namely the analysis of a ML benchmark

known as the “Mutagenesis” dataset [Srinivasan, Muggleton, & King, 1995], and of a

troubleshooting problem [Giordana et al., 1993]. In Section 5 the impact of the emergence

of phase transitions on learning relations is discussed. Section 6 proposes a method for on-

line identification of those instances of matching problems that are too hard to be handled,

and Section 7 contains some conclusions.

2. Constraint Satisfaction Problems

Phase transitions have been widely investigated in the class of Constraint Satisfaction

Problems (CSP) [Williams & Hogg, 1994; Smith & Dyer, 1996; Prosser, 1996]. Given a

set of variables X ={x 1 , x2, ... , xn}, where each xk ranges on a domain Λk of cardinality

Lk, the problem of finding an assignment to each variable xk∈ X  consistent with a set R

={R1, R2, ...., Rm} of constraints on X , is called a CSP. A relation R, involving variables

(xi,  . . .  , xj)  can be represented as a table, where every row contains an admissible

assignment (ai, ... , aj)  of constants to (xi, ... , x j) . If all relations are binary, the CSP is

called binary  [Williams & Hogg, 1994; Prosser, 1996; Smith & Dyer, 1996].

Two parameters are defined to characterize a CSP instance: constraint density  p1, and

constraint tightness  p 2 [Smith & Dyer, 1996; Prosser, 1996]. In a binary CSPs the

constraints can be represented as edges on a graph with n vertices, each one corresponding

to a variable. The graph has n(n-1)/2 possible edges; several constraints on the same pair of

variables can be reduced to a unique one by AND-ing them. By denoting by c the number

of edges occurring in the constraint graph, the constraint density p1 is defined [Smith &

Dyer, 1996; Prosser, 1996] as follows:



p1 = c
n(n − 1)

2

 = 
2 c

n (n −1)
(1)

The parameter p1  belongs to the interval [0,1], with 0 corresponding to no constraints at

all, and 1 corresponding to the case in which all possible pairs of variables are constrained.

The tightness of the constraint on a variable pair {xi, x j} is the fraction of value pairs ruled

out by the constraint itself. If N is the cardinality of the relation R(xi,  x j), the constraint

tightness p2  is defined [Smith & Dyer, 1996; Prosser, 1996] by:

p2 = 1 – N

L2
(2)

where L is the cardinality of the domain of the variables, assuming that every xk ranges

over the same set Λ.

Studies on CSPs assume a model of stochastic instance generation; one of them, Model B

[Smith & Dyer, 1996], assumes that n, N, and p1 are kept constant, whereas p2 varies in

the interval [0,1]. Edges on the constraint graph and tuples in the relations are extracted

with uniform probability.

By varying p2, a narrow “mushy” region, where the probability of solution, Psol, drops

from 0.99 to 0.01 is found [Williams & Hogg, 1994; Smith & Dyer, 1996; Prosser,

1996]. The complexity of finding one solution (or of proving unsolvability) shows a

marked peak in correspondence to Psol = 0.5, which is also called the crossover point

[Crawford & Auton, 1996; Smith & Dyer, 1996]. Unsolvable instances require, in

average, a greater complexity at the phase transition, because the whole search tree needs to

be explored, and the tree is large. The p2 value corresponding to the crossover point, p2,cr,

is called critical  v alue; it is conjectured to correspond to an expected number of solutions

roughly equal to 1 [Williams & Hogg, 1994; Smith & Dyer, 1996; Prosser, 1996; Gent et

al., 1996].

Even though the location and the height of the complexity peak depends upon the search

algorithm used, the very emergence of the phase transition does not (see [Hogg, Huberman

& Williams (Eds.), 1996]). For fixed n, N, p1 and p2, the actual location  of p2,cr depends

also upon the structure of the constraint graph.



Williams and Hogg [1994], Prosser [1996], and Smith and Dyer [1996] derive all the same

estimate, ˆ p 2,cr, for the critical value of p2:

ˆ p 2,cr = 1 - L
−

2

p1(n−1)
= 1 -L

−
n

c (3)

The estimate ˆ p 2,cr can be used to predict the location of the phase transition. Formula (3)

has been derived by assuming that the average number of solutions at the phase transition

is 1. However, the value ˆ p 2,cr  given by (3) is a good predictor only for high values of p1,

or for large values of n. If p1  is low,  typically p1 < 0.3, the constraint graph is sparse and

many alternative configurations may exist, loosening the correspondence between p2,cr and

the actual location of the phase transition. In this case, different constraint graphs

correspond to different locations of the phase transition, and the mushy region derives

from a mixture of different graphs, whose crossover points vary. When this happens, an

average number of solution equal to 1 may not denote an equal proportion of solvable and

unsolvable problems (i.e., Psol = 0.5), but rather the presence of a large number of

unsolvable problems and a small number of solvable problems with many solutions; as a

consequence, the ˆ p 2,cr value given by (3) is situated to the right of the actual phase

transition. The reliability of ˆ p 2,cr as a predictor can be evaluated by estimating the expected

number of solutions and its variance [Smith & Dyer, 1996].

In order to quantify the constrainedness  of search, Gent et al. [1996] have proposed a

different parameter:

κ = 1 - lg2E(Nsol )

lg2S
 , (4)

where E(Nsol) is the expected number of solutions existing in a search space with S states.

Again assuming that the phase transition occurs for E(Nsol) = 1, the critical value of κ is

κcr= 1. For a CSP of the type considered in this paper, formula (4) gives:

κ = – 
c lg2 (1− p2 )

n lg2L  . (5)

By setting κcr = 1, the same expression (3) is obtained for the corresponding ˆ p 2,cr.



3. Phase Transitions in Matching

The matching problems we consider are restricted to the satisfiability of existentially

quantified, conjunctive formulas, ∃  
r 
x  [ϕ(  

r 
x )], with n variables (from a set X ) and m

literals (predicates from a set P or their negation). Given a universe U, consisting of a set

of relations (tables) containing the extensions of the atomic predicates, the considered

formula is satisfiable if there exists at least one model of ϕ(  
r 
x ) in U.

It is immediate to see that the matching problem is a CSP, where the n variables and their

associated domains play the same role, and the m relations, corresponding to the literals

occurring in ϕ(  
r 
x ), correspond to the set R of relations. In learning relational concepts, a

formula is a “hypothesis” (i.e., a putative description) and a universe is a positive or

negative example of the concept to learn. Then, during learning, each hypothesis generated

by the learner has to be matched against all the training examples, each one corresponding

to a different universe. In relational learning, concept definitions are usually represented in

DNF, i.e., as disjunction of conjunctive formulas.

In order to investigate the location and properties of phase transitions in matching,

formulas and examples have been generated according to a stochastic procedure that

simulates conditions similar to the ones occurring in real learning problems. The following

assumptions have been adopted:

• The variable x1,  x2,  . . .  ,  xn  range over the same set Λ of constants, containing L

elements.

• All the predicates are binary.

• Every relation in U has the same cardinality, namely it contains exactly N tuples (pairs

of constants).

Given X  and P, with the additional constraint m  ≥  n -1, a formula ϕ with the structure

below is generated, according to a random procedure described by Botta, Giordana and

Saitta [1999]:

                             
  
ϕ(

r 
x )= ∧

i =1

n−1

α i(x i ,x i+1) ∧ ∧
i =n

m

α i(y i ,z i ), (6)



In (6), the variables {yi, z i} belong to X , and yi ≠ z i. The generated formulas contain

exactly n variables and m literals, and the same pair of variables may appear in more than

one predicate. The first part of formula (6) guarantees that the underlying constraint graph

is connected, in order to hinder the matching problem to be reduced to simpler

subproblems, with disjoint sets of variables.

Every relation in U is built up by creating the Cartesian product Λ × Λ of all possible pairs

of constants, and selecting N pairs from it, uniformly and without replacement. In this

way, the same pair cannot occur twice in the same relation. This generation procedure is

close to Model B for CSPs [Smith & Dyer, 1996].

In summary, a matching problem is defined by the 4-tuple (n, N, m, L), instead of the

triple (n, p1, p2) usually employed in CSP. The parameters N, m and L can be rewritten in

terms of p1 and p2, but these last do not have a direct meaning for learning problems. On

the contrary, the complexity of an inductive hypothesis is frequently measured by m, and

the complexity of a concept instance can be related to L, i.e., the number of atomic objects

(ground literals) it contains. However, we will also use p2 when the analysis requires it, as

in Section 4.

3.1. Stochastic Search Algorithm

Given a formula ϕ, with n variables and the syntactic structure (6), and given a universe U,

the search for the models of ϕ in U entails visiting a tree τ. A node ν at level k in τ
corresponds to a legal substitution θ for the variables x1,…, xk, considered in a given

sequence1. The leaves of τ at level k = n represent models of ϕ, and are solutions to the
matching problem.

Depending upon the strategy used for visiting τ, different algorithms show different search

complexity. A comparison between a backtrack deterministic and a stochastic search

algorithm has been presented by Botta, Giordana & Saitta [1999]. In the present paper we

have used the stochastic one, because it offers two advantages for our purposes: On the

one hand, it exhibits, in practice, an average complexity and a complexity variance lower

than the deterministic one. Moreover, the algorithm is well suited to perform the on-line

estimation of the search complexity that will be discussed in Section 6.



The search algorithm consists of the iteration of a one-step stochastic search function until

either a model is found or the whole tree has been explored unsuccessfully. Let MC( , n)

be this function:

MC (τ, n)

ν = ν0 , leaf = False
while (¬ leaf)  do

if  ν is a leaf at level k
then  leaf = True
else Identify the sons of ν that are Selectable, and put them into a set C(ν)

Extract a node ν’ from C(ν) with uniform probability

Set ν = ν’
endif

end
Label ν as closed

if the level of ν is k = n then  answer YES   else answer NO.

Function MC ( , n) implements a Monte Carlo algorithm [Brassard & Bratley, 1988],

because it always provides an answer, but the answer may be incorrect; MC explores one

path on the search tree, starting from the root ν0  and ending in a leaf ν, which may or may

not be a solution. The parameters τ and n of the function denote the search tree and the

number of variables (maximum depth of the tree), respectively. During the algorithm

execution, ν is associated to a sequence of nodes in the tree at increasing depth, and

corresponds to increasingly complete, legal partial assignments of values to the variables

x1, ..., xn. By iterating MC  on τ, more and more paths are explored.

Depending on the semantics of the criterion Selectable, different sets of son nodes of ν are

included in C(ν). In the simplest case, all nodes are always Selectable, and the stochastic

search is made with replacement: any leaf can be reached repeatedly. In this case the

complete exploration of τ may asymptotically require an infinite number of repetitions of

MC. If a search without replacement must be realized, the Selectable  predicate shall not

include in C(ν) any node that either is closed or has only closed sons. In this case, every

iteration of MC  ends in a different leaf of τ, and the whole tree is guaranteed to be



completely explored with at most the same complexity as an exhaustive, backtrack search

algorithm. The experiments reported in this paper have been done using the option of

search without replacement.

In order to locate a possible phase transition, we have explored points in the (m, L) plane,

for values of the number of variables n = 4, 6, 10, 12, 14, and cardinality of the relations

in the universe N = 50, 80, 100 and 130. For each pair (n, N) the complete mesh, covering

the region (10 ≤ L ≤50, n-1 ≤ m ≤ 50) in the plane (m, L), has been considered. For each

pair (m, L) belonging the mesh, 100 problems have been generated for a total of about

900,000 problems. The range of n has been chosen consistently with the employed in

Machine Learning, where only a few variables have been considered so far.

3.2. Probability of Solution

A 3-dimensional plot representing the probability of solution Psol as a function of m and L

is reported in Figure 1, for n = 10 and N=100. For each point in the mesh, Psol has been

computed as the fraction of problems with a solution among all the generated ones.

Figure 1  –  3-Dimensional plot of the probability of solution Psol for n = 10 and N = 100. Some
contour level plots, corresponding to Psol values in the range [0.85 - 0.15], have been projected onto
the plane (m,L).

The graph in Figure 1 has a noteworthy feature, namely its striking steepness. To the left

of the steep descent (YES-region), all problems had a solution, whereas, to the right (NO-

region) no solution could be found. Another interesting feature is the regularity of the



projection on the (m, L) plane of the contour level plot at Psol =  0.5, which is a very

smooth curve with a hyperbolic-like behavior. Figure 2(a) reports the projections of the

contour level plots at Psol =  0.5, for numbers of variables n = 6, 10 and 14. Figure 2(b)

reports an analogous set of contour plots for a constant number of variables n = 10, and for

cardinality of the relations N = 50, 80, 100 and 130.

m

L

m

L

(a)                                                                    (b)
Figure 2  –  Plots of the 0.5-level contour of the probability of solution Psol. (a) Graphs
corresponding to a number of variables n = 6, 10, and 14, with N=100. (b) Graphs corresponding to
relation cardinalities N = 50, 80, 100, and 130, with n=10.

3.3. Search Complexity

For a quantitative analysis of the complexity, a random search without replacement  was

performed by repeating the Monte Carlo algorithm described in Section 3.1. The cost C of

the search has been defined as the total number of explored nodes in the search tree, until

either a first solution is found, or unsatisfiability is proved. For unsatisfiable problems it is

necessary to explore the whole tree.

In Figure 3(a), the graph of the search complexity C, averaged over the 100 repetitions for

each point is reported, for n = 10 and N = 100. The shape and location of the highest

complexity region roughly matches the transition in probability reported in Figure 1, but it

is more irregular and also broader, like a “mountain chain”. Inside the “mountain”, there is

a large variability among different problems, witnessed by the variance plot, reported in

Figure 3(b). As one may expect, the highest variance values correspond to the highest

peaks. The maximum complexity contour coincides with the contour plot at Psol = 0.5, as it



has been found previously [Hogg et al. (Eds.), 1996; Hogg, Huberman & Williams,

1996].

SD(C)

Figure 3 –  (a) Plot of the complexity C of the Monte Carlo stochastic search algorithm MC  without
replacement,  for n = 10 and N = 100. Each point is the  average over 100 problem instances. (b) Plot
of the standard deviation of the complexity.

It is worth noticing that the complexity distributions for solvable and unsolvable problems

may be very different, as the unsolvable problems usually require much more search.

Approximations to the complexity probability distributions at the phase transition for

solvable and unsolvable CSPs are provided by Frost, Rish and Vila [1997]. They show

that a LogNormal distribution is a good approximation for unsolvable problems. For

solvable problems several known distributions (in particular, a Weibull distribution) were

tried with less success. However, from their reported experiments it clearly emerges that

the complexity distribution of both solvable and unsolvable problems has a long tail in the

region of extremely hard problem instances.



4. Two Real-World Case Studies

Up to now we have been concerned with an ensemble  of randomly generated matching

problems. One may wonder whether phase transitions do occur in real life, and whether

they have an impact on real-world learning problems.

Other authors have already shown that phase transitions do emerge in real-world problems

that cannot be supposed randomly generated. For instance, Gent and Walsh [1996] have

analyzed the Travelling Salesperson problem on a city graph containing the capitals of 48

contiguous states of the USA. A phase transition did occur, although at a smaller control

parameter value than for random graphs, whereas the cost of search was higher than

predicted. The same authors have also noticed a phase transition in graph coloring

problems derived from university exam time-tables [Gent & Walsh, 1995], whereas

Gomes and Selman [1997] found a phase transition in quasi-group completion.

Given a real-world problem, in order to interpret the emergence of an ensemble

phenomenon like a phase transition, one has to hypothesize that the problem is extracted

from a population of problems having the same values of the order parameters as the one

considered. Learning is an anomalous task, in this respect. In fact, the ensemble of

problems to consider for the emergence of phase transitions is generated internally by the

learner itself. In fact, the set of training examples is given, but the learner generates many

candidate hypotheses during search, which, paired with each example, generates a possibly

large number of matching problems. Given a specific learning task, including a set of

training examples, learners differ among each other for the way in which they generate

hypotheses, i.e., for the heuristics they use. Different heuristics might correspond to phase

transitions of different location and steepness, and the ensemble of matching problems they

give birth to may be more or less similar to the randomly generated set.

In this section we analyze two real-world learning problems using G-Net, a relational

learner based on an evolutionary search strategy guided by the Minimum Description

Length (MDL) [Anglano et al., 1997, 1998]. The datasets suitable for relational learning,

available in public repositories, are few and, in general, rather simple. In fact, the concept



descriptions that have been learned from them contain few literals and at most two or three

variables. The selected datasets are among the most complex we found, as for both of them

descriptions containing up to 4 variables and up to 6 binary relations have been discovered.

For the sake of reference, Figure 4 reports the same graph as Figure 3(a), but for n = 4. A

phase transition is evident, but the expected complexity in the mushy region is much lower.

Figure 4  – Complexity in the (m, L) plane for randomly generated matching problems with n = 4
and N = 100.

Comparing Figure 4 (n = 4) with Figure 3(a) (n = 10), we notice that the mushy region is

much wider for n = 4 than for n = 10, as predicted by the theory [Williams & Hogg,

1994]. Moreover, a 50-fold increase in the complexity is observed in correspondence to a

2.5 increase in the number of variables.

4.1. Mutagenesis Dataset

In this subsection we consider a learning problem used as a benchmark in the Machine

Learning community for testing induction algorithm in First Order Logic: the prediction of

mutagenicity in nitroaromatic chemical compounds on the basis of their structure

(Mutagenesis  dataset [Srinivasan, Muggleton & King, 1995]). Goal of our analysis is to

investigate where the classification rules learned by an inductive program lay in the plane

(m, L), with respect to the mushy region.



The Mutagenesis dataset2 consists of the chemical description of 188 molecules, classified

as “mutagenic” (125 positive examples) or “non mutagenic” (63 negative examples). The

goal of the learning task is to discover classification rules that separate the two classes.

Every compound is described as a set of atoms, each one characterized by an attribute

vector reporting the atom type, the atomic number, and the electrical charge, plus a set of

relations describing atomic links and substructures of the molecule, such as aromatic rings

and others. Moreover, every compound is characterized by two global numeric attributes:

lumo and logp, corresponding to the energy of the compound’s lowest unoccupied

molecular orbital, and the logarithm of the compound’s octanol/water partition coefficient,

respectively. An extensive experimentation with different sets of attributes is reported by

Srinivasan, Muggleton and King [1995].

The formulation of this learning problem is usually based upon predicates (constraints)

with arity greater than 2, and it is not immediately suitable for being analyzed with the

method of Section 3, limited to binary constraints3. However, the problem can be

reformulated using only unary and binary predicates, as it has been done by Anglano et al.

[1998]. Every molecule is considered as a different universe that must be classified as

either mutagenic or not. The hypothesis description language contains literals of the form

P(x,K) or Q(x,y), where variable x and y range on atoms, and K denotes a set of

constants, which are to be learned by the induction algorithm [Giordana et al., 1998]. In

Figure 5 an example of molecule is reported.

CH2

CH2

CH2

CH2
NO2

NO2

CH2

CH2

CH2

CH2
NO2

NO2

1,6,-dinitro-9,10,11,12,-tetrahydrobenzo[e]pyrene

Figure 5  –  Example of a nitroaromatic molecule’s structure, in the Mutagenesis dataset. Each
atom is denoted by a constant and each link defines a binary relation between two atoms.

Two sets of experiments have been performed with two different hypothesis description

languages ,  L 1  and L2 .  The language  L 1  i s analogous to the one used by other authors in



the past [Sebag & Rouveirol, 1997; Sebag, 1998], and contains three unary predicates,

namely, chrg(x,K), reporting the electrical charge, anm(x,K), reporting the atomic

number, and type(x,K), reporting the atomic type, plus one binary predicate, bound(x,y),

stating the existence of a link between two atoms. Moreover, the constraint x < y has been

imposed for every variable pair in order to avoid inefficiency, due to the test of symmetric

or reflexive relations entailed by the relation bound(x,y).

The language  L 2  contains all the predicates defined in L1  with the addition of lumo(x,K)

and logp(x,K) to the description of each atom. G-Net was forced to generate formulas with

exactly four variables, which is the maximum number used in previous studies. In both

experiments, G-Net run several times on the entire dataset of 188 examples, producing sets

of classification rules correctly covering from 90% to 95% of the examples, depending on

the control parameter setting4.

In the following we will analyze in detail two solutions, namely Φ = {ϕ1, ϕ2, ϕ3, ϕ4},

consisting of the four clauses reported in Figure 6, expressed in the language  L1, and Ψ =

{ψ1, ψ2, ψ3}, consisting of three clauses reported in Figure 7, expressed in language L 2 .

The same analysis has been performed on several other solutions generated by G-Net,

obtaining qualitatively equivalent results.

ϕ1:  anm(x3,[195, 22, 3, 27, 38, 40, 92]) ∧ ¬chrg(x3, [-0.2, 0.2])  ∧
  anm(x4,[195, 22, 3, 38, 40, 29, 92])  ∧ ¬type(x4, [O])  ∧ ¬chrg(x4, [-0.2])

 (x1 < x2) ∧ (x1 < x3) ∧ (x1 < x4) ∧ (x2 < x3) ∧ (x2 < x4)  ∧ (x3 < x4)  ∧ 
bound(x3, x 4) ⇒ mutagenic

ϕ 2:  ¬chrg(x1, [-0.2]) ∧ ¬type (x2, [N])  ∧ ¬anm(x3, [22]) ∧ ¬chrg(x3, [-0.6, -0.4])  ∧
¬type(x4, [H, N, O])  ∧ (x1 < x2) ∧ (x1< x3) ∧ (x1< x4) ∧ (x2 < x3)  ∧
bound(x2, x 3) ∧ (x2< x4) ∧ (x3 < x4) ∧ bound(x3,x4) ⇒ mutagenic

ϕ 3: anm(x1,[195, 38, 29, 92])  ∧ chrg(x1,[-0.8 ÷ 0.6])  ∧ ¬type(x3, [C])  ∧ ¬chrg(x3, [0.0])  ∧
anm(x4, [195, 22, 3, 27, 38, 29, 92])  ∧ ¬type(x4, [N]) ∧ (x1 < x2)  ∧ (x1 < x3) ∧
(x1 < x4) ∧ (x2 < x3) ∧ (x2 < x4)  ∧ (x3 < x4) ⇒ mutagenic

ϕ 4:  anm(x1,[195, 3, 27, 38, 40, 29, 92])  ∧ ¬type(x1, [H])  ∧ ¬chrg(x1, [-0.2])

¬anm(x3, [40]) ∧ anm(x4,[195, 22, 27, 38, 40, 29, 92])  ∧ ¬type(x4, [H, N])

(x1 < x2)  ∧ ¬bound(x1, x 2)  ∧ (x1 < x3)  ∧ (x1 < x4) ∧ (x2 < x3) ∧ (x2 < x4)  ∧
bound(x2, x 4)  ∧ (x3 < x4)   ⇒ mutagenic



Figure 6 –  Solution Φ, learned by G-Net using the language L 1 . Φ correctly classifies 94.1% of the
whole dataset.

All rules in the solutions Φ and Ψ have been analyzed according to the following

procedure: For each rule ϕi ∈ Φ or ψi ∈ Ψ, the two parameters p2 and ˆ p 
2,cr have been

computed for every example in the dataset, using expressions (2) and (3), respectively.

The reason for using p2 is twofold: on the one hand, m and n are constant for each formula,

whereas L and N change from one example to another; this variability is captured by p2,

which depends upon both N and L. Moreover, theoretical results from the literature

[Prosser, 1996] can be used directly.

For our analysis, every formula has been decomposed into subformulas with the following

structure:

                               γ(x1,x2) = α1(x1) ∧ α2(x2) ∧ β(x1,x2) 

Each subformula γ has been considered as a single constraint. The unary predicates occur

in each subformula containing as argument the same variable; they have the role of

reducing the number of bindings that may occur in the binary relations (namely, the N

value). As all variables in a clause are correlated at least through the predicate “<“, six

binary formulas have always been obtained. Then, p1 = 1 for every clause, whereas the

parameter ˆ p 
2,cr depends upon the number L of constants. L corresponds, in this case, to

the number of atoms in a molecule, and varies from one example to another. More

precisely, the minimum value for L in the dataset is Lmin = 18, the maximum LMax = 40 and

the average Lavg = 26.7.

ψ1: first-atom(x1) ∧ logp(x1,[0.0 ÷7.0])∧¬lumo(x1,[-1.0]) ∧ ¬logp(x2,[1.5, 7.0])∧¬lumo(x2, [-1.25]) ∧
∧ ¬logp(x3, [0.5, 1.0, 6.5]) ∧ lumo(x3,[-4.0 ÷-1.0]) ∧¬logp(x4, [2.5, 3.0]) ∧ (x1 < x2) ∧ (x1 < x3) ∧
(x1 < x4) ∧ (x2 < x3) ∧ (x2 < x4) ∧ (x3 < x4) ⇒ mutagenic

ψ 2: first-atom(x1) ∧ logp(x1,[0.0 ÷ 7.0]) ∧¬lumo(x1, [-1.0])∧¬logp(x2, [1.5])∧ ¬lumo(x2,[-1.25]) ∧
¬logp(x3, [0.5])∧ lumo(x3,[-1.5, -0.75]) ∧¬logp(x4, [2.5])∧ ¬lumo(x4, [-1.75]) ∧ (x1 < x2) ∧
 (x1 < x3) ∧ (x1 < x4) ∧ (x2 < x3) ∧ (x2 < x4)  ∧ (x3 < x4) ⇒ mutagenic

ψ 3: first-atom(x1) ∧  ¬lumo(x1,[-1.0]) ∧  ¬logp(x2, 2.0])  ∧
anm(x3,[195, 22, 3, 27, 38, 40, 29, 92]) ∧  ¬chrg(x3, [-0.20)])  ∧ ¬anm(x4, [22])  ∧
type(x4,[C, O, F]) ∧ ¬chrg(x4, [-0.4, 0.0])  ∧ (x1 < x2)  ∧ (x1 < x3) ∧ (x1 < x4) ∧

     (x2 < x3) ∧ (x2 < x4)  ∧ (x3 < x4) ⇒ mutagenic



Figure 7  – Solution Ψ  learned by G-Net using the language L2. Ψ  correctly classifies 90.7% of the
dataset.

Using expression (3), we obtain, for all the considered formulas:

ˆ p 2,cr  = 1 - L−2
3 (7)

The parameter p2, too, depends upon the formula ϕ and upon the example corresponding to

a universe U; in order to stress this dependency, we use the notation p2(ϕ,U). More

specifically, p2 has been computed according to the expression:

p2(ϕ,U) = 
1

6
p2( j ,U)

j =1

6

∑  = 1 - 
6

L2  N j
j=1

6

∑ (8)

In (8) γj is one of the binary subformulas obtained from ϕ; its associated relation has Nj

elements.

Let us consider now the classification rules Φ = {ϕ1, ϕ2, ϕ3, ϕ4}. For each rule ϕi we

computed the distribution of the variable (p2 - ˆ p 2,cr ) over all the examples in the dataset, for

the positive examples only, and for the examples (both positive and negative) “covered” by

the rule. The graphs of these distributions are reported in Figure 8. If the matching problem

corresponding to a < f ormula, example >  pair is exactly on the phase transition, the value

(p2 - ˆ p 
2,cr ) should be zero. Notice that the mushy region is quite large for n = 4, as we can

see from Figure 4; moreover, as neither L nor N are constant across relations and

examples, the broadening of the mushy region is enhanced. Figure 8 clearly shows that,

for formulas ϕ2,  ϕ3 and ϕ4, the p2 values are distributed substantially in the mushy region

for both positive and negative examples, whereas the matching problems involving ϕ1

seem to lay mostly in the YES-region.

The same analysis has been performed on solution Ψ, and the results are reported in Figure

9(a)-(c). Solution Ψ shows a different behavior. In fact, rules ψ1 and ψ2 exhibit three

separate peaks: one to the left, one inside, and one to the right of the mushy region,

respectively. Moreover, the peaks corresponding to the examples satisfying the clause

practically coincide with the left peak. A different behavior is exhibited by clause ψ3, which

shows only two peaks, the first one near the critical point ˆ p 
2,cr, and the second one clearly



to the right of the mushy region. This situation is confirmed by the presence, in the peak,

of both positive and negative instances.

(a)            (b)  

(c)         (d)  

Figure 8  – Distributions of the variable (p2 - ˆ p 2,cr ), reported on the x axis, for the Mutagenesis  dataset

and the formulas ϕ1 in (a), ϕ2 in (b), ϕ3 in (c), ϕ4 in (d). The y axis reports the number of examples (all,
positive ones, and those covered by the formula)  corresponding to a given value of (p2 - ˆ p 2,cr).

From Figures 8(a)-(d) we would predict that formula ϕ1 should be easy to match for all

the examples, whereas ϕ2 is likely to require a high computational cost to be matched,

because most examples lay in the critical region. For formulas ϕ3 and ϕ4, many

examples are close to the mushy region, but not exactly at the transition point, so that

an intermediate complexity should be expected.



In Table 1 the measured complexity for matching the formulas on the whole dataset is

reported.

(a)

(b)             (c)

Figure 9  – Distributions of the variable (p2 - ˆ p 2,cr ), reported on the x axis, for the Mutagenesis  dataset

and the formulas ψ1 in (a), ψ2 in (b), and ψ3 in (c). The y axis reports the number of instances (all,
positive ones, and those covered by the formula)  for each value of (p2 - ˆ p 2,cr).

Table 1
Average complexity for  matching the clauses in Φ and Ψ to all the examples of the dataset.

Φ Ψ

ϕ1 ϕ2 ϕ3 ϕ4 ψ1 ψ2 ψ3

Agv 26215.10   5168.06   1249.04    1496.85 1.33 1.43 7.06

Avgpos      22.46    207.74      23.89    1249.86 2.00 2.00 2.35

Avgneg 30418.86   8609.00   1463.44    1789.79 1.00 1.00 8.33



As we can see, the theory prediction for all the formulas is substantially verified, except

for ϕ1, for which both the location of the peak in Figure 4(a) and the complexity in Table 1

appear to be wrong. By looking more closely at formula ϕ1 in Figure 6, we suggest the

following explanation. Formula ϕ1 actually contains only two “meaningful” variables,

namely x3 and x4; then, n = 2 and c = 1. With these values, the estimated value ˆ p 
2,cr   is

actually a little larger than the one used in the figure. On the other hand, N is computed as

average of all the relations involved in the formula, so that the extension of “x1 < x 2” ,

which is much larger than the other ones, lets p2 appear much smaller than it must be. The

consequence is the apparent shift toward the left with respect to the phase transition. The

second aspect to be explained, namely the abnormally high complexity in Table 1, is also

related to the spurious presence of the variables x1 and x2. In fact, as the matcher starts

exactly with these two variables, which are not constrained, it generates large intermediate

tables, which are pruned only later. This effect would not have appeared by exploiting a

dynamic variable ordering during match. A set of focused experiments on ϕ1, reduced to

the subformula containing only x3 and x4,  has confirmed both explanations. Among the

seven formulas in Φ and Ψ, ϕ1 is the only one in which only two variables are effective. It

is sufficient that three among the four variables are chained by the predicate bound, which

is much more constraining than predicate “<”, to let the anomaly disappear.

An interesting observation can be done on Figure 9 ( a)-(c): The positive and negative

examples could be discriminated almost without performing the matching, but only by

setting a threshold on p2; by considering “positive” the examples on the left and “negative”

those on the right of the threshold, the classification reported in Table 2 is obtained. The

values of p2, and, hence, the threshold, can be computed from N and L only. Problems

that exhibit this kind of behavior are essentially “propositional”, even though formally

expressed in a FOL language. The very low matching complexity in Table 1 confirms this

assertion. The above property can be exploited to reduce the amount of matching to be

done during learning and knowledge use. In fact, by estimating the distributions of p2

values for the positive and negative training examples, a “best” threshold (or, better, a

“best margin”) can be learned.

Table 2



Classification rates obtained by setting a threshold between the peaks corresponding to low and
high p2 values, respectively, for the three formulae ψ1, ψ2, and ψ3. The values between brackets
correspond to the classification obtained by actually matching the formula on the dataset. Setting a
threshold on reduces the omission error, but increases the commission error.

Formula Threshold on p2 Positive Negative
ψ1 0.85 80 (80) 3 (1)
ψ2 0.85 60 (60) 4 (2)
ψ3 0.95 54 (40) 23 (0)

Moreover, by looking at the syntactic structure of the clauses reported in Ψ, (see Figure 7),

we notice that most literals occurring in them deal with the attributes lumo and logp, which

have the same value for all atoms, according to the way they have been defined. Therefore,

in spite of its structural aspect, ψ1 and ψ2 are easily translated into some propositional

assertions. Rule ψ3 shows a different structure, which contains also literals related to the

atomic charge and the atomic number. This is sufficient to require an actual matching. This

last situation occurs in all clauses of solution Φ.

4.2. Mechanical Troubleshooting Dataset

The second real-world case study is a problem that we approached some time ago in an

industrial environment. Goal of the application was the automatic acquisition of a

diagnostic knowledge base for mechanical troubleshooting at the chemical company

ENICHEM, in Ravenna (Italy). The knowledge base learned by the system ENIGMA

[Giordana et al., 1993] has been used for years by the company.

The basis for the troubleshooting was Mechanalysis, a methodology that exploits

mechanical vibrations, and requires a strong expertise to be applied. The diagnosed

apparatuses, ranging from small motor-pumps to very large turbo-alternators, shared the

common feature of possessing a rotating shaft. When some fault occurs in the machine,

anomalous vibrations appear. Mechanalysis basically performs a Fourier analysis of the

vibratory motions measured on the supports of the machine components. Each

mechanalysis is an example. The data are arranged into groups, corresponding to the

supports; each group contains the measures of frequency and velocity of the harmonic

components of the vibration for three spatial directions, as shown in Figure 10.



The troubleshooting task consists in discriminating among six classes (one “normal” and

five types of fault). G-Net found 13 conjunctive formulas distributed over the six classes5,

each one with at most four variables. One of these formulas is the following:

ϕ = vout(x1) ∧ sup(x1,[2, 3, 4]) ∧ ismax(x2)  ∧ ¬mis(x2,[0.0 - 3.0]) ∧ vin(x3)  ∧
rpm(x2,[2, 3, 4, 6, 7, 8]) ∧ ¬cpm(x3,[9.0]) ∧ ¬mis(x3,[1.0 - 2.0]) ∧

¬fea(x3,[ia, iv]) ∧ ¬rpm(x3,[5]) ∧ ¬sup(x4,[1, 3]) ∧ near(x1,x2,[1]) ∧ near(x1,x3,[1])

∧ ¬near(x1,x4,[¬1]) ∧ near(x2,x3,[0, 1])
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Figure 10 –  Structure of a mechanalysis table, corresponding to a single example. (a) Scheme of a
motor-pump. The vibrations on the four supports A, B, C and D are measured. (b) For each support (A,
B, C and D) and for each triple of “Total Vibration” measurements, several groups of three rows, such
as the ones reported under “Fourier Analysis”, may be present, as vibrations with different frequencies
are measured. Globally, a mechanalysis table may contain 20 through 60 items, an item being an entry
in the mechanalysis table, i.e., a 4-tuple  <support, direction, frequency, velocity> for each vibration
harmonic.

The meaning of the predicates in ϕ is not important here, and can be found in previous

works [Giordana et al., 1993]. The relevant aspect, in this paper, is the syntactic structure

of ϕ. In Figure 11 and 12 the results of the same analysis that was performed on the



Mutagenesis dataset are reported. More specifically, Figure 11 reports the distribution of

the variable (p2 - ˆ p 
2,cr ) for the matching problems obtained by pairing each of the 13

formulas with all the examples in the dataset (164 examples), for a total of 2132 matching

problems. In Figure 12, on the contrary, only matching problems obtained by pairing each

formula with the positive examples of its class are considered.

Figure 11 –  Distribution of the variable (p2 - ˆ p 2,cr  ) for the matching problems obtained by pairing

each of the 13 formulas (disjuncts) in the solution with all the examples in the dataset. Each graph
corresponds to one of the 13 formulas.

As we can see from Figure 11, most problems lay inside the mushy region, except for one

of the formulas. A closer analysis of this formula showed that, contrarily to the case of

Figure 4(a), the peak to the left of the phase transition actually corresponds to an “easy”

problem, with a low matching complexity and a high coverage of both positive and

negative examples.



Figure 12  –  Distribution of the variable (p2 - ˆ p 2,cr ) obtained by matching each disjunct

corresponding to a given class with the positive examples of the same class, covered by it. Hence, all
the considered problems are solvable.

In the two real-world problems we considered, the cardinality N of the relations

corresponding to the basic predicates was not constant, as assumed by the random

generation model. Then, we have considered the model prediction for a range of N values

corresponding to the actual cardinalities occurring in the two datasets. The plot in Figure 13

is analogous to the one reported in Figure 2(b), but for n = 4 variables. Again, N has been

set to 50, 80, 100 and 130, respectively.

Figure 13  – Location of the line Psol = 0.5 for N = 50, 80, 100, 130, and n = 4 variables.  The
symbols ‘+’ and ‘*’ locate the positions in the plane (m, L) of the “average” matching problem found
in the Mutagenesis and Mechanical Troubleshooting datasets, respectively.



In Figure 13, we have located the “average” solutions found by G-Net (averaged over all

pairs <learned clause – example >), in the plane (m, L). As it appears from the figure,

these solutions are located on the respective phase transition curves.

5. Relational Learners Work in the Mushy Region

The experiments with real datasets support the claim that phase transitions are relevant to

relational learning. In fact, most concept definitions acquired by G-Net have been found in

the high complexity region of the (m, L) plane. Then, the inductive search must have

occurred mostly in this region. Similar results have been presented by Botta et al. [1999],

who have shown, using a large set of artificial problems, that also FOIL [Quinlan, 1990]

systematically tends to generate concept descriptions located in the mushy region. In this

section we will discuss this finding and its implication for learning.

As shown in the previous sections, matching problems in the NO-region are almost always

unsolvable, but exceptionally some of them are solvable. On the contrary, matching

problems in the YES-region are usually solvable, but exceptionally some is unsolvable. In

both NO- and YES-region the matching complexity is usually low.

Let us now consider two examples of a concept ω, ep and en, one positive and one

negative. Let L0 be the average number of constants occurring in the two examples. We

want to learn a concept definition ψ that covers ep and does not cover en. Given a concept

description language L , the hypothesis space defined by L  generates a set of matching

problems corresponding to points on the horizontal line L = L0 in the plane (m, L). This

line intersects the mushy region. The results from the random problem generation tell us

that any hypothesis for ω defining a matching problem in the NO-region has very little

chance of being verified by ep and en. Then, it would be easy to exclude en, but finding a

definition for ω that covers ep may turn out to be a very hard search problem, indeed. On

the contrary, hypotheses generating matching problems in the YES-region tend to verify

both ep and en. Then, it is easy to cover ep but very difficult to exclude e n. On the other

hand, a hypothesis defining a matching problem on the phase transition has about 50%

chance of verifying any instance, so that it should be easier to discriminate between ep and

en.



In order to test the above conjecture, we have built up two instances, e1 and e2, each one

with L = 16 constants. Moreover, 50 binary predicates have been defined, corresponding

to relations containing N = 100 tuples. Finally, hypotheses with n = 4 variables have been

created according to the procedure used in Section 3. More precisely, for each value of m

∈ [3, 45], a thousand formulas have been generated, and 86,000 matching problems have

been defined by pairing each formula with both e1 and e2. For each m value, the proportion

of formulas covering exactly one among e1 and e2 (discriminant formulas) has been

computed, and reported in Figure 14. For the sake of reference, also the graph of the

probability of solution Psol is reported.
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Figure 14  – Proportion of

hypotheses discriminating among two

concept instances. For each m value,

1000 formulas have been generated,

corresponding to 2,000 matching

problems. The largest fraction of

discriminant hypotheses corresponds

to 50% chance of a solution existing.

From the graph, it clearly appears that the proportion of discriminant formulas reaches

its maximum when Psol = 0.5, at the phase transition. Therefore, independently of the

specific distribution of the concept instances, that portion of the hypothesis space that

defines matching problems inside the mushy region has a much higher density of

acceptable concept definitions than the other ones. In conclusion, we formulate the

conjecture that any data-driven induction algorithm will most likely search in this

region. The described behavior is reinforced by a search heuristic biased toward

simplicity; in fact, a learner guided by such a heuristic will tend to focus the search

where the hypotheses are discriminant and, at the same time, as simple as possible,

i.e., in the mushy region. An extensive experimentation performed with FOIL

[Quinlan, 1990] confirms the conjecture [Botta et al., 1999]. To further test the above

conjecture, we have analyzed the time evolution of the composition of the hypotheses

population manipulated by the evolutionary learner G-Net, used for the case-studies

reported in Section 4. Given a set of examples, Figure 15(a) shows the distribution of

the variable (p2 – ˆ p 2,cr) for matching problems obtained by pairing each example with

all the hypotheses belonging to an initial (almost random) population6, and the same

distribution for the population reached after 10,000 hypothesis generation steps.

Clearly, as time goes on, the hypotheses evolved by G-Net tend to accumulate around

the phase transition point, where p2 = ˆ p 2,cr. Figure 15(b) reports the corresponding

measured matching complexity, averaged over all problems corresponding to the same

(p2 – ˆ p 2,cr) value.
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Figure 15 - Evolution of the population of inductive hypotheses manipulated by G-Net. (a)
Distribution of the (p2 – ˆ p 2,cr) values corresponding to hypotheses belonging to an initial

population (continuous line), and to the population after 10,000 hypothesis generation steps
(dashed line). The concentration of individuals towards the phase transition clearly emerges. (b)
Distribution of the matching complexity for the same populations as in (a). A remarkable increase
in the matching complexity appears.

The computational problems due to the matching complexity were known since long; in

fact, relational learners usually set strong biases on the hypothesis description language

to control this complexity [Kietz & Wrobel, 1992; Kietz & Morik, 1994; Adé, De Raedt

& Bruynooghe, 1995; desJardins & Gordon (Eds.), 1995]. For instance, two well

investigated biases in ILP [Muggleton, 1992] are determinacy and depth [Muggleton &



Feng, 1992]. A literal P is said determinate with respect to a formula ϕ and a universe

U, if the formula ϕ ∧ P has at most the same number of models in U as ϕ. When

hypotheses are generated incrementally by adding literals one at a time, as in FOIL,

determinacy may be required for each newly added literal. The depth of a variable x is

the number of previous variables, occurring inside the ordered body of a clause, on

which the binding of x depends. Determinacy and depth can be combined, to define ij-

determinacy  [Muggleton & Feng, 1992]. Imposing determinacy limits both the

complexity of the hypothesis verification process, and the size of the hypothesis space,

because many hypotheses are excluded, depending on  the structure of the examples in

the learning set.

Some formal results, related to various ILP biases, have been obtained within the PAC-

learnability framework [Valiant, 1984]. For instance,   D
( 
z eroski , Muggleton, and

Russell [1992] showed that non-recursive, constant-depth, determinate clauses are

PAC-learnable. This result was extended by Cohen [1993] to linear, closed, recursive,

constant-depth determinate clauses. Also, ij-clausal theories were proved to be PAC-

learnable by De Raedt and   D
( 
z eroski  [1994]. A review of decidability and complexity

results related to ILP is provided by Kietz and   D
( 
z eroski  [1994].

The problem of taming the complexity of relational learning has also been handled in

approaches different from ILP. For instance, the system G-Net [Anglano et al., 1997,

1998] exploits a template, which defines the syntactically most complex formula

allowed in the hypothesis language. The idea of a template is also employed in the

system MOBAL [Morik, 1991]. Zucker [1996] introduces a hierarchy of nested

languages with increasing complexity, and tries to learn starting from the simplest one.

A different approach, based on stochastic sampling with polynomial complexity, is

proposed by Sebag and Rouveirol [1997, 1999], who trade precision for complexity

reduction. PAC-learnability, as well as classical complexity theory, is based on a

worst-case analysis of a task. As we have already shown in the previous sections, not

every single problem instance shows the exponential complexity characterizing the

class. Requiring polynomial complexity on a whole problem class, as in the PAC-

learnability framework, has the consequence that many hypothesis description

languages must be excluded from consideration, potentially hindering interesting

hypotheses to be discovered. For instance, if all the literals in a clause must be

determinate, the branching factor of any node in the search tree becomes upper-

bounded by 1. This constraint may be too strong, and the hypothesis space may

become quickly empty with the increase of the concept instance complexity.



For the above reasons, we propose a different approach. Instead of uniformly limiting

the expressiveness of the hypothesis description language, we only exclude from

consideration those hypotheses that show an excessive matching complexity, according

to an early on-line estimation. The approach, introduced in the next section, share the

basic ideas with the system STILL [Sebag & Rouveirol, 1997, 1999], which already

proved to be successful in learning relational concepts. Actually, STILL’s sampling-

based heuristics is shown to be a special case of the method introduced in this paper.

6. On-Line Complexity Estimation

From the analysis we presented in the previous section, it appears that hypotheses built

up by a learner in FOL will lay in the mushy region and may be either simple to verify

or very complex. In fact, matching problems inside the phase transition show a high

variability with respect to the search complexity, and apparently similar ground

instances and formulas may happen to be easy to match or intractable. This

consideration suggested us to complement the static analysis based on an estimate of

p2,cr with a new procedure for recognizing on-line tractable matching problems. The

basic idea is to use the stochastic search algorithm described in Section 3.1 to

dynamically monitor some useful parameters.

6.1. Search with Replacement

As discussed in Section 3.1, algorithm MC can repeatedly run both with and without

replacement. Even though the actual search is performed without replacement, we start

our analysis with a search with replacement, which can be precisely dealt with by the

theory of Monte Carlo algorithms. The entities that we are interested in are two

probabilities, namely:

• An estimate ˆ P err of the probability of error Perr on solvable problems, i.e., the

probability that the algorithm MC( , n) returns NO, in a single run, when there are

indeed solutions to the problem.

• An exact  upper bound, PMax of the probability of success Psucc = 1 - Perr.

When a matching problem has no solution, MC is always correct, because it will

always stop with NO. Moreover, algorithm MC  is consistent, because it never returns

two different correct solutions to a same problem instance, and also YES-biased,

because the answer y = YES is always correct, whereas the answer y = NO may be

wrong. Finally, MC  is (1 - P err)-correct, as (1 - P err) is the probability of obtaining a

correct answer on any solvable instance [Brassard & Bratley, 1988]. Consistent Monte



Carlo algorithms have the property that their probability of giving a correct answer

increases by accepting as answer the most frequent output in repeated runs, provided

that P err < 1/2. However, for biased consistent algorithms, the same effect can be

obtained even though P err ≥ 1/2, provided that P err < 1. In particular, if MC  is a

consistent, (1 - P err)-correct and YES-biased Monte Carlo algorithm, the algorithm

obtained by letting MC  run independently r times on the same instance is still a

consistent and YES-biased Monte Carlo algorithm, and, in addition, it is (1-Perr
r )-

correct.

Let MC  run a generic number r of times on the same instance, and that a sequence of r

NO is returned. The greater r, the more willing we would be to conclude that the

problem under analysis has no solution. Actually, by exploiting the above mentioned

property of Monte Carlo algorithms, we have a probability Perr
r  that the answer is

actually wrong, i.e., that Nsol ≥ 1. In fact, under the hypothesis that Nsol ≥ 1, a sequence

of r NO has a probability to occur as low as Perr
r

. We may conclude that, the longer the

sequence of NO, the higher is the likelihood that the probability of success Psuc is low.

More precisely,  when Perr
r

 ≤ ε, we have:

ˆ P suc  = 1 - εr (9)

By choosing ε = 0.0001, expression (9) gives ˆ P suc  = 0.01 for R = 922.

6.2. Sampling without Replacement

By sampling with replacement, expression (9) provides the estimate ˆ P succ , but the

sampling process may require a number of trials approaching infinity to find a solution,

when the true value Psuc is greater than 0 but very small. Hence, we prefer to use the

MC  version without replacement. In this case, the search process always terminates in

a finite number of steps. Actually, sampling with and without replacement show

significant differences in the estimate only for values of Psuc close to zero

(experimentally, Psuc < 0.2). In the case of no replacement, estimate (9) is a pessimistic

one, because, at each subsequent trial, the probability of finding a solution, given that

there is one, increases; then, the actual probability of success should have been lower

than the one provided by (9).



Let us now consider the set of leaves of τ, i.e., τ’s frontier. Let Φk be the set of leaves

at level k in the tree, and let mk+1(νk) be νk’s number of sons. To each leaf νk (of level

k), a polychotomic fraction  q(νk) is associated [Watanabe, 1969]:

q(νk) = 
1

m j(ν j−1)j=1

k

∏ (11)

The value q(νk) is the product of the number of sons of each node encountered along

the path from the root to the node itself. By referring to the algorithm in Section 3.1, mj

is the cardinality of the set Cj. It is immediate to see [Watanabe, 1969] that:

q(νk)
νk ∈Φ k

∑
k=1

n

∑  = 1 (12)

Expression (12) states that the sum of the polychotomic fractions over the frontier of τ

is normalized to 1. If the frontier changes, the q’s become automatically renormalized to

1. The value q(νk) represents the actual probability that MC  outputs leaf νk as a result

in a single run. When the set Σ of solutions is not empty, we have:

Psuc = q(νn
νn ∈Σ
∑ ) (13)

When sampling is performed with replacement, the values of the q’s do not change

from one trial to another, and so Psuc does not change as well, whereas the q’s do

change in the case of sampling without replacement. If we delete from the tree the

unsuccessful leaves already explored, the stochastic searcher may have to explore the

whole tree before deciding that there are no solutions. In sampling without replacement,

the probability Psuc of finding a solution in any single trial may vary from one run to

another: specifically, it is monotonically non decreasing. Notice that Psuc does not

necessarily increases in every run. In fact, let νk be a leaf of level k  (1 ≤ k ≤ n ) in

which MC  stops. Let q(νk) be its polycothomic fraction. If νk is removed from the

search tree, its polychotomic fraction (and, in this case, its probability of being reached

again) becomes zero. Then, the mk value associated with its father νk-1 decreases by 1,

and the polychotomic fractions of the nodes that have νk-1 as an ancestor increases. If

the nodes corresponding to solutions are not descendants of νk-1, their q’s values do not

change. As a consequence, the probability of finding a solution may not increase at

each run; however, it is likely to increase on the average over several runs.



The above considerations can be used to upper-bound Psuc. In fact, before starting any

exploration, we do not know anything about the search tree. For instance, we do not

know whether the leaves are solutions or not; then we may suppose to be in the

optimistic case in which all the leaves are at level n, and so, all are solutions. Then, in

the complete ignorance, we may assume Φk = 0 for each k ≠ n and Psuc = q(νn)
νn ∈ Φ n

∑  =

1, i.e., all leaves are solutions, and MC will certainly find one at the first run. When we

perform a first trial, which ends in a non-solution leaf ν(1), we know with certainty that

the probability Psuc was actually no greater than [1 - q(ν(1))]. By performing other

unsuccessful trials, each time the upper bound of Psuc decreases by the polychotomic

fraction of the last found leaf ν(r). After R trials:

Psuc  ≤ 1 - q(ν (r) )
r=1

R

∑ =
def

 PMax (14)

Theoretically computing a reasonable approximation of PMax is hard. Then, we evaluate

PMax on-line, deciding, after R unsuccessful trials, whether we are willing to accept the

NO answer as the correct one, with a preset probability of being mistaken, or we want

to continue the search.

6.3 Experimental Evaluation

In the following, let us define P = 1 − εR . Then:

P ≈ Psuc  ≤ PMax (15)

We may notice that P only depends upon ε and R, whereas PMax depends upon the

structure of the particular search tree. By increasing R, PMax should converge to P. In

order to show how P and PMax can be used, we performed an experimental analysis on

a subset of the formulas used in Section 3. The results are exemplified in Figure 16,

which describes typical time evolutions of PMax and P for a formula ϕ with 10 variables

and 19 literals, selected as representative of the set. From Figures 2 and 3, we see that a

formula with n = 10 and m = 19 undergoes a phase transition for a value of L between

20 and 25, when N = 100. For L < 20 the matching problems are almost always

solvable and easy, and for L > 25 the matching problems are almost always unsolvable

and easy.

From Figure 16 we observe that the behavior of PMax is very different in the three

regions, with respect to its derivative: when the problems are solvable, the rate of



descent of PMax is low, but the curve stops early because a solution is easily found.

When problems are unsolvable, the rate of descent of PMax is high, and again the search

stops quickly, because it is easy to prove unsolvability (the search tree is small).

Finally, inside the phase transition region, PMax decreases slowly and we may need

excessive computational resources to arrive at a conclusion. It may be advisable, in this

case, to give up searching, and to accept a NO answer as the correct one. The graphs of

Figure 16 confirm the results reported by Walsh [1998], who showed that difficult

problems at the phase transition remain difficult as search proceeds.

As the rate of decay is similar on the left of and inside the mushy region at the

beginning of the search, it may not be possible to very early predict which of the two

cases actually is the current one, on the basis of PMax only. We combine then the

information from both PMax and P.

When PMax  decreases slowly and P predicts a very low probability of success, we can

assume that the matching problem we are handling is hard, probably close to the phase

transition. To test this hypothesis, we have performed a set of experiments, whose

results are reported in Figure 17. We have generated 25,000 matching problems, with n

= 10, m = 19, and L varying between 11 and 50, in order to cross the mushy region in

the maximum complexity zone. For each problem, MC  ran repeatedly, without

replacement, until either a solution was found or the whole tree was visited without

finding a solution. Let C be the total number of nodes visited by MC  during the search

on a given problem. C is the complexity of the search, and is reported on the horizontal

axis of Figure 17.

Figure 16  – Temporal evolution of P and PMax in a formula ϕ with 10 variables, and 19 binary

predicates, for different values of L. By choosing ε = 0.0001, ˆ P suc  
reaches  0.01 for R = 922.



Let R denote the value of r at which we suspend the search. For all the matching

problems still undecided at R, let us measure the corresponding PMax(R), and report this

value on the vertical axis of Figure 17. Then, each point (Ci, PMax,i )  corresponds to a

particular problem πi, which has the following characteristics:

(a) πi  is still undecided  after R trials with MC.

(b) The estimated probability of error, if we accept a NO answer, is less than ε, and the

probability of success in any single trial should not have exceeded 0.01.

(c) The probability Psuc is exactly upper bounded by PMax,i .

(d) πi required Ci  steps to arrive to a precise determination of its solvability.

Notice that problems that were decided at some r < R do not appear in the figure, and

then, only the problems inside the complexity peak have been considered. If another

snapshot would be taken at a greater R, a downward shift of the points would be

observed in Figure 17; moreover, some points could disappear, because they will get a

precise answer.

C

PMax

Figure 17  – PMax values measured at  P = 0.01 (R = 922 trials, with ε = 0.0001) versus the total
number C of visited nodes. Symbols “+” and  “.” denote solvable and unsolvable matching
problems, respectively.



Therefore, given two thresholds, θ1 on P and θ2 on PMax, respectively, a simple

criterion for deciding whether to stop the matching process at r = R can be captured by

the following rule:

               “If P ≤ θ1 and PMax ≥ θ2 , Then stop the matching process” (16)

The effect of rule (16) can be visualized in Figure 17 by drawing a horizontal line

corresponding to a threshold θ2. For all the problems corresponding to points above the

line the matching process will be interrupted when P = 0.01. As we can see, the

maximum measured complexity increases very quickly when Pmax  ≥  0.5.

The results of a more accurate analysis of the effects of θ2  on the performances of the

stochastic matching are reported in Table 3, where the upper part refers to the problems

in the range 15 ≤ L  ≤ 40 (i.e., the whole peak), whereas the lower part refers to

problems located very close to the critical point (17 ≤ L  ≤ 24). The second column

contains the threshold value for θ2, corresponding to the estimated probability of

success ˆ P succ = P = 0.01 with a reliability (1 - ε) = 0.9999. We recall that all the

matching processes for which PMax ≥ θ2  at r = R will be stopped. What to do with them

is up to the user: they may be declared “undecided”, increasing the number the cases in

which the resulting classifier does not give an answer, or they may be declared

unsatisfiable, possibly increasing the number of errors on satisfiable examples. Setting

θ2 = 0 means that every matching process stops as soon as P reaches the value 0.01.

Setting θ2 = 1 means that no matching process is stopped.

The third column contains the average complexity evaluated on all the problems,

including the ones that terminate before reaching the step R = 922, and the ones which

have been interrupted. The fourth column contains the computational cost, averaged on

all matching problems, which has been wasted for the problems interrupted after

reaching P = θ1. The fifth column contains the percentage of problems which have not

been interrupted, i.e., which have been proved solvable or unsolvable. The sixth and

eighth columns contain the maximum experimental complexity, measured separately for

solvable and unsolvable problems. This maximum complexity corresponds to the

abscissa of the rightmost point (for solvable and unsolvable instances, separately)

occurring under the horizontal line PMax = θ2. The seventh and ninth columns contain

the average global complexity required for 1 ≤ r ≤ R, for solvable and unsolvable



problems, respectively. Finally, the tenth (eleventh) column contains the fraction of

solvable (unsolvable) problems among the ones that would run to completion if the

threshold θ2 is chosen when P = 0.01. This fraction can be evaluated by the number of

solvable (unsolvable) problems whose corresponding points lay under the line PMax

= θ2  in Figure 17, augmented by the number of solvable (unsolvable) problems that

stopped before R steps, divided by the total number of solvable (unsolvable) problems.

We can see from Table 3 that, by choosing θ2 = 0.5, the maximum complexity for

running to completion about 86% of the problems (Table 3, col. 5) is less than 1/10 of

the maximum complexity over all solvable problems (Table 3, col. 6), and less than

1/20 over all unsolvable problems (Table 3, col. 8). This means that all the extremely

hard instances are cut away. Remarkable reductions are also obtained for the average

complexity (Table 3, col. 7 and 9). An optimal combination of the threshold values on

P and PMax could be experimentally  found.

Table 3

Maximum and average matching complexity, in the region of the phase transition
induced by the number L of constants in the universe. The results are reported
separately for solvable (S) and unsolvable (U) problem instances. The stop of the
matching process has been decided when P = 0.01 with reliability 1- ε =  0.9999.

1 2 3 4 5 6 7 8 9 10 11

Range
 of L

θ2 CAvg CWst % Decided
problems

C(S)
Max

CAvg
(S) CMax

( U) CAvg
( U)    S U

0.0   2335.9 1607.8 0.651     5439  704.2     4579  1353.6 0.841 0.577

0.3   2687.2  968.8 0.789   19235  926.0    27008  2737.2 0.872 0.757

[15, 40] 0.4   3007.5  809.9 0.824   24135 1080.7    36399  3355.2 0.889 0.798

0.5   3471.3  661.3 0.856   35863 1320.3    52417  4115.1 0.910 0.835

0.6   4152.4  516.3 0.888   74924 1589.7    90145  5141.8 0.932 0.870

1.0 15975.5     0.0 1.000 340969 3682.7 1170012 20774.3 1.000 1.000

0.0   2573.2 1933.8 0.580     5439   998.9      4579  1903.2 0.782 0.192

0.3   3102.6 1283.8 0.721   19235 1299.8    27008  6200.9 0.823 0.525

[17, 25] 0.4   3524.7 1082.2 0.765   24135 1514.5    36399  7692.8 0.847 0.607

0.5   4088.5   877.0 0.809   35863 1845.1    52417  9224.0 0.877 0.680

0.6   4606.3   722.6 0.843   74924 2212.1    90145 10391.6 0.906 0.721

1.0 29354.0      0.0 1.000 340969 5040.5 1170012 76132.5 1.000 1.000

A simpler rule to limit the complexity would be to stop the matching process as soon as

the probability P reaches θ1. Threshold θ1 can be lowered in order to allow a sufficient

exploration of the solution space. Table 4 reports the complexity values and the fraction



of perfectly answered problems for different stopping values of θ1, ranging from 0.01

to 0.001. In Table 4 the columns have the same meaning as in Table 3. By comparing

Table 3 and Table 4, it appears that, for comparable average complexities, the fraction

of problems precisely answered using rule (16) is significantly higher. For instance, by

considering a threshold θ2 = 0.5, we obtain an average complexity of 3471 steps (Table

3, col. 2), which is a little less than the average complexity found by setting θ1 = 0.005

(Table 4, col. 2). Nevertheless, the fraction of problems run to completion is about

86% in the first case (Table 4, col. 5), while it is only 77% in the second one (Table 4,

col. 5). As an alternative, a percentage of 87% of completed problems can be obtained

by setting θ1 = 0.002 (Table 4, col. 5), but in this case the average complexity would

be more than 5783 steps (Table 4, col. 2).

Table 4

Maximum and average matching complexity, in the region of the phase transition induced by the
number L of constants in the universe. The results are reported separately for solvable (S) and
unsolvable (U) problem instances. The matching process is halted when P ≤ θ1, with 1-ε =
0.9999.

1 2 3 4 5 6 7 8 9 10 11

Range of θ1 CAvg CWstd
% Decided
problems

CMax
(S) CAvg

(S) CMax
(U) CAvg

( U)    S U

0.010 2335.9 1607.8 0.651 5439 704.2 4579 1353.6 0.841 0.577

0.005 3503.6 2111.3 0.771 10066 1178.1 10495 2122.2 0.920 0.712

[15, 40] 0.003 4647.7 2570.7 0.832 17021 1578.9 19621 2932.2 0.956 0.783

0.002 5783.0 3055.6 0.867 24135 1835.4 26419 3746.1 0.970 0.826

0.0015 6710.0 3321.9 0.891 31106 2017.0 32369 4592.4 0.977 0.858

0.001 8155.3 3691.0 0.919 51783 2371.1 49534 5925.8 0.986 0.893

0.010 2573.2 1933.8 0.580 5439 998.9 4579 1903.1 0.782 0.192

0.005 4112.8 2537.8 0.724 10066 1633.5 10495 4442.3 0.889 0.407

[17, 24] 0.003 5403.3 2698.0 0.824 17021 2174.5 19621 6624.6 0.940 0.600

0.002 6611.0 3319.8 0.855 24135 2522.6 26419 7575.3 0.959 0.655

0.0015 7666.7 3953.8 0.871 31106 2769.8 31800 8339.0 0.968 0.682

0.001 9503.7 5006.9 0.890 51783 3238.1 49369 9812.8 0.981 0.717

Considering the lower parts of Table 3 and 4, we observe that getting closer to the

critical point, the difference between the two stopping rules increases. Finally,

considering the last two columns in Table 3 and 4, we see that the fraction of problems

run to completion has a different composition in the two cases. More specifically, using

rule (16) we have a greater percentage of problems proved unsolvable (Table 3, col.

11, and Table 4, col. 11) and a smaller percentage of problem proved solvable (Table

3, col. 10, and Table 4, col. 10). The reason can be understood by observing that the



fraction of problems interrupted by setting a threshold on θ1 is represented by the

points in Figure 17 lying to the right of a vertical line corresponding to the maximum

complexity found before reaching θ1 (Table 4, col. 6 and 8). The vertical dotted line in

Figure 17 corresponds to θ1 = 0.005.

Then, rule (16) offers a good criterion for avoiding to be trapped in an excessively

costly matching process inside the mushy region. An obvious way of using rule (16) in

a learning algorithm consists in rejecting all the inductive hypotheses that are not

provable either true or false within assigned number of steps. This heuristics is easy to

be included in any learning algorithm.

Furthermore, still weaker biases are possible. For instance, we notice from Figure 17

and Tables 3 and 4 that negative examples usually exhibit higher complexity than

positive ones. This means that, if we consider unsatisfiable a hypothesis stopped by

rule (16) , we may make a mistake. However, if the number of trials is large enough,

the proportion of these mistakes may be of the same order as magnitude of the error due

to noise in typical real-world applications.

This last observation is exploited by the system STILL [Sebag & Rouveirol, 1997,

1999]. STILL makes use of a stop criterion based on the only estimate of the error

probability P. When P decreases below a given threshold the matching stops; this

criterion is equivalent to set θ2 = 0 in rule (16). With respect to STILL’s criterion, rule

(16) with θ2 > 0 allows a smaller error rate to be achieved for the same average

complexity, or, alternatively, the same precision to be reached by paying a smaller

computational cost.

Other proposals of using stochastic sampling for estimating parameters relevant to

search have been presented by Frost, Rish and Vila [1997], Huberman, Lukose and

Hogg [1997], Bailleux and Chabrier [1996], and Bailleux [1998].

7. Conclusions

The recent literature in Machine Learning and Data Mining shows a growing interest

towards applications of relational learning to knowledge extraction in domains

characterized by highly structured data, such as Chemistry or Molecular Biology. If, on

the one hand, description languages based on First Order Logics offer an important

improvement to deal with structured data, on the other hand, the high complexity



hidden in the hypothesis verification step challenges the chances of success of relational

learning on large scale applications. In fact, relational learners have been proved

successful, so far, only on simple tasks, in which hypotheses had to obey to strong

syntactic and/or semantic biases.

In this paper, we tried to trace back at least one of the sources of the complexity in

relational learning, namely hypothesis verification. The emerging findings suggest that

there may be severe scalability problems in inductive approaches to relational learning,

as soon as applications requiring descriptions with many variables are faced. New

heuristics should be devised, capable of “distracting” the learner from the attraction of

the phase transition. A possible way out may be to use domain specific knowledge.

The method proposed in Section 6 does not offer a way of keeping the learner away

from the phase transition region. However, it does offer the benefit of reducing the

amount of likely useless search, without constraining too much the hypothesis space.

The same is true for other approaches to improve efficiency in FOL learning, such as

caching previous expensive computations or memorizing partial evaluations, as

proposed, for instance, by Pompe [1996], or implemented in the P-Progol version of

Progol [Muggleton, 1995]).

The empirical results reported both in this paper and by other authors [Sebag, 1997]

suggest that stochastic sampling can be a viable approach.
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1 Different ordering of the variables, both static and dynamic, have been tried, without noticing

changes in the emergence of the phase transition.
2   The dataset used here is the “regression friendly” one: it includes those examples that can be

modeled with a good approximation by linear regression.
3 A discussion on the relations between binary and non binary CSPs is provided by Bacchus and

van Beek [1998].
4 In this experiments the whole dataset has been used, because we are not interested in evaluating

the predictive power of the learned knowledge, but only the impact of the matching’s
complexity on learning.

5 In the real-world application, the system ENIGMA was used [Giordana et al., 1993], but now
we re-analyzed the dataset with the new system G-Net. In fact, the knowledge base used in-field
was obtained with an integration of SBL and EBL, and was a structured knowledge base with
chains of disjunctive rules, instead of flat ones. In the cited paper, a complete description of the
application can be found.

6 G-Net uses a special Seeding  operator to generate the initial population of hypotheses. Details
of the procedure can be found in [Anglano et al., 1998]


