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Abstract

One of the major limitations of relational learning is due to the complexity of verifying
hypotheses on examples. In this paper we investigate thistask in light of recent published
results, which show that many hard problems exhibit a narrow “phase transition” with
respect to some order parameter, coupled with a large increase in computationa
complexity.

First we show that matching on ground instances a class of artificially generated Horn
clauses presents atypical phase transition in solvability with respect to both the number of
literalsin the clause and the number of constants occurring in the instance to match. Then,
we demonstrate that phase transitions al so appear in real-world learning problems, and that
learners tend to generate inductive hypotheses lying exactly on the phase transition.

On the other hand, an extensive experimentation revealed that not every matching problem
inside the phase transition region is intractable; but, unfortunately, the identification of the
feasible ones cannot be done on the basis of a static analysis of the order parameters only.
To face this problem, we propose a method, based on a Monte Carlo algorithm, to estimate
on-line the likelihood that the current matching problem will exceed a granted amount of
computationa resources. The impact of the above findings on relational learning is
discussed.



1. Introduction

Recent investigations have uncovered that several classes of computationaly difficult
problems, notably NP-complete problems, show a “phase transition” with respect to some
typical order parameter, i.e., they present abrupt changes in their probability of being
solvable, usually coupled with a peak in computational complexity [Cheeseman, Kanefsky
& Taylor, 1991; Williams & Hogg, 1994; Hogg, Huberman & Williams, 1996; Walsh,
1998]. This phenomenon istypically true for search problems, and it seemsto be largely
independent from the specific search algorithm used [Hogg, Huberman & Williams (Eds.),
1996]. Phase transitions have been previously observed, for instance, in the K-
Satisfiability problems (K-SAT) [Cheeseman, Kanefsky & Taylor, 1991; Crawford &
Auton, 1996; Freeman, 1996; Selman & Kirkpatrick, 1996], in Constraint Satisfaction
problems [Smith & Dyer, 1996; Williams & Hogg 1994; Prosser, 1996], in graph K-
coloring problems [Cheeseman, Kanefsky & Taylor, 1991; Hogg, 1996], and in the
decision version of the Travelling Salesperson problems [Gent & Walsh, 1996; Zhang &
Korf, 1996].

The detection and location of a phase transition in a problem class may have important
consequences in practice. In fact, the standard notion of computational complexity of a
class of problemsis a pessimistic evaluation, based on worst-case analysis. Actually, many
problem instances can be solvable (or proved unsolvable) with reduced computational
efforts. The investigation of phase transitions can provide information on single instances
of the class, shifting the focus of the complexity analysis from the maximum complexity to
a“typical” one. A phase transition divides the problem space into three regions:. one, the
NO-region, in which the probability that a solution exists is amost zero, and, hence,
unsolvability is“easily” proved. Another one, the Y ES-region, where problems have many
alternative solutions, and finding oneis “easy”. Finally, aregion where the probability of
solution changes abruptly from almost 1 to almost 0, potentially making very difficult to
find one of the existing solutions or to prove unsolvability. This region is caled the
“mushy” region [Smith & Dyer, 1996; Prosser, 1996].

In the present work we explore the emergence of a phase transition in the matching
problem: possible models of aFirst Order Logic (FOL) formula are searched for in agiven
universe, in order to decide its satisfiability. Our basic motivation for studying the
matching problem isthe basic roleit playsin learning structured concept descriptions from



examples [Michalski, 1980; Bergadano, Giordana & Saitta, 1988; Muggleton, 1992,
Anglano et al., 1997, 1998; Giordanaet a., 1998]. The exponentia (in time and/or space)
complexity of thistask severely limits the classes of concepts that can be learned and used.
An effort to better understand the source of this complexity might suggest new and more
effective heuristics or learning strategies.

Learning has been defined, since long, as a search problem in the space of possible
“hypotheses’ [Mitchell, 1982], and concept learning problems are known to be NP-hard
even in apropositional setting [Hyafil & Rivest, 1976]. The situation isworse in relational
learning, because the complexity for searching the hypothesis space is combined with the
complexity of verifying any single hypothesis against all positive and negative instances.
Most relational learners adopt more or less strong biases, in order to limit such complexity,
focusing on hypotheses that are easy to verify. We will propose here an aternative method
to overcome this problem, alowing for weaker biases. Some relations between this
approach and other approaches to taming complexity in relational learning will be discussed
later.

The matching problem is firstly framed as a Constraint Satisfaction Problem (CSP)
[Williams & Hogg, 1994], so that existing theories can be applied for interpreting the
experimental results. A thorough experimentation, involving the generation of thousands of
problems, according to a specified probability distribution, has been carried out. The
parameters chosen as order parameters are different from (but related to) those usualy
adopted in generic CSPs. The reason is that we favored parameters with a more direct
meaning in Machine Learning (ML). Also, the variability range of the parametersis close to
the one occurring in ML practice.

Y et, one might legitimately wonder whether the results obtained for artificial classes of
problems bear any relation to concrete learning problems. To answer this question we
selected for examination two real-world learning tasks, and found, surprisingly asit might
appear, that the results from the artificial cases still hold.

Having shown that the emergence of a phase transition may be relevant for learning, we
try, as a second step, to predict where the mushy region might be, either to avoid it, or to
design strategies better suited to limit the search complexity. A maor finding of this
analysisisthat relational learners are attracted by the “mushy” region, making thus very
difficult avoiding it. At the sametime, alarge variability in complexity emerged inside this



region, and, hence, many problems are tractable, in practice. In order to uncover which
ones, we describe a stochastic algorithm for on-line estimation of the complexity of asingle
matching problem.

The body of this paper is organised as follows: Section 2 recals previous theoretical
analyses on Constraint Satisfaction Problems [Smith & Dyer, 1996; Williams & Hogg
1994; Prosser, 1996]. Section 3 links matching to CSP, and discusses the results of an
extensive experimentation supporting the emergence of a phase transition in matching.
Section 4 presents two real-world case-studies, namely the analysis of a ML benchmark
known as the “Mutagenesis’ dataset [ Srinivasan, Muggleton, & King, 1995], and of a
troubleshooting problem [Giordana et a., 1993]. In Section 5 the impact of the emergence
of phase transitions on learning relations is discussed. Section 6 proposes a method for on-
line identification of those instances of matching problems that are too hard to be handled,
and Section 7 contains some conclusions.

2. Congtraint Satisfaction Problems

Phase transitions have been widely investigated in the class of Constraint Satisfaction
Problems (CSP) [Williams & Hogg, 1994; Smith & Dyer, 1996; Prosser, 1996]. Given a

set of varigbles X ={x, X,, ... , X,}, where each x, ranges on adomain L, of cardinality

L., the problem of finding an assignment to each variable x,I X consistent with aset R
={R,,R,, ...., Ry} of constraintson X, iscalled a CSP. A relation R, involving variables
(Xj, ... , Xj) can be represented as a table, where every row contains an admissible
assignment (g, ... , &) of constantsto (x;, ... , X;) . If al relations are binary, the CSPis
caled binary [Williams & Hogg, 1994; Prosser, 1996; Smith & Dyer, 1996].

Two parameters are defined to characterize a CSP instance: constraint density p,, and
constraint tightness p, [Smith & Dyer, 1996; Prosser, 1996]. In a binary CSPs the
constraints can be represented as edges on a graph with n vertices, each one corresponding
to avariable. The graph has n(n-1)/2 possible edges; several constraints on the same pair of
variables can be reduced to a unique one by AND-ing them. By denoting by ¢ the number
of edges occurring in the constraint graph, the constraint density p, is defined [Smith &
Dyer, 1996; Prosser, 1996] as follows:
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The parameter p, belongs to the interval [0,1], with O corresponding to no constraints at

all, and 1 corresponding to the case in which all possible pairs of variables are constrained.
The tightness of the constraint on avariable pair {x;, X;} isthe fraction of value pairsruled
out by the constraint itself. If N isthe cardinality of the relation R(x;, x;), the constraint
tightness p, isdefined [Smith & Dyer, 1996; Prosser, 1996] by:

p=1- 1 )
L

where L isthe cardinality of the domain of the variables, assuming that every x, ranges

over thesameset L.

Studies on CSPs assume a model of stochastic instance generation; one of them, Model B
[Smith & Dyer, 1996], assumes that n, N, and p; are kept constant, whereas p, variesin

the interval [0,1]. Edges on the constraint graph and tuples in the relations are extracted
with uniform probability.

By varying p,, a narrow “mushy” region, where the probability of solution, Py, drops
from 0.99 to 0.01 is found [Williams & Hogg, 1994; Smith & Dyer, 1996; Prosser,
1996]. The complexity of finding one solution (or of proving unsolvability) shows a
marked peak in correspondence to Py, = 0.5, which is also called the crossover point
[Crawford & Auton, 1996; Smith & Dyer, 1996]. Unsolvable instances require, in
average, agreater complexity at the phase transition, because the whol e search tree needs to
be explored, and the tree islarge. The p, value corresponding to the crossover point, p, .,
iscalled critical v alue; it is conjectured to correspond to an expected number of solutions
roughly equal to 1 [Williams & Hogg, 1994; Smith & Dyer, 1996; Prosser, 1996; Gent et
al., 1996].

Even though the location and the height of the complexity peak depends upon the search
algorithm used, the very emergence of the phase transition does not (see [Hogg, Huberman

& Williams (Eds.), 1996]). For fixed n, N, p; and p,, the actua location of p,, depends

also upon the structure of the constraint graph.



Williams and Hogg [1994], Prosser [1996], and Smith and Dyer [1996] derive al the same

estimate, p,,,, for the critical value of p,:

2 n
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The estimate p,, can be used to predict the location of the phase transition. Formula (3)
has been derived by assuming that the average number of solutions at the phase transition
is 1. However, the value p, . given by (3) isagood predictor only for high values of py,

or for large values of n. If p; islow, typically p, < 0.3, the constraint graph is sparse and
many alternative configurations may exist, loosening the correspondence between p, . and
the actual location of the phase transition. In this case, different constraint graphs
correspond to different locations of the phase transition, and the mushy region derives
from amixture of different graphs, whose crossover points vary. When this happens, an
average number of solution equal to 1 may not denote an equal proportion of solvable and
unsolvable problems (i.e., Py, = 0.5), but rather the presence of a large number of
unsolvable problems and a small number of solvable problems with many solutions; as a
consequence, the p,. value given by (3) is situated to the right of the actua phase
transition. Thereliability of p,, asapredictor can be evaluated by estimating the expected
number of solutions and its variance [Smith & Dyer, 1996].

In order to quantify the constrainedness of search, Gent et al. [1996] have proposed a
different parameter:

k=1-19ENg) (4)
IS

where E(Ng,) is the expected number of solutions existing in a search space with S states.
Again assuming that the phase transition occurs for E(Ng,) = 1, the critical value of Kk is

k.= 1. For a CSP of the type considered in this paper, formula (4) gives:

c |gZ (l_ p2) (5)

k=- nlgL

By setting k, = 1, the same expression (3) is obtained for the corresponding p, .



3. Phase Transitionsin Matching

The matching problems we consider are redtricted to the satisfiability of existentialy
quantified, conjunctive formulas, $X [j (X)], with n variables (from a set X) and m

literals (predicates from aset P or their negation). Given a universe U, consisting of a set
of relations (tables) containing the extensions of the atomic predicates, the considered

formulais satisfiable if there exists at least one model of j (X) in U.

It isimmediate to see that the matching problem is a CSP, where the n variables and their
associated domains play the same role, and the m relations, corresponding to the literals

occurring in j (X ), correspond to the set R of relations. In learning relational concepts, a

formulais a“hypothesis’ (i.e., a putative description) and a universe is a positive or
negative example of the concept to learn. Then, during learning, each hypothesis generated
by the learner has to be matched against al the training examples, each one corresponding
to adifferent universe. In relational learning, concept definitions are usually represented in
DNF, i.e., asdigunction of conjunctive formulas.

In order to investigate the location and properties of phase transitions in matching,
formulas and examples have been generated according to a stochastic procedure that
simulates conditions similar to the ones occurring in real learning problems. The following
assumptions have been adopted:

Thevariable x,, X,, ... , X, range over the same set L of constants, containing L
elements.
All the predicates are binary.

Every relation in U has the same cardinality, namely it contains exactly N tuples (pairs
of constants).

Given X and P, with the additional constraint m 2 n-1, aformula j with the structure

below is generated, according to a random procedure described by Botta, Giordana and
Saitta[1999]:

j ®)= gai(xi’xiﬂ) U(:Jai(yi Zi), (6)



In (6), the variables{y;, z} belongto X, and y, * z,. The generated formulas contain
exactly n variables and m literals, and the same pair of variables may appear in more than
one predicate. Thefirst part of formula (6) guarantees that the underlying constraint graph
is connected, in order to hinder the matching problem to be reduced to smpler
subproblems, with digoint sets of variables.

Every rlation in U is built up by creating the Cartesian product L ~ L of all possible pairs

of constants, and selecting N pairs from it, uniformly and without replacement. In this
way, the same pair cannot occur twice in the same relation. This generation procedure is
closeto Model B for CSPs [Smith & Dyer, 1996].

In summary, a matching problem is defined by the 4-tuple (n, N, m, L), instead of the
triple (n, p,, p,) usually employed in CSP. The parameters N, m and L can be rewrittenin
terms of p, and p,, but these last do not have a direct meaning for learning problems. On
the contrary, the complexity of an inductive hypothesisis frequently measured by m, and
the complexity of a concept instance can berelated to L, i.e., the number of atomic objects
(ground literals) it contains. However, we will also use p, when the analysis requiresit, as
in Section 4.

3.1. Stochastic Search Algorithm

Givenaformulaj , with n variables and the syntactic structure (6), and given a universe U,
the search for the models of j in U entailsvisiting atree t. A node nat level k int
corresponds to a legal substitution q for the variables x,..., X,, considered in a given

sequence'. The leaves of t at level k = n represent models of j , and are solutions to the
matching problem.

Depending upon the strategy used for visiting t, different algorithms show different search

complexity. A comparison between a backtrack deterministic and a stochastic search
algorithm has been presented by Botta, Giordana & Saitta[1999]. In the present paper we
have used the stochastic one, because it offers two advantages for our purposes: On the
one hand, it exhibits, in practice, an average complexity and a complexity variance lower
than the deterministic one. Moreover, the algorithm is well suited to perform the on-line
estimation of the search complexity that will be discussed in Section 6.



The search algorithm consists of the iteration of a one-step stochastic search function until
either amodel is found or the whole tree has been explored unsuccessfully. Let MC(t, n)
be this function:

MC (t, n)

n=n,, leaf = False
while (- leaf) do

if nisaleaf at leve k
then leaf =True

el se Identify the sons of n that are Selectable, and put them into a set C(n)
Extract anoden’ from C(n) with uniform probability

Setn=n'
endif
end
Labe n as closed

if thelevel of nisk =nthen answer YES else answer NO.

Function MC (t, n) implementsa Monte Carlo algorithm [Brassard & Bratley, 1988],
because it always provides an answer, but the answer may be incorrect; MC explores one

path on the search tree, starting from the root n, and ending in aleaf n, which may or may

not be a solution. The parameters t and n of the function denote the search tree and the
number of variables (maximum depth of the tree), respectively. During the agorithm
execution, nis associated to a sequence of nodes in the tree at increasing depth, and
corresponds to increasingly complete, legal partial assignments of values to the variables

X4, -+, X, By iteratingMC ont, more and more paths are explored.

Depending on the semantics of the criterion Sdlectable, different sets of son nodes of n are

included in C(n). In the simplest case, all nodes are always Sdectable, and the stochastic
search is made with replacement: any leaf can be reached repeatedly. In this case the
complete exploration of t may asymptotically require an infinite number of repetitions of
MC. If a search without replacement must be realized, the SHectable predicate shall not

includein C(n) any node that either is closed or has only closed sons. In this case, every

iteration of MC endsin adifferent leaf of t, and the whole tree is guaranteed to be



completely explored with at most the same complexity as an exhaustive, backtrack search
algorithm. The experiments reported in this paper have been done using the option of
search without replacement.

In order to locate a possible phase transition, we have explored points in the (m, L) plane,
for values of the number of variables n = 4, 6, 10, 12, 14, and cardinality of the relations

in the universe N = 50, 80, 100 and 130. For each pair (n, N) the complete mesh, covering
theregion (10 £ L £50, n-1 £ m £ 50) in the plane (m, L), has been considered. For each
pair (m, L) belonging the mesh, 100 problems have been generated for atotal of about
900,000 problems. The range of n has been chosen consistently with the employed in
Machine Learning, where only afew variables have been considered so far.

3.2. Probability of Solution

A 3-dimensional plot representing the probability of solution P, as afunction of m and L
isreported in Figure 1, for n = 10 and N=100. For each point in the mesh, P, has been
computed as the fraction of problems with a solution among all the generated ones.
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Figure 1 — 3-Dimensional plot of the probability of solution P, for n = 10 and N = 100. Some
contour level plots, corresponding to P, values in the range [0.85 - 0.15], have been projected onto
the plane (m,L).
The graph in Figure 1 has a noteworthy feature, namely its striking steepness. To the |eft
of the steep descent (YES-region), al problems had a solution, whereas, to the right (NO-

region) no solution could be found. Another interesting feature is the regularity of the



projection on the (m, L) plane of the contour level plot at P, = 0.5, whichisa very
smooth curve with a hyperbolic-like behavior. Figure 2(a) reports the projections of the
contour level plotsat P, = 0.5, for numbers of variables n = 6, 10 and 14. Figure 2(b)

reports an analogous set of contour plots for a constant number of variablesn = 10, and for
cardinality of the relations N = 50, 80, 100 and 130.
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Figure 2 — Plots of the 0.5-level contour of the probability of solution Pg. (a) Graphs
corresponding to a number of variables n = 6, 10, and 14, with N=100. (b) Graphs corresponding to
relation cardinalities N = 50, 80, 100, and 130, with n=10.

3.3. Search Complexity

For a quantitative analysis of the complexity, a random search without replacement was
performed by repeating the Monte Carlo algorithm described in Section 3.1. The cost C of
the search has been defined as the total number of explored nodes in the search tree, until
either afirst solution is found, or unsatisfiability is proved. For unsatisfiable problemsit is
necessary to explore the whole tree.

In Figure 3(a), the graph of the search complexity C, averaged over the 100 repetitions for
each point is reported, for n = 10 and N = 100. The shape and location of the highest
complexity region roughly matches the transition in probability reported in Figure 1, but it
ismore irregular and also broader, like a“mountain chain”. Inside the “mountain”, thereis
alarge variability among different problems, witnessed by the variance plot, reported in
Figure 3(b). As one may expect, the highest variance values correspond to the highest
peaks. The maximum complexity contour coincides with the contour plot at P, = 0.5, as it



has been found previously [Hogg et a. (Eds.), 1996; Hogg, Huberman & Williams,
1996].

Figure 3 — (a) Plot of the complexity C of the Monte Carlo stochastic search algorithm MC without
replacement, for n =10 and N = 100. Each point isthe average over 100 problem instances. (b) Plot
of the standard deviation of the complexity.

It isworth noticing that the complexity distributions for solvable and unsolvable problems
may be very different, as the unsolvable problems usualy require much more search.
Approximations to the complexity probability distributions at the phase transition for
solvable and unsolvable CSPs are provided by Frost, Rish and Vila[1997]. They show
that a LogNormal distribution is a good approximation for unsolvable problems. For
solvable problems several known distributions (in particular, a Weibull distribution) were
tried with less success. However, from their reported experiments it clearly emerges that
the complexity distribution of both solvable and unsolvable problems has along tail in the
region of extremely hard problem instances.



4. Two Real-World Case Studies

Up to now we have been concerned with an ensemble of randomly generated matching
problems. One may wonder whether phase transitions do occur in real life, and whether
they have an impact on real-world learning problems.

Other authors have already shown that phase transitions do emerge in real-world problems
that cannot be supposed randomly generated. For instance, Gent and Walsh [1996] have
analyzed the Travelling Salesperson problem on a city graph containing the capitals of 48
contiguous states of the USA. A phase transition did occur, although at a smaller control
parameter value than for random graphs, whereas the cost of search was higher than
predicted. The same authors have aso noticed a phase transition in graph coloring
problems derived from university exam time-tables [Gent & Walsh, 1995], whereas
Gomes and Selman [1997] found a phase transition in quasi-group completion.

Given a real-world problem, in order to interpret the emergence of an ensemble
phenomenon like a phase transition, one has to hypothesize that the problem is extracted
from a population of problems having the same values of the order parameters as the one
considered. Learning is an anomalous task, in this respect. In fact, the ensemble of
problems to consider for the emergence of phase transitions is generated internally by the
learner itself. In fact, the set of training examplesis given, but the learner generates many
candidate hypotheses during search, which, paired with each example, generates a possibly
large number of matching problems. Given a specific learning task, including a set of
training examples, learners differ among each other for the way in which they generate
hypotheses, i.e., for the heuristics they use. Different heuristics might correspond to phase
transitions of different location and stegpness, and the ensemble of matching problems they
give birth to may be more or less similar to the randomly generated set.

In this section we analyze two real-world learning problems using G-Net, a relationa
learner based on an evolutionary search strategy guided by the Minimum Description
Length (MDL) [Anglano et al., 1997, 1998]. The datasets suitable for relational learning,
available in public repositories, are few and, in general, rather simple. In fact, the concept



descriptions that have been learned from them contain few literals and at most two or three
variables. The selected datasets are among the most complex we found, as for both of them
descriptions containing up to 4 variables and up to 6 binary relations have been discovered.
For the sake of reference, Figure 4 reports the same graph as Figure 3(a), but for n=4. A
phase transition is evident, but the expected complexity in the mushy region is much lower.

Figure 4 — Complexity in the (m, L) plane for randomly generated matching problems with n =4
and N = 100.

Comparing Figure 4 (n = 4) with Figure 3(a) (n = 10), we notice that the mushy region is
much wider for n = 4 than for n = 10, as predicted by the theory [Williams & Hogg,
1994]. Moreover, a50-fold increase in the complexity is observed in correspondence to a
2.5 increase in the number of variables.

4.1. Mutagenesis Dataset

In this subsection we consider alearning problem used as a benchmark in the Machine
Learning community for testing induction algorithm in First Order Logic: the prediction of
mutagenicity in nitroaromatic chemica compounds on the basis of their structure
(Mutagenesis dataset [ Srinivasan, Muggleton & King, 1995]). Goal of our analysisisto
investigate where the classification rules learned by an inductive program lay in the plane
(m, L), with respect to the mushy region.



The Mutagenesis dataset® consists of the chemical description of 188 molecules, classified
as “mutagenic” (125 positive examples) or “non mutagenic” (63 negative examples). The
goal of the learning task is to discover classification rules that separate the two classes.
Every compound is described as a set of atoms, each one characterized by an attribute
vector reporting the atom type, the atomic number, and the electrical charge, plus a set of
relations describing atomic links and substructures of the molecule, such as aromatic rings
and others. Moreover, every compound is characterized by two global numeric attributes:
lumo and logp, corresponding to the energy of the compound’'s lowest unoccupied
molecular orbital, and the logarithm of the compound’ s octanol/water partition coefficient,
respectively. An extensive experimentation with different sets of attributes is reported by
Srinivasan, Muggleton and King [1995].

The formulation of this learning problem is usually based upon predicates (constraints)
with arity greater than 2, and it is not immediately suitable for being analyzed with the
method of Section 3, limited to binary constraints’. However, the problem can be
reformulated using only unary and binary predicates, asit has been done by Anglano et al.
[1998]. Every molecule is considered as a different universe that must be classified as
either mutagenic or not. The hypothesis description language contains literals of the form
P(x,K) or Q(x,y), where variable x and y range on atoms, and K denotes a set of
constants, which are to be learned by the induction algorithm [Giordana et al., 1998]. In
Figure 5 an example of moleculeis reported.

1,6,-dinitro-9,10,11,12,-tetrahydrobenzo[e]pyrene

Figure 5 — Example of a nitroaromatic molecul€’s structure, in the Mutagenesis dataset. Each
atom is denoted by a constant and each link defines a binary relation between two atoms.

Two sets of experiments have been performed with two different hypothesis description

languages, L, andL,. Thelanguage L, i sanalogous to the one used by other authorsin



the past [Sebag & Rouveirol, 1997; Sebag, 1998], and contains three unary predicates,
namely, chrg(x,K), reporting the eectrica charge, anm(x,K), reporting the aomic
number, and type(x,K), reporting the atomic type, plus one binary predicate, bound(x,y),
stating the existence of alink between two atoms. Moreover, the constraint x < y has been
imposed for every variable pair in order to avoid inefficiency, due to the test of symmetric
or reflexive relations entailed by the relation bound(x,y).

Thelanguage L, containsall the predicates defined in L, with the addition of lumo(x,K)
and logp(x,K) to the description of each atom. G-Net was forced to generate formulas with
exactly four variables, which is the maximum number used in previous studies. In both
experiments, G-Net run several times on the entire dataset of 188 examples, producing sets
of classification rules correctly covering from 90% to 95% of the examples, depending on
the control parameter setting’.

In the following we will analyze in detail two solutions, namely F = {j ,, j ., J 3, ] 4}>
consisting of the four clauses reported in Figure 6, expressed in the language L, and Y =
{y., Y. Y}, consisting of three clauses reported in Figure 7, expressed in language L, .

The same analysis has been performed on several other solutions generated by G-Net,
obtaining qualitatively equivalent results.

j o anm(x,[195, 22, 3, 27, 38, 40, 92]) U@chrg(x,, [-0.2,0.2]) U
anm(x,,[195, 22, 3, 38, 40, 29, 92]) UBtype(x,, [O]) UDchrg(x,, [-0.2])
(X <xy) L\J(x1 < X3) U(x1<x4) L‘J(x2 < Xg) U(x2< X4) U(x3<x4) U
bound(x,, x,) P mutagenic

j o Dchrg(x, [-0.2]) UBtype (x,, [N]) UBanm(x,, [22]) UBchrg(x,, [-0.6, -0.4]) U
Drype(x,, [H, N, O]) U (x;<x2) U xe<x9) U (o< xg) Utxp<xg) U
bound(x,, x5) U (x,< x,) U (xs<x,) U bound(x,,x,) P mutagenic

j 5 anm(x,,[195, 38,29, 92]) U chrg(x,[-0.8 , 0.6]) UBtype(x, [C]) UBchrg(x, [0.0]) U
anm(x,, [195, 22, 3, 27, 38, 29, 92]) UBtype(x,, [N]) U (x,<x,) U(x, < x5 U
(X < Xy) U(x2<x3) U(x2<x4) U(x3<x4) P mutagenic

j 4 anm(x,[195, 3, 27, 38, 40, 29, 92]) U@itype(x,, [H]) UBchrg(x,, [-0.2])
@anm(x, [40]) U anm(x,,[195, 22, 27, 38, 40, 29, 92]) UBtype(x,, [H, N])
(X, <Xy) UQbound(xl,xz) U(x1<x3) U(xl<x4)U(x2<x3)U(x2<x4) U
bound(x,, X ) U(x3<x4) P mutagenic




Figure 6 — Solution F, learned by G-Net using thelanguage L,. F correctly classifies 94.1% of the
whole dataset.

All rules in the solutions F and Y have been analyzed according to the following

procedure: For eachrule j ;T F or y; T Y, the two parameters p, and P, have been

computed for every example in the dataset, using expressions (2) and (3), respectively.
The reason for using p, istwofold: on the one hand, m and n are constant for each formula,
whereas L and N change from one example to another; this variability is captured by p,,
which depends upon both N and L. Moreover, theoretica results from the literature
[Prosser, 1996] can be used directly.

For our analysis, every formula has been decomposed into subformulas with the following
structure;

aX,.X,) = a,(X,) Ua,(x,) Ub(x,,X,)
Each subformula g has been considered as a single constraint. The unary predicates occur

in each subformula containing as argument the same variable; they have the role of
reducing the number of bindings that may occur in the binary relations (namely, the N
value). As all variablesin aclause are correlated at least through the predicate “<*, six
binary formulas have always been obtained. Then, p, = 1 for every clause, whereas the
parameter lbz,cr depends upon the number L of constants. L corresponds, in this case, to
the number of atoms in a molecule, and varies from one example to another. More
precisely, the minimum valuefor L in the dataset isL;, = 18, the maximum L,,,, = 40 and
theaveragel ,, = 26.7.

y . first-atom(x) Ulogp(x,,[0.0 , 7.0])UBlumo(x,,[-1.0]) U Blogp(x,[1.5, 7.0])UBlumo(x,, [-1.25]) U
U@logp(x,, [0.5, 1.0, 6.5]) U lumo(x,,[-4.0 , -1.0]) UBlogp(x,, [2.5, 3.0]) U (x, <x,) U(x, < x5) U
(X, < X9) U(x, < x5) U (%< x,) U(xs<x,) P mutagenic

y o first-atom(x,) Ulogp(x,,[0.0 , 7.0]) UBlumo(x,, [-1.0]) UBlogp(x,, [1.5])U Blumo(x,,[-1.25]) U
@logp(Xs, [0.5]) Ulumo(x,[-1.5, -0.75]) UBlogp(x,, [2.5])U @lumo(x,, [-1.75]) U (x, <x,) U

(X1 < Xg) U(x1< X4) U(x2 < Xg) U(x2< X4) U(x3< X,) P mutagenic

y 4 first-atom(x) U @lumo(x,,[-1.0]) U @logp(x,, 2.0]) U
anm(x,,[195, 22, 3, 27, 38, 40, 29, 92]) U @chrg(x,, [-0.20)]) U DBanm(x,, [22]) U
type(x,,[C, O, F]) U@chrg(x,, [-0.4,0.0]) U(x,<x,) U(x, < x5) U(x,<x,) U
(X, < X3) U(x2< X4) U(x3<x4) P mutagenic




Figure 7 —Solution Y learned by G-Net using the language L,. Y correctly classifies 90.7% of the
dataset.

Using expression (3), we obtain, for al the considered formulas:
bz,cr =1-L % (7)
The parameter p,, too, depends upon the formulaj and upon the example corresponding to

auniverse U; in order to stress this dependency, we use the notation p,(j ,U). More
specificaly, p, has been computed according to the expression:
6 o

. 1 o
PG V) ==a pAy;;U) =1- = @ N; (8)
6= L™ =

In (8) g is one of the binary subformulas obtained from j ; its associated relation has N;

elements.

Let us consider now the classificationrules F = {j ,, | ,, J 5, | 4} For eachrule j; we

computed the distribution of the variable (p, - P, ) over al the examplesin the dataset, for

the positive examples only, and for the examples (both positive and negative) “covered” by
the rule. The graphs of these distributions are reported in Figure 8. If the matching problem
corresponding to a< f ormula, example > pair is exactly on the phase transition, the value
(p,- lbze,) should be zero. Notice that the mushy region is quite large for n = 4, aswe can
see from Figure 4; moreover, as neither L nor N are constant across relations and
examples, the broadening of the mushy region is enhanced. Figure 8 clearly shows that,

for formulasj ,, j ;and j ,, the p, values are distributed substantially in the mushy region

for both positive and negative examples, whereas the matching problems involving j ,

seem to lay mostly in the YES-region.

The same analysis has been performed on solution Y, and the results are reported in Figure

9(a)-(c). Solution Y shows a different behavior. In fact, rules y, and y, exhibit three

separate peaks. one to the left, one inside, and one to the right of the mushy region,
respectively. Moreover, the peaks corresponding to the examples satisfying the clause

practically coincide with the left peak. A different behavior is exhibited by clausey ,, which

shows only two peaks, the first one near the critical point P, ., and the second one clearly



to the right of the mushy region. This situation is confirmed by the presence, in the peak,
of both positive and negative instances.
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Figure 8 — Distributions of the variable (p, —bz,a), reported on the x axis, for the Mutagenesis dataset
and the formulasj ,in (a),j . in (b), j 5in(c), j 4in (d). They axis reports the number of examples (all,
positive ones, and those covered by the formula) corresponding to agiven value of (p,-P.).

From Figures 8(a)-(d) we would predict that formulaj ; should be easy to match for all
the examples, whereas| , islikely to require a high computational cost to be matched,

because most examples lay in the critical region. For formulasj , andj ,, many

examples are close to the mushy region, but not exactly at the transition point, so that
an intermediate complexity should be expected.



In Table 1 the measured complexity for matching the formulas on the whole dataset is
reported
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Figure 9 — Distributions of the variable (p, —IADZ,C,), reported on the x axis, for the Mutagenesis dataset

and theformulasy, in (a), y,in (b), and y;in (c). The y axis reports the number of instances (all,
positive ones, and those covered by the formula) for each value of (p,-P,.).

Tablel
Average complexity for matching the clausesin F andY to all the examples of the dataset.

F Y
j1 P js Ja Y1 Yo Y3
Agv 26215.10 5168.06 1249.04 1496.85 1.33 1.43 7.06
AV, 22.46 207.74 23.89 1249.86 2.00 2.00 2.35
AVQ.g 30418.86 8609.00 1463.44 1789.79 1.00 1.00 8.33




Aswe can see, the theory prediction for all the formulas is substantially verified, except

for j ,, for which both the location of the peak in Figure 4(a) and the complexity in Table 1
appear to be wrong. By looking more closely at formula j , in Figure 6, we suggest the

following explanation. Formula j , actually contains only two “meaningful” variables,

namely x, and x,; then, n =2 and ¢ = 1. With these values, the estimated value bz,cr is
actually alittle larger than the one used in the figure. On the other hand, N is computed as
average of all the relationsinvolved in the formula, so that the extension of “x; < x,” ,
which is much larger than the other ones, lets p, appear much smaller than it must be. The
consequence is the apparent shift toward the left with respect to the phase transition. The
second aspect to be explained, namely the abnormally high complexity in Table 1, isalso
related to the spurious presence of the variables x, and x,. In fact, as the matcher starts
exactly with these two variables, which are not constrained, it generates large intermediate
tables, which are pruned only later. This effect would not have appeared by exploiting a

dynamic variable ordering during match. A set of focused experimentsonj ,, reduced to
the subformula containing only x, and x,, has confirmed both explanations. Among the
sevenformulasinF and Y, j , isthe only onein which only two variables are effective. It

is sufficient that three among the four variables are chained by the predicate bound, which
is much more constraining than predicate “<”, to let the anomaly disappear.

An interesting observation can be done on Figure 9(a)-(c): The positive and negative
examples could be discriminated almost without performing the matching, but only by
setting a threshold on p,,; by considering “ positive” the examples on the left and “ negative”
those on the right of the threshold, the classification reported in Table 2 is obtained. The
values of p,, and, hence, the threshold, can be computed from N and L only. Problems
that exhibit this kind of behavior are essentially “propositional”, even though formally
expressed in a FOL language. The very low matching complexity in Table 1 confirms this
assertion. The above property can be exploited to reduce the amount of matching to be
done during learning and knowledge use. In fact, by estimating the distributions of p,
values for the positive and negative training examples, a“best” threshold (or, better, a
“best margin™) can be learned.

Table 2



Classification rates obtained by setting a threshold between the peaks corresponding to low and
high p, values, respectively, for the three formulae y ;, y ,, and y ;. The values between brackets
correspond to the classification obtained by actually matching the formula on the dataset. Setting a
threshold on reduces the omission error, but increases the commission error.

Formula Threshold on p, Positive Negative
Y1 0.85 80 (80) 3(1)
Y, 0.85 60 (60) 4(2)
Ys 0.95 54 (40) 23(0)

Moreover, by looking at the syntactic structure of the clauses reported in'Y , (see Figure 7),

we notice that most literals occurring in them deal with the attributes lumo and logp, which
have the same value for al atoms, according to the way they have been defined. Therefore,

in spite of its structural aspect, y, and y, are easily translated into some propositional

assertions. Rule y , shows a different structure, which contains also literals related to the
atomic charge and the atomic number. Thisis sufficient to require an actual matching. This

last situation occursin al clauses of solution F .

4.2. Mechanical Troubleshooting Dataset

The second real-world case study is a problem that we approached some time ago in an
industrial environment. Goal of the gpplication was the automatic acquisition of a
diagnostic knowledge base for mechanica troubleshooting at the chemica company
ENICHEM, in Ravenna (Italy). The knowledge base |learned by the system ENIGMA
[Giordanaet al., 1993] has been used for years by the company.

The basis for the troubleshooting was Mechanalysis, a methodology that exploits
mechanical vibrations, and requires a strong expertise to be applied. The diagnosed
apparatuses, ranging from small motor-pumps to very large turbo-alternators, shared the
common feature of possessing arotating shaft. When some fault occurs in the machine,
anomalous vibrations appear. Mechanalysis basically performs a Fourier analysis of the
vibratory motions measured on the supports of the machine components. Each
mechanalysisis an example. The data are arranged into groups, corresponding to the
supports; each group contains the measures of frequency and velocity of the harmonic
components of the vibration for three spatial directions, as shown in Figure 10.



The troubleshooting task consists in discriminating among six classes (one “normal” and
five types of fault). G-Net found 13 conjunctive formulas distributed over the six classes’,
each one with at most four variables. One of these formulas is the following:
j =vout(x,) Usup(x,,[2, 3, 4]) Uismax(x,) U-mis(x,,[0.0-3.0]) Uvin(x,) U
rpm(x,,[2, 3, 4, 6, 7, 8]) U=cpm(X,,[9.0]) U-mis(x,,[1.0 - 2.0]) U
~fea(xg[ia, iv]) U-rpm(x,,[5]) U-sup(x,,[1, 3]) Unear(x, x,,[1]) Unear(x,x,[1])
U -near(x,,X,,[-1]) Unear(x,,x5,[0, 1])

El: Motor

| Basement ‘ L |

@

Total Vibratiol Fourier Analysi

Amplitude | Speed UJ v w
[um] [mm/s] | [CPM] [mm/s] [CPM]

[7-11] | [24-26]| 3000 | [0.7-0.9] 18,000
[1.2-14]| 3000 | [0.2-0.7] 18,000

12

(b)

Figure 10 — Structure of a mechanalysis table, corresponding to a single example. (a) Scheme of a
motor-pump. The vibrations on the four supports A, B, C and D are measured. (b) For each support (A,
B, C and D) and for each triple of “Total Vibration” measurements, several groups of three rows, such
as the ones reported under “ Fourier Analysis’, may be present, as vibrations with different frequencies
are measured. Globally, a mechanalysis table may contain 20 through 60 items, an item being an entry
in the mechanalysis table, i.e., a4-tuple <support, direction, frequency, velocity> for each vibration
harmonic.

The meaning of the predicatesin j is not important here, and can be found in previous
works [Giordana et al., 1993]. The relevant aspect, in this paper, is the syntactic structure

of j . InFigure 11 and 12 the results of the same analysis that was performed on the



Mutagenesis dataset are reported. More specifically, Figure 11 reports the distribution of
the variable (p, - bm ) for the matching problems obtained by pairing each of the 13
formulas with all the examplesin the dataset (164 examples), for atotal of 2132 matching
problems. In Figure 12, on the contrary, only matching problems obtained by pairing each

formulawith the positive examples of its class are considered.
L

SaxE HLnLYA
T
o

L

ar

e

B CH L

(i

i -
AT PR T AT I I - T B

LR B

Figure 11 — Distribution of the variable (p, -bm ) for the matching problems obtained by pairing

each of the 13 formulas (disjuncts) in the solution with all the examples in the dataset. Each graph
corresponds to one of the 13 formulas.

Aswe can see from Figure 11, most problems lay inside the mushy region, except for one
of the formulas. A closer analysis of this formula showed that, contrarily to the case of
Figure 4(a), the peak to the left of the phase transition actually corresponds to an “easy”
problem, with a low matching complexity and a high coverage of both positive and
negative examples.
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Figure 12 - Distribution of the variable (p, —bzqc, ) obtained by matching each disunct

corresponding to a given class with the positive examples of the same class, covered by it. Hence, all
the considered problems are solvable.

In the two real-world problems we considered, the cardindity N of the relations
corresponding to the basic predicates was not constant, as assumed by the random
generation model. Then, we have considered the model prediction for arange of N values
corresponding to the actual cardinalities occurring in the two datasets. The plot in Figure 13
is analogous to the one reported in Figure 2(b), but for n = 4 variables. Again, N has been
set to 50, 80, 100 and 130, respectively.
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Figure 13 — Location of the line P, = 0.5 for N = 50, 80, 100, 130, and n = 4 variables. The
symbols‘+ and ‘*’ locate the positions in the plane (m, L) of the “average” matching problem found
in the Mutagenesis and Mechanical Troubleshooting datasets, respectively.



In Figure 13, we have located the “average” solutions found by G-Net (averaged over all
pairs <learned clause — example >), in the plane (m, L). Asit appears from the figure,
these solutions are located on the respective phase transition curves.

5. Relational Learners Work in the Mushy Region

The experiments with real datasets support the claim that phase transitions are relevant to
relational learning. In fact, most concept definitions acquired by G-Net have been found in
the high complexity region of the (m, L) plane. Then, the inductive search must have
occurred mostly in thisregion. Similar results have been presented by Botta et al. [1999],
who have shown, using a large set of artificial problems, that also FOIL [Quinlan, 1990]
systematically tends to generate concept descriptions located in the mushy region. In this
section we will discuss thisfinding and itsimplication for learning.

As shown in the previous sections, matching problems in the NO-region are almost always
unsolvable, but exceptionally some of them are solvable. On the contrary, matching
problemsin the YES-region are usually solvable, but exceptionally some is unsolvable. In
both NO- and Y ES-region the matching complexity is usually low.

L et us now consider two examples of a concept w, €, and e,, one positive and one
negative. Let L, be the average number of constants occurring in the two examples. We
want to learn a concept definitiony that covers e, and does not cover . Given a concept
description language L, the hypothesis space defined by L generates a set of matching

problems corresponding to points on the horizontal lineL = L in the plane (m, L). This
line intersects the mushy region. The results from the random problem generation tell us

that any hypothesis for w defining a matching problem in the NO-region has very little
chance of being verified by e, and e,. Then, it would be easy to exclude e,, but finding a
definition for w that covers e, may turn out to be a very hard search problem, indeed. On

the contrary, hypotheses generating matching problems in the Y ES-region tend to verify
both e, and e,. Then, it is easy to cover g, but very difficult to exclude e,,. On the other
hand, a hypothesis defining a matching problem on the phase transition has about 50%
chance of verifying any instance, so that it should be easier to discriminate between e, and

€

n



In order to test the above conjecture, we have built up two instances, e, and e,, each one
with L = 16 constants. Moreover, 50 binary predicates have been defined, corresponding
to relations containing N = 100 tuples. Finally, hypotheses with n = 4 variables have been
created according to the procedure used in Section 3. More precisely, for each value of m

T [3, 45], athousand formulas have been generated, and 86,000 matching problems have
been defined by pairing each formulawith both e; and e,. For each m value, the proportion
of formulas covering exactly one among e; and e, (discriminant formulas) has been

computed, and reported in Figure 14. For the sake of reference, also the graph of the
probability of solution P, is reported.
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From the graph, it clearly appears that the proportion of discriminant formulas reaches
its maximum when P, = 0.5, at the phase transition. Therefore, independently of the
specific distribution of the concept instances, that portion of the hypothesis space that
defines matching problemsinside the mushy region has a much higher density of
acceptable concept definitions than the other ones. In conclusion, we formulate the
conjecture that any data-driven induction agorithm will most likely search in this
region. The described behavior is reinforced by a search heuristic biased toward
simplicity; in fact, alearner guided by such a heuristic will tend to focus the search
where the hypotheses are discriminant and, at the same time, as simple as possible,
I.e., in the mushy region. An extensive experimentation performed with FOIL
[Quinlan, 1990] confirms the conjecture [Bottaet al., 1999]. To further test the above
conjecture, we have analyzed the time evolution of the composition of the hypotheses
population manipulated by the evolutionary learner G-Net, used for the case-studies
reported in Section 4. Given a set of examples, Figure 15(a) shows the distribution of
the variable (p, — P, ) for matching problems obtained by pairing each example with
all the hypotheses belonging to an initial (almost random) population®, and the same
distribution for the population reached after 10,000 hypothesis generation steps.
Clearly, astime goes on, the hypotheses evolved by G-Net tend to accumul ate around
the phase transition point, where p, = D, . Figure 15(b) reports the corresponding
measured matching complexity, averaged over al problems corresponding to the same

(pz - bZ,cr) value.
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Figure 15 - Evolution of the population of inductive hypotheses manipulated by G-Net. (a)
Distribution of the (p, — P,.) values corresponding to hypotheses belonging to an initial

population (continuous line), and to the population after 10,000 hypothesis generation steps
(dashed line). The concentration of individuals towards the phase transition clearly emerges. (b)
Distribution of the matching complexity for the same populations asin (a). A remarkable increase
in the matching complexity appears.
The computational problems due to the matching complexity were known since long; in
fact, relational learners usually set strong biases on the hypothesis description language
to control this complexity [Kietz & Wrobdl, 1992; Kietz & Morik, 1994; Adé, De Raedt
& Bruynooghe, 1995; desJardins & Gordon (Eds.), 1995]. For instance, two well

investigated biasesin ILP [Muggleton, 1992] are determinacy and depth [Muggleton &



Feng, 1992]. A literal Pissaid determinate with respect to aformulaj and auniverse

U, if theformulaj UP has at most the same number of modelsin U as j . When

hypotheses are generated incrementally by adding literals one at atime, asin FOIL,
determinacy may be required for each newly added literal. The depth of avariable x is
the number of previous variables, occurring inside the ordered body of a clause, on
which the binding of x depends. Determinacy and depth can be combined, to define ij-
determinacy [Muggleton & Feng, 1992]. Imposing determinacy limits both the
complexity of the hypothesis verification process, and the size of the hypothesis space,
because many hypotheses are excluded, depending on the structure of the examplesin
the learning set.

Some formal results, related to various ILP biases, have been obtained within the PAC-
learnability framework [Valiant, 1984]. For instance, Dzeroski Muggleton, and
Russell [1992] showed that non-recursive, constant-depth, determinate clauses are
PAC-learnable. This result was extended by Cohen [1993] to linear, closed, recursive,
constant-depth determinate clauses. Also, ij-clausal theories were proved to be PAC-
learnable by De Raedt and Dzeroski [1994]. A review of decidability and complexity
resultsrelated to ILPis provided by Kietz and Dzeroski [1994].

The problem of taming the complexity of relational learning has also been handled in
approaches different from ILP. For instance, the system G-Net [Anglano et al., 1997,
1998] exploits a template, which defines the syntactically most complex formula
allowed in the hypothesis language. The idea of atemplate is also employed in the
system MOBAL [Morik, 1991]. Zucker [1996] introduces a hierarchy of nested
languages with increasing complexity, and tries to learn starting from the ssmplest one.
A different approach, based on stochastic sampling with polynomia complexity, is
proposed by Sebag and Rouveirol [1997, 1999], who trade precision for complexity
reduction. PAC-learnability, as well as classca complexity theory, is based on a
worst-case analysis of atask. As we have already shown in the previous sections, not
every single problem instance shows the exponential complexity characterizing the
class. Requiring polynomia complexity on awhole problem class, as in the PAC-
learnability framework, has the consequence that many hypothesis description
languages must be excluded from consideration, potentialy hindering interesting
hypotheses to be discovered. For instance, if al the literds in a clause must be
determinate, the branching factor of any node in the search tree becomes upper-
bounded by 1. This constraint may be too strong, and the hypothesis space may
become quickly empty with the increase of the concept instance complexity.



For the above reasons, we propose a different approach. Instead of uniformly limiting
the expressiveness of the hypothesis description language, we only exclude from
consideration those hypotheses that show an excessive matching complexity, according
to an early on-line estimation. The approach, introduced in the next section, share the
basic ideas with the system STILL [Sebag & Rouveirol, 1997, 1999], which already
proved to be successful in learning relational concepts. Actually, STILL’s sampling-
based heuristicsis shown to be a special case of the method introduced in this paper.

6. On-Line Complexity Estimation

From the analysis we presented in the previous section, it appears that hypotheses built
up by alearner in FOL will lay in the mushy region and may be either simple to verify
or very complex. In fact, matching problems inside the phase transition show a high
variability with respect to the search complexity, and apparently similar ground
instances and formulas may happen to be easy to match or intractable. This
consideration suggested us to complement the static analysis based on an estimate of
P, With a new procedure for recognizing on-line tractable matching problems. The
basic idea is to use the stochastic search agorithm described in Section 3.1 to
dynamically monitor some useful parameters.

6.1. Search with Replacement

Asdiscussed in Section 3.1, algorithm MC can repeatedly run both with and without
replacement. Even though the actual search is performed without replacement, we start
our analysis with a search with replacement, which can be precisely dealt with by the
theory of Monte Carlo algorithms. The entities that we are interested in are two
probabilities, namely:

An edimate P,, of the probability of error P, on solvable problems, i.e., the

probability that the algorithm MC(x, n) returns NO, in a single run, when there are
indeed solutions to the problem.

An exact upper bound, B, of the probability of successP, .. =1-P

errt

When a matching problem has no solution, MC is aways correct, because it will
always stop with NO. Moreover, algorithm MC is consistent, because it never returns
two different correct solutions to a same problem instance, and also YES-biased,
because the answer y = YES is always correct, whereas the answer y = NO may be
wrong. Finally, MC is (1-P,,)-correct, as(1- P,,) isthe probability of obtaining a
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Carlo algorithms have the property that their probability of giving a correct answer
increases by accepting as answer the most frequent output in repeated runs, provided
that P, < 1/2. However, for biased consistent agorithms, the same effect can be
obtained even though P, ® 1/2, provided that P,, < 1. In particular, if MC is a
consistent, (1-P,)-correct and YES-biased Monte Carlo algorithm, the agorithm
obtained by letting MC run independently r times on the same instance is still a

consistent and Y ES-biased Monte Carlo algorithm, and, in addition, it is (1-PL,)-
correct.

LetMC run ageneric number r of times on the same instance, and that a sequence of r
NO isreturned. The greater r, the more willing we would be to conclude that the
problem under analysis has no solution. Actually, by exploiting the above mentioned

property of Monte Carlo algorithms, we have a probability P., that the answer is
actually wrong, i.e., that N, ® 1. In fact, under the hypothesisthat N, 3 1, a sequence

of r NO has a probability to occur aslow as P, . We may conclude that, the longer the
sequence of NO, the higher isthe likelihood that the probability of successP, . is low.

More precisely, when P, £ e, we have:
ISsuc =1- Ué ©)

By choosing e = 0.0001, expression (9) gives I5Suc =0.01 for R =922

6.2. Sampling without Replacement

By sampling with replacement, expression (9) provides the estimate P,_, but the
sampling process may require a number of trials approaching infinity to find a solution,
when the true value P, is greater than O but very small. Hence, we prefer to use the
MC version without replacement. In this case, the search process always terminatesin
a finite number of steps. Actualy, sampling with and without replacement show
sgnificant differences in the estimate only for values of P, close to zero
(experimentally, P, < 0.2). In the case of no replacement, estimate (9) is a pessimistic
one, because, at each subsequent trial, the probability of finding a solution, given that
there is one, increases; then, the actual probability of success should have been lower

than the one provided by (9).



Let us now consider the set of leavesof t, i.e., t’s frontier. Let F, be the set of |leaves
a level kiinthetree, and let m,,,(n,) be n,’s number of sons. To each leaf n, (of level

k), a polychotomic fraction q(n,) is associated [Watanabe, 1969]:

K
qn,) = O 1

j=1M;j(n;j.1)

(11)

The value q(n,) is the product of the number of sons of each node encountered along

the path from the root to the node itself. By referring to the algorithm in Section 3.1, m,
isthe cardindity of the set C. It isimmediate to see [Watanabe, 1969] that:

n

a adqny=1 (12)

k=1 nki F Kk
Expression (12) states that the sum of the polychotomic fractions over the frontier of t
isnormalized to 1. If the frontier changes, the g’ s become automatically renormalized to

1. The value q(n,) represents the actual probability that MC outputs leaf n, as aresult
inasinglerun. When the set S of solutionsis not empty, we have:

Poc = A d(ny) (13)
nl S

When sampling is performed with replacement, the values of the q's do not change
from one trial to another, and so P, does not change as well, whereas the g’'s do
change in the case of sampling without replacement. If we delete from the tree the
unsuccessful leaves already explored, the stochastic searcher may have to explore the
whole tree before deciding that there are no solutions. In sampling without replacement,
the probability P, of finding a solution in any single trial may vary from one run to
another: specifically, it is monotonically non decreasing. Notice that P, does not

necessarily increasesin every run. Infact, let n, be aleaf of level k (LEKEn)in

which MC stops. Let g(n,) be its polycothomic fraction. If n, is removed from the
search treg, its polychotomic fraction (and, in this case, its probability of being reached

again) becomes zero. Then, the m, value associated with its father n,_; decreases by 1,
and the polychotomic fractions of the nodes that have n,_; as an ancestor increases. If

the nodes corresponding to solutions are not descendants of n, ,, their g's values do not

change. As a consequence, the probability of finding a solution may not increase at
each run; however, it islikely to increase on the average over several runs.



The above considerations can be used to upper-bound P,,.. In fact, before starting any
exploration, we do not know anything about the search tree. For instance, we do not
know whether the leaves are solutions or not; then we may suppose to be in the
optimistic casein which all the leaves are at level n, and so, al are solutions. Then, in

the complete ignorance, we may assumeF, =0 for eachk * nand P, = a q(n,) =
nai Fp

1,i.e, al leaves are solutions, and MC will certainly find one at the first run. When we

perform afirst trial, which endsin anon-solution leaf n®, we know with certainty that

the probability P, was actually no greater than [1 - q(n™)]. By performing other
unsuccessful trials, each time the upper bound of P,,. decreases by the polychotomic

fraction of thelast found leaf n®. After R trias:

R
P. £1-Q q(n“))d; Pra (14)
r=1

Theoretically computing a reasonable approximation of P, is hard. Then, we evaluate
Py ON-line, deciding, after R unsuccessful trias, whether we are willing to accept the
NO answer as the correct one, with a preset probability of being mistaken, or we want
to continue the search.

6.3 Experimental Evaluation

Inthe following, let usdefine P =1- Ye. Then:
P»P,. £ Py (15)

We may notice that P only depends upon e and R, whereas P,,,, depends upon the

structure of the particular search tree. By increasing R, P, should convergeto P. In
order to show how P and P,,,, can be used, we performed an experimental analysis on
a subset of the formulas used in Section 3. The results are exemplified in Figure 16,

which describes typical time evolutions of P,,,, and P for aformulaj with 10 variables

and 19 literals, selected as representative of the set. From Figures 2 and 3, we seethat a
formulawith n = 10 and m = 19 undergoes a phase transition for a value of L between
20 and 25, when N = 100. For L < 20 the matching problems are aimost aways
solvable and easy, and for L > 25 the matching problems are amost always unsolvable

and easy.

From Figure 16 we observe that the behavior of P,,,, is very different in the three
regions, with respect to its derivative: when the problems are solvable, the rate of



descent of P, islow, but the curve stops early because a solution is easily found.
When problems are unsolvable, the rate of descent of P,,,, is high, and again the search
stops quickly, because it is easy to prove unsolvability (the search tree is small).
Finally, inside the phase transition region, P,,,, decreases slowly and we may need
excessive computational resourcesto arrive at a conclusion. It may be advisable, in this
case, to give up searching, and to accept a NO answer as the correct one. The graphs of
Figure 16 confirm the results reported by Walsh [1998], who showed that difficult
problems at the phase transition remain difficult as search proceeds.

Astherate of decay is similar on the left of and inside the mushy region at the
beginning of the search, it may not be possible to very early predict which of the two
cases actually is the current one, on the basis of P,,,, only. We combine then the
information from both P,,,, and P.

When B, decreases slowly and P predicts a very low probability of success, we can
assume that the matching problem we are handling is hard, probably close to the phase
transition. To test this hypothesis, we have performed a set of experiments, whose
results are reported in Figure 17. We have generated 25,000 matching problems, with n
=10, m=19, and L varying between 11 and 50, in order to cross the mushy regionin
the maximum complexity zone. For each problem, MC ran repeatedly, without
replacement, until either a solution was found or the whole tree was visited without
finding a solution. Let C be the total number of nodes visited by MC during the search
on agiven problem. C isthe complexity of the search, and is reported on the horizontal
axisof Figure 17.

Frobability
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Figure 16 — Temporal evolution of P and Py, inaformula j with 10 variables, and 19 binary
predicates, for different values of L. By choosing e = 0.0001, Py, reaches 0.01 for R = 922.



Let R denote the value of r at which we suspend the search. For al the matching
problems still undecided at R, let us measure the corresponding R, (R), and report this

value on the vertical axis of Figure 17. Then, each point (C;, Py, ;) correspondsto a

particular problem p;, which has the following characteristics:
(@ p; isdill undecided after R trialswith MC.

(b) The estimated probability of error, if we accept aNO answer, islessthan e, and the

probability of successin any singletrial should not have exceeded 0.01.
(c) The probability P, isexactly upper bounded by R, ; .

(d) p; required C stepsto arrive to a precise determination of its solvability.

Notice that problems that were decided at somer < R do not appear in the figure, and
then, only the problems inside the complexity peak have been considered. If another
snapshot would be taken at a greater R, a downward shift of the points would be
observed in Figure 17; moreover, some points could disappear, because they will get a
precise answer.
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Figure 17 — P, valuesmeasured at P=0.01 (R = 922 trials, with e = 0.0001) versus the total
number C of visited nodes. Symbols“+” and “.” denote solvable and unsolvable matching
problems, respectively.



Therefore, given two thresholds, g, on P and g, on P, respectively, a smple

criterion for deciding whether to stop the matching process at r = R can be captured by
the following rule;

“IfPE£q,and P, ° d,, Then stop the matching process’ (16)
The effect of rule (16) can be visualized in Figure 17 by drawing a horizontal line
corresponding to athreshold q,. For all the problems corresponding to points above the

line the matching process will be interrupted when P = 0.01. As we can see, the
maximum measured complexity increases very quickly whenP,, 3 0.5.

The results of a more accurate analysis of the effects of g, on the performances of the

stochastic matching are reported in Table 3, where the upper part refers to the problems
intherange 15 £ L £ 40 (i.e., the whole peak), whereas the lower part refers to
problems located very close to the critical point (17 £ L £ 24). The second column

contains the threshold value for q,, corresponding to the estimated probability of
success P, = P =0.01 with areliability (1 - € = 0.9999. We recdl that all the

matching processes for which B, ® g, at r = R will be stopped. What to do with them

Is up to the user: they may be declared “undecided”, increasing the number the casesin
which the resulting classifier does not give an answer, or they may be declared
unsatisfiable, possibly increasing the number of errors on satisfiable examples. Setting

g, = 0 means that every matching process stops as soon as P reaches the value 0.01.

Setting g, = 1 means that no matching processis stopped.

The third column contains the average complexity evaluated on all the problems,
including the ones that terminate before reaching the step R = 922, and the ones which
have been interrupted. The fourth column contains the computational cost, averaged on
all matching problems, which has been wasted for the problems interrupted after

reaching P = q,. The fifth column contains the percentage of problems which have not

been interrupted, i.e., which have been proved solvable or unsolvable. The sixth and
eighth columns contain the maximum experimental complexity, measured separately for
solvable and unsolvable problems. This maximum complexity corresponds to the
abscissa of the rightmost point (for solvable and unsolvable instances, separately)

occurring under the horizontal line P,,,, = q,. The seventh and ninth columns contain

the average global complexity required for 1 £r £ R, for solvable and unsolvable



problems, respectively. Finaly, the tenth (eleventh) column contains the fraction of
solvable (unsolvable) problems among the ones that would run to completion if the

threshold g, is chosen when P = 0.01. This fraction can be evaluated by the number of
solvable (unsolvable) problems whose corresponding points lay under the line P,,,,
=q, inFigure 17, augmented by the number of solvable (unsolvable) problems that
stopped before R steps, divided by the total number of solvable (unsolvable) problems.

We can see from Table 3 that, by choosing g, = 0.5, the maximum complexity for

running to completion about 86% of the problems (Table 3, col. 5) isless than 1/10 of
the maximum complexity over all solvable problems (Table 3, col. 6), and less than
1/20 over al unsolvable problems (Table 3, col. 8). This means that all the extremely
hard instances are cut away. Remarkable reductions are also obtained for the average
complexity (Table 3, col. 7 and 9). An optimal combination of the threshold values on
P and P,,,, could be experimentally found.

Table 3

Maximum and average matching complexity, in the region of the phase transition
induced by the number L of constants in the universe. The results are reported
separately for solvable (S) and unsolvable (U) problem instances. The stop of the

matching process has been decided when P = 0.01 with reliability 1- e= 0.9999.

1 2 3 4 5 6 7 8 9 10 11
Range | 02 | Cay Cus | %Decided co, e v A0 S U
of L problems

00 | 23359 | 1607.8 | 0.651 5439 704.2 4579 | 13536 | 0.841 | 0577
03 | 26872 | 9688 | 0.789 19235 926.0 27008 | 27372 | 0872 | 0.757
(15401 04 | 30075 | 809.9 | 0.824 24135 1080.7 36399 | 33552 | 0.889 | 0.798
05 | 34713 | 661.3 | 0.856 35863 13203 52417 | 41151 | 0910 | 0.835
06 | 41524 | 5163 | 0.888 74924 1589.7 90145 | 51418 | 0932 | 0870
1.0 | 159755 00 | 1.000 340969 3682.7 | 1170012 | 207743 | 1.000 | 1.000
00 | 25732 | 19338 | 0.580 5439 998.9 4579 | 19032 | 0.782 | 0.192
03 | 31026 | 12838 | 0.721 19235 1299.8 27008 | 62009 | 0823 | 0525
(17.25] 04 | 35247 | 10822 | 0.765 24135 15145 36399 | 76928 | 0.847 | 0.607
05 | 40885 | 877.0 | 0.809 35863 1845.1 52417 | 92240 | 0877 | 0680
06 | 46063 | 7226 | 0.843 74924 2212.1 90145 | 10391.6 | 0906 | 0.721
1.0 | 293540 00 | 1.000 340969 50405 | 1170012 | 761325 | 1.000 | 1.000

A smpler rule to limit the complexity would be to stop the matching process as soon as
the probability P reachesq,. Threshold g, can be lowered in order to alow a sufficient

exploration of the solution space. Table 4 reports the complexity values and the fraction



of perfectly answered problems for different stopping values of q,, ranging from 0.01

to 0.001. In Table 4 the columns have the same meaning asin Table 3. By comparing
Table 3 and Table 4, it appears that, for comparable average complexities, the fraction
of problems precisely answered using rule (16) is significantly higher. For instance, by

considering athreshold g, = 0.5, we obtain an average complexity of 3471 steps (Table

3, cal. 2), which isalittle less than the average complexity found by setting g, = 0.005

(Table 4, col. 2). Nevertheless, the fraction of problems run to completion is about
86% in the first case (Table 4, cal. 5), whileit isonly 77% in the second one (Table 4,
col. 5). As an alternative, a percentage of 87% of completed problems can be obtained

by settingq, = 0.002 (Table 4, col. 5), but in this case the average complexity would
be more than 5783 steps (Table 4, cal. 2).

Table 4

Maximum and average matching complexity, in the region of the phase transition induced by the
number L of constants in the universe. The results are reported separately for solvable (S) and
unsolvable (U) problem instances. The matching processis halted when P £ q,, with 1-e =
0.9999.

1 Z 3 4 5 6 7 8 9 10 11
Range off d, Cws | Cwad “;A;O%fgrinied Citw | CRg | G | i S U

0.010 | 23359 | 1607.8 0.651 | 5439 7042 | 4579 13536 | 0841 | 0577

0005 | 35036 | 2111.3 0771 | 10066 | 11781 | 10495 | 21222 | 0920 | 0712

(15,40 [ 0003 | 4647.7 | 2570.7 0.832 | 17021 | 15789 | 19621 | 29322 | 0956 | 0.783

0002 | 57830 | 3055.6 0867 | 24135 | 18354 | 26419 | 37461 | 0970 | 0.826

00015 | 67100 | 3321.9 0891 | 31106 | 2017.0 | 32369 | 45924 | 0977 | 0.858

0001 | 81553 | 3691.0 0919 | 51783 | 2371.1 | 49534 | 59258 | 0.986 | 0.893

0.010 | 25732 | 19338 0580 | 5439 9989 | 4579 19031 | 0782 | 0.192

0005 | 41128 | 2537.8 0724 | 10066 | 16335 | 10495 | 44423 | 0889 | 0.407

(17.241 ["0003 | 54033 | 2698.0 0.824 | 17021 | 21745 | 19621 | 66246 | 0940 | 0.600

0002 | 6611.0 | 3319.8 0855 | 24135 | 25226 | 26419 | 75753 | 0.959 | 0.655

00015 | 7666.7 | 3953.8 0871 | 31106 | 2769.8 | 31800 | 8339.0 | 0968 | 0.682

0001 | 9503.7 | 5006.9 08% | 51783 | 3238.1 | 49369 | 98128 | 0981 | 0717

Considering the lower parts of Table 3 and 4, we observe that getting closer to the
criticl point, the difference between the two stopping rules increases. Finally,
considering the last two columnsin Table 3 and 4, we see that the fraction of problems
run to completion has a different composition in the two cases. More specificaly, using
rule (16) we have a greater percentage of problems proved unsolvable (Table 3, col.
11, and Table 4, col. 11) and a smaller percentage of problem proved solvable (Table
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fraction of problems interrupted by setting a threshold on q, is represented by the
pointsin Figure 17 lying to the right of avertical line corresponding to the maximum

complexity found before reaching q, (Table 4, col. 6 and 8). The vertical dotted linein

Figure 17 corresponds to g, = 0.005.

Then, rule (16) offers agood criterion for avoiding to be trapped in an excessively
costly matching process inside the mushy region. An obvious way of using rule (16) in
a learning agorithm consists in regecting al the inductive hypotheses that are not
provable either true or false within assigned number of steps. This heuristicsis easy to
be included in any learning algorithm.

Furthermore, still weaker biases are possible. For instance, we notice from Figure 17
and Tables 3 and 4 that negative examples usually exhibit higher complexity than
positive ones. This means that, if we consider unsatisfiable a hypothesis stopped by
rule (16) , we may make a mistake. However, if the number of trialsis large enough,
the proportion of these mistakes may be of the same order as magnitude of the error due
to noisein typical real-world applications.

This last observation is exploited by the system STILL [Sebag & Rouveirol, 1997,
1999]. STILL makes use of a stop criterion based on the only estimate of the error
probability P. When P decreases below a given threshold the matching stops; this

criterion isequivalent to set g, = 0 in rule (16). With respect to STILL s criterion, rule

(16) with g, > 0 allows a smaler error rate to be achieved for the same average

complexity, or, alternatively, the same precision to be reached by paying a smaller
computational cost.

Other proposals of using stochastic sampling for estimating parameters relevant to
search have been presented by Frost, Rish and Vila[1997], Huberman, Lukose and
Hogg [1997], Bailleux and Chabrier [1996], and Bailleux [1998].

7. Conclusions

The recent literature in Machine Learning and Data Mining shows a growing interest
towards applications of relational learning to knowledge extraction in domains
characterized by highly structured data, such as Chemistry or Molecular Biology. If, on
the one hand, description languages based on First Order Logics offer an important
improvement to deal with structured data, on the other hand, the high complexity



hidden in the hypothesis verification step challenges the chances of success of relational
learning on large scale applications. In fact, relationa learners have been proved
successful, so far, only on simple tasks, in which hypotheses had to obey to strong
syntactic and/or semantic biases.

In this paper, we tried to trace back at |east one of the sources of the complexity in
relational learning, namely hypothesis verification. The emerging findings suggest that
there may be severe scalability problemsin inductive approachesto relational learning,
as soon as applications requiring descriptions with many variables are faced. New
heuristics should be devised, capable of “distracting” the learner from the attraction of
the phase transition. A possible way out may be to use domain specific knowledge.

The method proposed in Section 6 does not offer away of keeping the learner away
from the phase transition region. However, it does offer the benefit of reducing the
amount of likely useless search, without constraining too much the hypothesis space.
The same istrue for other approaches to improve efficiency in FOL learning, such as
caching previous expensive computations or memorizing partia evaluations, as
proposed, for instance, by Pompe [1996], or implemented in the P-Progol version of
Progol [Muggleton, 1995]).

The empirical results reported both in this paper and by other authors [ Sebag, 1997]
suggest that stochastic sampling can be a viable approach.

References

AdéH., de Raedt L., and Bruynooghe M. (1995). “Declarative Bias for Specific-to-
General ILP Systems’. Machine Learning, 20, 119-154.

Anglano C., Giordana A., Lo Bello G., and Saitta L. (1997). “A Network Genetic
Algorithm for Concept Learning”. In Proc. 7th Int. Conf. on Genetic Algorithms
(East Lansing, Ml), pp. 434-441.

Anglano C., Giordana A., Lo Bdlo G., and Saitta L. (1998). “An Experimental
Evaluation of Coevolutive Concept Learning”. In Proc. 15th Int. Conf. on Machine
Learning (Madison, WI), pp. 19-27.

Bacchus F., and van Beek P. (1998). “On the Conversion between Non-Binary and
Binary Constraint Satisfaction Problems”. In Proc. 15th Nat. Conf. on Artificial
Intelligence (Madison, WI), pp. 311-318.

Bailleux O. (1998). “Local Search for Statistical Counting”. In Proc. 15th Nat. Conf.
on Artificial Intelligence (Madison, WI1), pp. 386-391.

Bailleux O., and Chabrier J-J. (1996). “ Approximate Resolution of Hard Numbering
Problems’. In Proc. 13th National Conf. on Artificial Intelligence (Portland,
Oregon, USA), pp. 169-174.

Bergadano, F., Giordana, A., Saitta L. (1988). “ Automated Concept Acquisition in
Noisy Environments’. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-10, 555-577.



BottaM., Giordana A., and Saitta L. (1999). “Relational Learning: Hard Problems and
Phase Transitions’, In Proc. 16th Int. Joint Conf. on Artificial Intelligence

(Stockholm, Sweden). In press.

Botta M., Giordana A., SaittaL., and Sebag M. (1999) “Relational Learning: Hard
Problems and Phase Transitions’, InProc. 6" Nat. Conf. on Artificial Intelligence
(Bologna, Italy). In press.

Brassard G., and Bratley P. (1988). Algorithmics: Theory and Practice. Prentice Hall,
Englewood Cliffs, NJ. [pp. 262-267].

Cheeseman P., Kanefsky B., and Taylor W.M. (1991). “Where the Really Hard
Problems Are”. In Proc. 12th Int. Joint Conf on Artificial Intelligence (Sidney,

Australia), pp. 331-337.

Cohen W. (1993). “A PAC-Learning Algorithm for a Restricted Class of Recursive
Logic Programs’. In Proc. of 10" National Conf. On Artificial Intelligence
(Washington, DC.)

Crawford J.M., and Auton L.D. (1996). “ Experimental Results on the Crossover Point
in Random 3-SAT”. Artificial Intelligence, 81, 31-58.

De Raedt L. (1997). “Logical Setting for Concept-Learning”, Artificial Intelligence, 95,
187-202.

De Raedt L., and Dzeroski S. (1994). “First-Order jk-Clausal Theories are PAC-
Learnable’, Artificial Intelligence, 70, 375-392.

desJardins M., and Gordon D. (Eds.) (1995). Machine Learning, Special Issue on Bias
Evaluation and Sdlection, 20 (1-2).

Dzeroski S., Muggleton S, and Russell S. (1992). “PAC-Learnability of Determinate

Logic Programs’. In Proc. COLT-92 (Pittsburgh, PA), pp. 128-134.

Freeman JW. (1996). “Hard Random 3-SAT Problems and the Davis-Putnam
Procedure”. Artificial Intelligence, 81, 183-198.
Frost D., Rish I., and Vila L. (1997). “Summarizing CSP Hardness with Continuous

Probability Distributions”.  In Proc. 14th National Conf. on Artificial
Intelligence (Providence, Rhode Island, USA), pp. 327-333.

Gent I.P., and Walsh T. (1995). “Phase Transitions from Real Computational

Problems”. In Proc. of the 8th Int. Symp. on Artificial Intelligence, pp. 356-364.

Gent I.P., and Walsh T. (1996). “The TSP Phase Transition”. Artificial Intelligence,
88, 349-358.

Gent |.P., MacIntyre E., Prosser P., and Walsh T. (1996). “ The Constrainedness of
Search”. In Proc. 13th National Conf. on Artificial Intelligence (Portland, Oregon,
USA), pp. 246-252.

Giordana A., Saitta L., Bergadano F., Brancadori F., De Marchi D. (1993):
“ENIGMA: A System that Learns Diagnostic Knowledge’, IEEE Trans. on
Knowledge and Data Engineering, KDE-5, 15-28.

Giordana A., Neri F., SaittaL., and Botta M. (1998). “Integrating Multiple Learning
Strategiesin First Order Logics’. Machine Learning, 27, 221-226.

Gomes C.P., and Selman B. (1997). “Problem Structure in the Presence of
Perturbations”. In Proc. 14th Nat. Conf. on Artificial Intelligence, (Providence,
Rhode Island, USA), pp. 431-437.

Hogg T. (1996). “Refining the Phase Transition in Combinatorial Search”. Artificial
Intelligence, 81, 127-154.

Hogg T., Huberman B.A., and Williams C.P. (1996). “Phase Transitions and the
Search Problem”. Artificial Intelligence, 81, 1-15.

Hogg T., Huberman B.A., and Williams C.P. (Eds.) (1996). Artificial Intelligence,
Soecial Issue on Frontiersin Problem Solving: Phase Transitions and Complexity,
81 (1-2).

Huberman B.A., Lukose R.M., and Hogg T. (1997). “An Economics Approach to
Hard Computational Problems’. Science, 275, 51-54.



Hyafil L., and Rivest R. (1976). "Constructing optimal binary decision treesis NP-
complete”. Information Processing Letters, 5, 15-17.

Kietz J.U., and Wrobel S. (1992). “Controlling the Complexity of Learning through
Syntactic and Task-Oriented Models’. In S. Muggleton (Ed.), Inductive Logic
Programming, Academic Press, London, UK, pp. 107-126.

Kietz J.U. and Morik K. (1994). “A Polynomia Approach to the Constructive

Induction of Structural Knowledge’. Machine Learning, 14, 193-218.

Kietz J.U., and DZeroski S. (1994). “Inductive Logic Programming and Learnability”.
SIGART Bulletin, 5, 22-32.

Michalski R.S. (1980). “Pattern recognition as a rule-guided inductive inference’
|EEE Trans. on Pattern Analysis and Machine Intelligence, PAMI-2, 349-361.

Mitchell T. M. (1982). “ Generalization as search”. Artificial Intelligence, 18, 203-226.

Morik K. (1991). “Baanced Cooperative Modeling”. In Proc. 1st Multistrategy

Learning Workshop (Harpers Ferry, WV), pp. 65-80.
Muggleton S. (Ed) (1992) Inductive Logic Programming, Academic Press, London.

Muggleton S., and Feng C. (1992). “Efficient Induction of Logic Programs’. In S.
Muggleton (Ed.), Inductive Logic Programming, Academic Press, London. UK,
pp. 281-298.

Muggleton S. (1995). “Inverse Entailment and Progol”. New Generation Computing,
13, 245-286.

Pompe U. (1996). “Efficient Proof Encoding” Lecture Notesin Artificial Intelligence,
1314, 299-314.

Prosser P. (1996). “An Empirical Study of Phase Transitions in Binary Constraint

Satisfaction Problems”. Artificial Intelligence, 81, 81-110.

Quinlan R. (1990). “Learning Logical Definitions from Relations’, Machine Learning,
5, 239-266.

Sebag M., and Rouveirol C. (1997). “Tractable Induction and Classification in FOL”.
In Proc. 15th Int. Joint Conf. on Artificial Intelligence (Nagoya, Japan), pp. 888-
892.

Sebag M., and Rouveirol C. (1999). “ Stochastic Relational Inference: Sampling-Based
Heuristics for Any-Time Inductive and Deductive Reasoning”. Machine Learning.
To appear.

Selman B., and Kirkpatrick S. (1996). “Critical Behavior in the Computational Cost of

Satisfiability Testing”. Artificial Intelligence, 81, 273-296.

Smith B.M., and Dyer M.E. (1996). “Locating the Phase Transition in Binary
Constraint Satisfaction Problems’. Artificial Intelligence, 81, 155-181.

Srinivasan A., Muggleton S., and King R.D. (1995). “Comparing the Use of
Background Knowledge by two ILP Systems”. In Proc. 5th Int. Workshop on ILP
(Leuven, Belgium), pp. 199-229.

Vaiant L. G. (1984). “A Theory of the Learnable’. Communications of the ACM, 27,
1134-1142.

Walsh T. (1998). “ The Constrainedness Knife-Edge”. InProc. 15th National Conf. on
Artificial Intelligence (Madison, Wisconsin, USA), pp. 406-411.

Watanabe S. (1969). Knowing and Guessing: A Quantitative Sudy of Inference and
Information. John Wiley & Sons, New York, NY. [pp. 27-32].

Williams C.P., Hogg T. (1994). “Exploiting the Deep Structure of Constraint

Problems”. Artificial Intelligence, 70, 73-117.
Zhang W., and Korf R.E. (1996). “A Study of Complexity Transition on the
Asymmetric Travelling Salesman Problem”. Artificial Intelligence, 81, 223-239.
Zucker J-D. (1996). “Representation Changes for Efficient Learning in Structural
Domains”. In Proc. 13" Int. Conf. on Machine Learning (Bari, Italy), pp. 543-

551.



1

2

Different ordering of the variables, both static and dynamic, have been tried, without noticing
changes in the emergence of the phase transition.

The dataset used here isthe “regression friendly” one: it includes those examples that can be
modeled with a good approximation by linear regression.
A discussion on the relations between binary and non binary CSPsis provided by Bacchus and
van Beek [1998].
In this experiments the whole dataset has been used, because we are not interested in evaluating
the predictive power of the learned knowledge, but only the impact of the matching's
complexity on learning.
In the real-world application, the system ENIGMA was used [Giordana et al., 1993], but now
we re-analyzed the dataset with the new system G-Net. In fact, the knowledge base used in-field
was obtained with an integration of SBL and EBL, and was a structured knowledge base with
chains of disunctiverules, instead of flat ones. In the cited paper, a complete description of the
application can be found.

G-Net uses a special Seeding operator to generate the initial population of hypotheses. Details

of the procedure can be found in [Anglano et al., 1998]



