
VOLUME 37, +UMBER 3 PHYSICAL REVIEW LETTERS 19Jvx.v 1976

where A(0) =0, B(1)=0,

A(x) ' +B(x) ' =C

A'(x)B(x) B-'(x)A(x) = 1,

I( —1, Z [r QC/(Z —1))]'
M Z -1 r(2I('/(Z 1—))

(8) Substituting (13) and (14) back into the expression for W [E] and integrating by parts gives

W [Ii0] = —1 —2K lnC,

(14)

and substituting this result into (10) recovers the formula in (4) for the behavior of A„when n is large.
%e are currently working on extending these methods to higher-dimensional field theories and hope

to use them eventually to obtain the radius of convergence of E,(n).
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We rigorously prove that in three or more dimensions, the nearest-neighbor, simple-
cubic, ferromagnetic, quantum Heisenberg model of spin S (= ~~, 1, ~ ~ ~ ) has a phase tran-
sition at nonzero temperature.

The quantum Heisenberg model represents one
of the simplest models in which ferromagnetic be-
havior occurs. From a variety of intuitions in-
cluding high-temperature expansions' and spin-
wave apprpximations, ' it has been believed for
many years that the three-dimensional model has

a first-order phase transition in the magnetic
field at sufficiently low temperatures. Despite
its obvious physical interest, a rigorous proof of
this has not been available — -the only previous rig-
orous results on phase transitions in quantum lat-
tice systems are proofs of the absence of phase
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transitions in suitable models in external field, '
the proof of absence of long-range order in two-
dimensional isotropic models, ' and the proof of a
phase transition for highly anisotropic models. '
In this Letter we wish to announce and sketch a
rigorous proof of the occurrence of spontaneous
magnetization at nonzero temperatures in near-
est-neighbor, simple-cubic, ferromagnetic quan-
tum Heisenberg models in three or more dimen-
sions.

To describe the v-dimensional model precisely,
consider a box & with sides of length I„.. . ,L„.
At each point, &, with integral coordinates in JI

we have an independent quantum spin s„(with
three components s„')) of some fixed angular mo-
mentum S (= 2, 1, . ..). The basic Hamiltonian is
given by'

p(s) =—p™ (s)s(s+1)
Series expansion value

(Ref. 1)
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3/2
2

5/2

7/2

9/2

1.854
0.965
0.872
0.882
0.810
0.797
0.788
0.788
0.778
0.776
0.758

0.8880 + 0.0009
0.7660+ 0.0020
0.7808+ 0.0013

0.7084+ 0.0006

0.6916+0.0002

TABLE I. The second column lists our rigorous up-
per bounds on inverse transition temperatures in. three
dimensions. The third column lists P (S)S(S+1) accord-
ing to H,ef. 1.

HA= Q Q(S'-s„s„,g,),
o'.FA i= 1

where && is the unit vector with ith component +1
and we intend periodic boundary conditions, i.e.,
if n is at a face so that n+6q&A, ++6; is inter-
preted as o.- (L &

—l)&~. Each pair of points is
counted once in (1). In the box A, one forms the
Gibbs state

(A)A = Tr[A exp(-PH~) j/Tr exp(-PHA).

We will prove directly that for P &P,(S) (to be de-
fined below),

iimlAI '&[Z s„]'»0,

(2)

A-& oo nEA

which is one notion of phase transition. It is not
difficult' to go from (3) to other notions of phase
transition such as nondifferentiability of the free
energy or discontinuity of magnetization in exter-
nal field. Our upper bound, P, (S), on the critical
P is given by the implicit equation

+3(S + 1) = (2)) ) "fcoth(vip, E,S)d'p, (4a)

the convexity of cothx that ~P,(S) is a decreasing
function of v, as it should be.

The variable p is convenient since p, (S) has a
finite limit p(~) =2(2))) 'fE~ dp. This is rea-
sonable on the basis of limit theorems' which re-
late the limit S- to the classical Heisenberg
model, i.e., a model with Hamiltonian (1) but with
s a vector on a sphere of radius S =1 rather than
an operator. It has recently been proven by Froh-
lich, Simon, and Spencer" (henceforth FSS) that
this classical lattice system has a phase transi-
tion—their upper bound on the critical P is just
p (~) which is also the transition temperature for
the spherical model. The starting point of our
proof is the basic strategy of FSS; namely in the
classical case, one proves the following two
things.

(A) An upper bound on the Fourier transform of
(s„s()) of the following form: Let

s (/) IAI 1/2 Q s ( j)etP'n
nEA

where

Ep = v —cospi —~ ~ e —cospp, (4b)

for p obeying p~L& =2n'n; (n& =- &L, +1,... , &I & if
L, is even). Then, in the classical case, FSS
show that

and 2SE~ is the energy of a momentum p spin
wave; the integral is over the hypersphere I p;I
~ ~, i = 1,... , v. Since cothx is monotone de-
creasing and goes to 1 as x -~, it is not hard to
see that (4a) has a finite solution as long as v & 3
(in order that the integral converge at p =0) and
the parameter S obeys S+l&W3(i.e. , for all phys-
ical values S = ~, 1, etc.). In Table I, we list for
v = 3 the function p, (S) =P,(S)S(S+1) obtained by a
numerical analysis. ' It is easy to deduce from

(5)

(8) A trivial equality (Parseval),

AI 'g (s ("s,&') = (s, s,) =S'

Equations (5) and (6) together imply that for S2P

&u ("),
lim IAI '(s ')&0.
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[Note that &s,') =]Al '&[g„s„]').]
In carrying this strategy to the quantum case,

the first problem that arises is that (5) can no
longer hold, for (5) would imply that with A fixed
and P ~, &s„' s&) would approach a constant.
But it does not; it approaches S if o. 4y and S(S
+1) if o.'=y. The key to solving this problem is
to deal with a different, but natural, two-point
function. Define the Duhamel two poin-t function
of A. and B by

(A g)=[Tr(e BH)] ~ [J dt Tr(As ~8 "&s ~~ '~s")]

Having overcome the first difficulty and estab-
lished (5') we are faced with another; the analog
of (8) is

IA I
' g &s ~'~s ~'~& =S(S+1). (8')

(5') involves the Duhamel two-point function
while (6') involves the ordinary thermal two-
point function. The usual inequality"

(A+, A) ~ &[&A+A)+&AA+)],

goes in the wrong direction. The second step in
our proof' is a generalization ' of an inequality
of Roepstorff. " Let f (x) be the convex function
for x ~ 0 given by

This natural object written in a different form is
the inner product used in Bogoliubov's inequali-
ty." It has been discussed recently by several
authors in this form. ~2'~3

The analog to step (A) in our quantum proof' is
to show that, if L„.. . , L, are even,

f (xtanhx) =x ~tanhx.

Then

(A. *,A) ~ 2[&A+A)+&AA+)] f (c),
where

c =8& [A +, [a,A]])/2[&A*A) ~&AA*)].

(8a)

i= 1 2pE
(5')

The proof of (5') is related to the FSS proof of
(5) with two important changes: (a) We must
avoid use of the usual kind of transfer matrix
which exists in the classical case but not the
quantum ease. (b) We must extend a certain in-
tegral inequality to the noncommutative case.

(8) should be applicable to more than just our
problem. It is the necessary ingredient needed
to obtain a bound on the thermal two-point func-
tion from (5'). The proof of (8) relies on the fact
that f is convex and that the integrand in the def-
inition of the Duhamel two-point function (A*,A)
is the Laplace transform of a positive measure.

Using (8) and (5'), properties of f, and the el-
ementary bound

3 V

P Z &[s~'", [If, s-.'"]])=4PE~(lh I ~) ' Z Z &s. s.. .)- 4PE..S',
2=1 acA ~=g

one has for p 4 0 that

&s.~ Q~) & S~2 cothx~,

x~- v3PSE~. —

(5")

(8(l)

Equation (5") is the quantum analog of (5). (8')
and (5") imply

IA I
' Z &s, ~ s,) ~ WSIAI ' 2 cothx, .

i the components are related, there are really on-
ly two degrees of freedom, so & might become —,

'
= 1 at low temperatures.

It is a pleasure to thank J. Frohlich for valua-
ble correspondence and J. Dames for doing the
numerical calculations appearing in Table I.

p&o p~o

As IAI-~, (4) is obtained.
%e close with two related remarks. It seems

to us that in the second part, (B), of our proof
we have neither given away any factors nor have
we had to make any restrictions on the model.
However, in the first part, (A), our method of
proof has restricted us to nearest-neighbor cou-
pling and a simple cubic lattice. The factor of &

can be interpreted as coming from 2A-'7.
' per com-

ponent summed over three components. Since
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Recent measurements of (p, x+) reactions near threshold allow us to restrict substan-
tially the possible forms of the empirical nonrelativistic m.NN vertex.

The theoretical description of (p, n') reactions is
presently dominated by two disparate viewpoints:
The first' supposes that the incident proton shakes
off a pion and the resulting neutron is captured
into a single-particle orbital of the residual nu-
cleus, a process which is analogous to (d,p) strip-
ping and is therefore called pionic stripping. The
average influence of the target nucleons is taken
into account through distortion of the incident and
outgoing waves. The second school' supposes
that at the large momentuxn transfers of pionic
stripping, single-nucleon wave functions have too
little strength, so that there is a substantial gain
to be made through sharing the momentum equally
among several nucleons (incoherent multinucleon
model). In a recent review I have discussed in
detail my reasons for preferring the pionic strip-
ping to the incoherent multinucleoa model. ' As-
suming the former to be correct, there neverthe-
less remains a nontrivial problem of distinguish-
ing the effect of coherent rescattering (distortion)
from those of the nuclear structure as represent-
ed by the single-particle wave function. In trying
to disentangle these effects it is essential to know
the form of the ~AN vertex amplitude. Unfortu-
nately, as several authors have shown, the non-
relativistic reduction of the mNN coupling is made

ambiguous by our ignorance of the "small" com-
ponents of (four-component) nucleon wave func-
tions in the usual nuclear-structure theories. '

The object of this note is to explore to what
extent the pkenomenological form of the &NN

vertex is fixed by our present experimental
knowledge. The measurements at 185 MeV' of
"Ca(p, ~')"Ca(g.s.) and "B(p,~') "B(g.s.), when
combined with more recent results at 154-MeV
bombarding energy, ' tend to distinguish relatively
clearly between the two most popular phenome-
nological nonrelativistic &XX effective Hamilton-
ians. To see how this comes about, we note first
that the amplitude for pionic stripping, in the dis-
torted-wave Born approximation, has the form

fd'~yI, ,{}*(x)Q g„(x)0$~(x)~4,. -,('&), (1)

where

&+}) =[1+(E+ir) H) '(H —V„„1—E—)]
xat(p) ~i) (2)

is the solution of the Schrodinger equation with
asymptotic Coulomb-wave behavior; a (p) is a
creation operator for the incident proton, with
barycentric momentum p; qadi( }*(x)is the scatter-
ing wave function of the outgoing pion, which has


