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We investigate a model of transportation networks with nonlinear elements which may represent local

shortage of resources. Frustrations arise from competition for resources. When the initial resources are uni-

form, different regimes with discrete fractions of satisfied nodes are observed, resembling the Devil’s staircase.

We demonstrate how functional recursions are converted to simple recursions of probabilities. Behaviors

similar to those in the vertex cover or close packing problems are found. When the initial resources are

bimodally distributed, increases in the fraction of rich nodes induce a glassy transition, entering an algorith-

mically hard regime.
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The study of currents and flows in networks is one of the
most important problems in physics and many other areas of
application �1�. Besides electric circuits transporting electric
currents, there are transportation networks, communications
networks, hydraulic networks, mammalian circulatory sys-
tems and vascular systems in plants �2,3�. A unified approach
to these problems is facilitated by the minimization of cost
functions. For example, they may represent the dissipation
energy �via Thomson’s principle for electric currents� �1� or
time delays in communications networks. There is a close
relation between the flow patterns and the cost functions. For
example, it was found that the flow pattern is treelike when
the cost function is convex, but loopy otherwise �3�. These
cost functions are continuous and often describe resistive
flows. On the other hand, networks may contain nonlinear
elements such as steplike penalties that may affect the flow
distribution.

The inclusion of nonlinear elements can drastically
modify the flow patterns in the network. Nonlinearities are
often represented by cost functions that are discontinuous in
the currents. This creates numerous choices in deciding the
current-carrying links and the idle ones. As shown in this
paper, the flow patterns can demarcate clusters of nodes re-

ceiving currents. Clusters formed by similar energetic con-

siderations have been found to play an important role in

disordered systems such as the random field Ising model

�RFIM� �4�, giving rise to the so-called Griffiths singularities

and cascades of phase transitions �5�. As we shall see, similar

behavior can also be found in nonlinear networks.

The origin of these interesting phenomena can be traced

the presence of frustrations, which refers to the conflict be-

tween competing interaction energies in the system �6�. This

connects such transportation networks with a broad class of

network systems in which frustration is inherent, including

the K satisfiability �7�, the graph coloring problem �8�, and

error-correcting codes �9�. Spin glasses, the prototype of

frustrated systems, provide the statistical mechanics to study

these systems �10�.
Transportation networks consist of nodes with either sur-

plus or shortage of resources, and an important problem is to

distribute them to achieve a networkwide satisfaction with a

minimum transportation cost �11�. This problem is important

in load balancing in computer networks and network flow of

commodities �12�. The focus of this paper is on the case

where optimization of resources can proceed by penalizing

nodes with shortages. In applications such as communica-

tions networks, such shortages can be detrimental to the per-

formance. Hence it is interesting to consider steplike short-

age costs, which give rise to unique behavior and physical

picture absent in the previous models �11�. Frustrations arise

from competition for resources among connected nodes. Nu-

merous metastable states emerge, leading to typical glassy

behavior.

Many NP-complete problems in computational complex-

ity theory �13� exhibit glassy behavior. As we shall see, the

main results in this paper are that changes in the shortage per

node induce phase transitions to glassy behavior. A new fea-

ture in our model is a cascade of phase transitions resem-

bling the Devil’s staircase in the glassy phase, and the first

cascade is similar to the vertex cover problem �14�. As a

crucial difference from other NP-complete problems, the

present problem involves continuous variables which com-

plicate the analyses. We demonstrate how recursions of func-

tions with continuous variables can be converted to simple

recursions of probabilities.

Specifically, we consider a dilute network of N nodes,

labeled i=1. . .N. Each node is connected randomly to c

neighbors with the symmetric connectivity matrix Aij =1,0

for connected and unconnected node pairs respectively. Each

node i has initial resource or capacity �i, randomly drawn

from a distribution of ���i�. Positive and negative values of

�i correspond to surplus and shortage of resources respec-

tively. These resources can be transported through connected

links. We denote by yij �−y ji the current of resources from

node j to node i. The system minimizes the cost function

E =
u2

2
�

i

��− �i� + �
�ij�

yij
2

2
. �1�

�i��i+� jAijyij is the final resources of node i, and ��x�
=1 when x�0, and 0 otherwise. In the first term, each un-

satisfied node yields a shortage cost of u2
/2. The second

term is the transportation cost of resources.

We first look for phase transitions in the model by nu-

merical simulations. To formulate an algorithm, we introduce

a variable si= �1 for each node i and restrict its resources by
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si�i�0. Introducing Lagrange multipliers 	i for the resource

constraint, we minimize the Lagrangian

L =
u2

2
�

i

1 − si

2
+ �

�ij�

yij
2

2
+ �

i

	isi�i �2�

with the Kühn-Tucker conditions 	isi�i=0 and 	i
0. Opti-

mizing L with respect to yij, one obtains yij =	 js j −	isi and

	i=min�0, ��i+� jAij	 js j� /sic�. Given a particular set of

�si�, we iterate these equations to find the corresponding set

of �	i�. The set of optimal �si� is found by an approach

similar to the GSAT algorithm �15�, by comparing the La-

grangian in Eq. �2� for each choice of �si�.
We first consider networks with uniform capacity ��i=�

for all i�. As shown in Fig. 1 for c=3, three phases can be

identified: �1� unsatisfied phase for � /u
−	3, in which all

the nodes are unsatisfied and E /N=u2
/2; �2� partially satis-

fied phase for −	3�� /u�0, in which only some nodes are

satisfied, and 0�E /N�u2
/2; �3� satisfied phase for � /u

�0, in which all nodes are satisfied and E /N=0.

Unlike the relatively smooth decreasing trend of energy,

the fraction of unsatisfied nodes is a discontinuous function

of � /u, showing abrupt jumps at threshold values of � /u.

The step size of the curve decreases as � /u increases, and

gradually becomes unresolvable by the numerical experi-

ments. This resembles the Devil’s staircase observed in the

circle map and other dynamical systems �16�. These thresh-

old values of � /u mark the position at which certain con-

figurations of the satisfied nodes become energetically stable.

To further confirm this picture, we measure the average

maximum cluster size of satisfied nodes in the samples.

Abrupt jumps of the cluster size are observed at the same

threshold values as shown in Fig. 1. This indicates that new

types of clusters of satisfied nodes are formed at each jump,

as shown in Fig. 2 for c=3. The situation is similar to the

cascades of phase transitions in RFIM due to the onsets of

different clusters �5�. As shown in the inset of Fig. 1, the

maximum cluster size increases drastically to O�N� around

� /u
−0.5. This corresponds to a percolation-like transition

at which isolated clusters of satisfied nodes become con-

nected.

We carry out the analysis using the Bethe approximation

since the networks have a treelike structure locally. Messages

are passed from the vertices of the subtrees to the next layer,

resulting in a recursion relation of the messages. In the cavity

approach, these messages are the cavity energy functions,

denoted by E j�yij� for the energy of the tree terminated at a

link from vertex j to its ancestor i, when a current yij is

drawn from j to i �11�. They can be expressed in terms of the

energies of its descendents k=1, . . . ,c−1,

E j�yij� = min
�y jk�
��

k=1

c−1

Ek�y jk� +
u2

2
��− � j�yij�� +

yij
2

2
� , �3�

where � j�yij�=� j +�ky jk−yij.

In general, the iteration of Eq. �3� results in a distribution

of the cavity energy functions, as shown in Fig. 3�a�. How-

ever, in the regime −	c
� /u
−	c�c−1� / �c+1�, it can be

shown analytically that there are c functional forms of Ek�y�
forming a closed set of solutions to the recursion relation in

Eq. �3�. The three functions for c=3, referred to as the u, s,

and b states, are shown in Figs. 3�b�–3�d�. Respectively, they

correspond to states favoring unsatisfaction, satisfaction, and

bistability, and have absolute minima at y=0, y=� /c, and

both y=0 and � /c. Furthermore, numerical iterations of Eq.

�3� starting with random Ek�y� show that this set of solutions

is stable. For c�3, the closed set consists of more states

having absolute minima at y=0, and local minima at differ-

ent energies at y=� /c, similar to the u state in Fig. 3. As we

shall see, the closure property of the c states greatly simpli-

fies Eq. �3�. With the u and b states denoted as the U state,

and the s state by the S state, their recursion relations are

given by an “SU recursion:” assign a vertex to an S state if

all its c−1 descendents are in the U state, and to a U state

otherwise.

-2 -1.5 -1 -0.5 0
Λ/u

0

0.2

0.4

0.6

0.8

1

1.2

E
’/

N
,

F
ra

c
ti

o
n

o
f

u
n

sa
ti

sf
ie

d
n

o
d

e
s

E’/N

Fraction of unsatisfied nodes

-2 -1.5 -1 -0.5 0
0

50

100

0

1

2

3

4

M
a
x

.
c
lu

st
e
r

si
z
e

o
f

sa
ti

sf
ie

d
n

o
d
e
s

max cluster size of sat nodes

FIG. 1. �Color online� Simulation results of average energy per

node, the fraction of unsatisfied nodes and the maximum cluster

size of satisfied nodes after optimization, as a function of � /u. E�

=2E /u2. Parameters: c=3, N=100, 100 samples and 1000 flips.

Inset: the maximum cluster size of satisfied nodes shown with a

larger vertical scale.
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FIG. 2. The onset of different types of clusters of satisfied nodes

for c=3, with filled and unfilled circles representing satisfied and

unsatisfied nodes respectively.
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FIG. 3. �Color online� �a� A typical set of cavity energy func-

tions Ek�y� at c=3, � /u=−1.22�−	3 /2. �b�–�d� The closed set of

Ek�y� at c=3, � /u=−5 /3 with �=u2
/2−� /2c, corresponding to

�b� the u state, �c� the s state and �d� the b state.
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The recursion rules imply that optimization is achieved by

the close packing of satisfied nodes in the network, with the

constraint that they do not form clusters. Hence we call the

regime −	c�� /u�−	c�c−1� / �c+1� the single-sat regime.

This reduces the problem to the vertex cover problem �14�.
Since there is at most one satisfied node at the end of each

link, the maximization of the number of satisfied nodes is

equivalent to the minimization of the covered set size in the

vertex cover problem. Alternatively, the model can be con-

sidered as the close packing limit of a lattice glass model

�17�. Both models exhibit glassy behavior, and phases with

multiple metastable states are found therein, corresponding

to the computationally hard phases.

The description of the glassy behavior can be approached

by the replica analysis �10�. In the so-called replica symmet-

ric �RS� ansatz, one assumes that the network behavior is

dominated by a single ground state. However, we find that

this ansatz is not stable in the entire single-sat phase. Instead,

the network behavior is described by the so-called full rep-

lica symmetry-breaking �FRSB� ansatz, which assumes an

infinite hierarchy of metastable states. Indeed, we have com-

puted the optimized energy in the one-step RSB �1RSB� ap-

proximation, assuming that the optimized states with energy

E are distributed exponentially according to exp�N�E��,
where �E� is the so-called configurational entropy �18�. Fu-

thermore, the 1RSB ansatz predicts that �E� exists up to an

energy Ed above the ground-state energy Es, and the numer-

ous metastable states prevent practical algorithms from con-

verging to the true ground state, resulting in a dynamical

transition. Specifically, we find that in the single-sat regime,

E /N=�2
/6+ fu�u2

/2−�2
/6�, where fu is the fraction of un-

satisfied nodes. In the RS approximation, fu=0.545, whereas

in the 1RSB approximation, fu=0.549 and 0.550 at its Es and

Ed, respectively. Note that fu at the dynamical transition is

close to the simulation result of fu=0.551.

When � increases above the single-sat regime, clusters of

two satisfied nodes appear. This double-sat regime exists in

the range −	3 /2�� /u�−	21 /25 for c=3. This is similar

to the close packing limit of the Bethe glass model, in which

each occupied site can have at most one occupied neighbor.

However, the present model is richer in behavior, as indi-

cated by the jumps in the fraction of unsatisfied nodes in the

double-sat regime of Fig. 1. They mark the positions at

which configurations increasingly dominated by two-node

clusters become energetically stable, when � increases.

An example of such an energy switch is shown in Fig. 4.

Indeed, such threshold values are expected at � /u

=−	�3n−3� / �2n−1�, where n=2,3 , . . .. Only two of those

thresholds are visible in Fig. 1, probably due to the absence

of configurations for larger n in networks with N=100, and

the limitations of the search algorithm. Note that the double-

sat regime may exhibit behaviors described by different RSB

ansatz as � /u varies. It is also interesting to study the pos-

sible change of RSB behavior as � /u further increases up

the Devil’s staircase.

Next, we consider a simple case with quenched disorder

of the node capacities. In this case, �i is drawn from a bi-

modal distribution, namely, �i=�� with probabilities f�,

where �− /u�−	3��+ /u�−	3 /2 for c=3, and f++ f−=1.

�� are referred to as the rich and poor nodes, respectively.

The recursion relations for the rich nodes follow the SU re-

cursion, whereas the poor nodes are always in the U state.

Note that the end points of this range are f+=0 and 1, corre-

sponding to the unsatisfied and partially satisfied phases, re-

spectively. Since these two phases are in the RS and RSB

regimes, respectively, we expect that there is a phase transi-

tion when f+ increases from 0 to 1.

Applying the RS ansatz to the region of low f+, we let pu,k

be the probability that node k is in the U state. Its recursion

relation can be written as

pu,j = ��j,�−
+ ��j,�+

1 − �
k=1

c−1

pu,k� , �4�

which corresponds to an intense simplification of Eq. �3�. In

the easy regime at low f+, a stable fixed-point solution with

all pu,k=0 or 1 exists. The site average �pu� can thus be

obtained from the equation �pu�= f−+ f+�1− �pu�c−1�. In terms

of algorithms, optimal network states in this regime can be

obtained by the so-called belief propagation �BP� algorithm,

initializing the messages to 0 or 1.

The stability of the RS solution can be studied by consid-

ering the propagation of fluctuations ���pu,k�
2� under the re-

cursion relation Eq. �4� �19�. This leads to the Almeida-

Thouless �AT� stability condition, which reads

�c − 1�f+�pu
2�c−2 
 1. �5�

In the RS regime, �pu
2�= �pu� since pu,k=0 or 1. This implies

an AT transition at f+
AT=cc−2

/ �c−1�c−1.

As shown in Fig. 5�a�, free nodes with 0� pu,k�1 start to

exist when f+� f+
AT, analogous to the vertex cover �14� and

graph coloring problems �8�. This characterizes the hard re-

gion with multiple states.

(a) (b)

FIG. 4. �a� A five-node configuration composing of 3 isolated

satisfied nodes �filled circles�. It is stable when � /u�−1. �b� A

five-node configuration composing of 2 two-node clusters. It re-

places the configuration in �a� when � /u�−1.
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FIG. 5. �a� The fraction of nodes with pu,k=0, 1, and 0� pu,k

�1 for c=3. �b� The phase diagram. Inset: Simulation results of the

fraction of messages from rich nodes with BP convergence on dilute

networks with c=3.
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As shown in the f+−c space in Fig. 5�b�, the easy and

hard phases exist below and above the AT line, respectively.

In the large c limit, f+
AT approaches e /c. This result has an

interesting connection with the vertex cover problem. Con-

sidering the cover set as the set of unsatisfied nodes, all links

involving poor nodes are covered. The remaining links are

those among the rich nodes, and the problem of minimizing

the cover set size reduces to one that minimizes the subset

size of covered nodes in the subnetwork of rich nodes. In the

large c limit, this subnetwork has a Poissonian connectivity

distribution with an average cf+. The result cf+
AT=e agrees

with the point of RS instability derived in �14�.
The AT transition has implications on the algorithms. We

consider the BP algorithm initialized with messages 0 and 1.

As shown in Fig. 5�b� inset, effectively all messages from

rich nodes converge in the easy regime. However, a signifi-

cant fraction of messages fluctuates between 0 and 1 above

f+
AT, indicating the breakdown of the RS ansatz. Algorithmi-

cally, decimation procedures, such as those used in the sur-

vey propagation �SP� algorithm �7�, are required.

In summary, we have studied how nonlinearities affect the

flow patterns in transportation networks. In the case of uni-

form capacity, phase transitions resembling the Devil’s stair-

case reveal the cascades of clustered flow patterns. In the

single-sat regime with a closed set of only a few cavity en-

ergy functions, the flow pattern has a correspondence with

the vertex cover problem. Glassiness arises from the frustra-

tion in competitions for resources. In the case with quenched

disorder of the capacities, an increase in the fraction of rich

nodes induces a phase transition from an easy phase to a hard

one, in which message-passing algorithms experience con-

vergence problems. These features are relevant to general

network optimization problems with nonlinear elements.

We thank David Saad and Jack Raymond for meaningful

discussions and Patrick Lee for encouragement. This work is

supported by the Research Grants Council of Hong Kong

�Grants No. HKUST 603606, No. 603607, and No. 604008�.

�1� P. G. Doyle and J. L. Snell, Random Walks and Electric Net-

works �Mathematical Association of America, Washington,

DC, 1984�.
�2� R. T. Rockafellar, Network Flows and Monotropic Optimiza-

tion �Wiley, New York, 1984�.
�3� J. R. Banavar, F. Colaiori, A. Flammini, A. Maritan, and A.

Rinaldo, Phys. Rev. Lett. 84, 4745 �2000�; M. Durand, ibid.

98, 088701 �2007�; S. Bohn and M. O. Magnasco, ibid. 98,

088702 �2007�; Z. Shao and H. Zhou, Phys. Rev. E 75, 066112

�2007�.
�4� Y. Imry and S. K. Ma, Phys. Rev. Lett. 35, 1399 �1975�.
�5� R. Bruinsma and G. Aeppli, Phys. Rev. Lett. 50, 1494 �1983�;

R. Bruinsma, Phys. Rev. B 30, 289 �1984�.
�6� G. Toulouse, Commun. Phys. �London� 2, 115 �1977�.
�7� M. Mézard and R. Zecchina, Phys. Rev. E 66, 056126 �2002�.
�8� R. Mulet, A. Pagnani, M. Weigt, and R. Zecchina, Phys. Rev.

Lett. 89, 268701 �2002�; A. Braunstein, R. Mulet, A. Pagnani,

M. Weigt, and R. Zecchina, Phys. Rev. E 68, 036702 �2003�.
�9� H. Nishimori, Statistical Physics of Spin Glasses and Informa-

tion Processing �Oxford University Press, Oxford, UK, 2001�.

�10� M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass Theory

and Beyond �World Scientific, Singapore, 1987�.

�11� K. Y. Michael Wong and D. Saad, Phys. Rev. E 74, 010104�R�

�2006�; K. Y. Michael Wong and D. Saad, ibid. 76, 011115

�2007�.

�12� S. Shenker, D. Clark, D. Estrin, and S. Herzog, Comput. Com-

mun. Rev. 26, 19 �1996�; R. L. Rardin, Optimization in Op-

erations Research �Prentice Hall, Englewood Cliffs, NJ, 1998�.

�13� M. R. Garey and D. S. Johnson, Computers and Intractability:

A Guide to the Theory of NP-Completeness �Freeman, New

York, 1979�.

�14� M. Weigt and A. K. Hartmann, Phys. Rev. Lett. 84, 6118

�2000�; Phys. Rev. E 63, 056127 �2001�.

�15� B. Selman, H. Kautz, and B. Cohen, DIMACS Series in Dis-

crete Mathematics and Theoretical Computer Science, 1996,

Vol. 26, p. 521.

�16� R. L. Devaney, An Introduction to Chaotic Dynamical Systems

�Addison-Wesley, Redwood City, CA, 1989�.

�17� G. Biroli and M. Mézard, Phys. Rev. Lett. 88, 025501 �2001�;

O. Rivoire, G. Biroli, O. C. Martin, and M. Mézard, Eur. Phys.

J. B 37, 55 �2004�.

�18� M. Mézard and G. Parisi, Eur. Phys. J. B 20, 217 �2001�.

�19� D. J. Thouless, Phys. Rev. Lett. 56, 1082 �1986�.

C. H. YEUNG AND K. Y. MICHAEL WONG PHYSICAL REVIEW E 80, 021102 �2009�

021102-4


