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Abstract. - In the random Boolean networks suggested by Kauffman, each site is changed t o  
random rules depending on neighbours of this site. One can define two kinds of models, the 
annealed for which the random rules are changed at each time step, and the quenched for which 
the random rules remain fixed. We consider this model mostly on a square lattice with nearest- 
neighbour interactions. In the annealed case the phase transition observed in the overlap of 
configurations differing in the initial conditions is related to  directed percolation on the body- 
centred cubic lattice; in the quenched case, the original Kauffman model, the phase transition is 
seen in the variation of this final overlap with the initial overlap. 

In the field of cellular automata [l], the Kauffman model [2] is one of the most random 
ones. Each of N lattice sites contains a Boolean variable 0 (or spin) which is either zero or 
unity. The time evolution of this model is determined by N functionsf,, one chosen for each 
site independently, and by the choice of K input sitesjl(i), j2(i), . . . , jK( i )  for each site i. Thus 
the value ~i at site i for time t + 1 is given by 

T L ( t  + 1) ="f&Jt), 5&), ..., TjJt)) (i = 1, 2, ..., N) . (1) 

Each Boolean function is specified, once its value is given for each of the 2K possible 
configurations of its arguments. 

Many previous studies [2-41 investigated the situation originally suggested by 
KAUFFMAN [2] and which we call here the <<infinite dimension. limit. The input sites 
j l ( i ) ,  jz( i ) ,  . . ., j ~ ( i )  were chosen randomly among the N lattice sites. 

was 1 with probability p = f and 0 with 
probability 1 - p = 4. This parameter p is related to Walker's .internal homogeneity. [ZI. 
We call this case of infinite range of interactions the infinite dimension limit, since on 

Also for each site, the value of each function 
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average the value of a spin at  time t depends on the values of an exponentially increasing 
number, like Kt ,  of spins a t  t = 0. In this infinite-dimension case, ref. [3] compared two 
models: The quenched model,  for which the functions fi and the input sites 
jl(i), j2(i), ..., j ~ ( i )  were chosen randomly at  time t = 0 and remain fixed at  all later times: 
and the annealed model for which a new functionf, and, for infinite dimensions, also new 
input sites were chosen randomly at  each time step and which is thus more similar to other 
probabilistic cellular automata [6]. 

These two models are a priori very different: for example the quenched model has limit 
cycles, which are absent in the annealed model. However [3], in the thermodynamic limit 
N-+ CO some quantities were shown to be the same in the two models for infinite dimension. 
Defining the overlap 

I. 

a&) = N-' {l--(q(t) - , p 1 ( t ) ) 2 }  =1- +(t) , ( 2 )  
=1 

as the normalized number of spins which are the same in two different spin configurations 
{ g r }  and { p z }  for the same set of functions {fi}, or $ as the .distance. between these two 
configurations, this overlap was shown to be exactly the same in the quenched and the 
annealed model, for N +  W .  

In both models, when a parameter is varied, e.g. the number K of inputs, two possible 
phases can be observed. A first phase, corresponding to K < 2, which we now call the f rozen  
phase,  was characterized by distances $ vanishing for long times; i.e. for any initial overlap 
a12(t = 0), one has 

lim a12(t) = 1 . (3) t -  cc 

In this frozen phase, two arbitrarily chosen spin configurations, iterated long enough 
according to the same rulesf,, will become identical after a sufficiently long time (more 
precisely, they will not differ by a macroscopic number of spins). 

In the second phase, which we call chaotic, corresponding to K > 2  in the infinite- 
dimension case, for any initial a12(t = 0) # 1 one has 

lim a12(t) = a$ # 1 (4) 
f- I 

with the final overlap a& independent of the initial overlap a12(0) # 1. Criteria (3) and (4) are 
simple consequences of the time evolution equation 

a d t  + 1) = (1 + (a12(t))K}12 ( 5 )  

derived and studied in ref. [3]. It was shown [3] that as a parameter (like K )  varied, a 
transition between a frozen and a chaotic phase occured (Ko=2).  

In  the present work we investigate the properties of the same model in finite dimension, 
i.e. for finite interaction range. The spins o1 are located on a periodic lattice and depend in 
their time evolution on their K nearest neighbours. For a chain in one dimension K = 2, 
whereas K = 4 on the square lattice. Even in the annealed model, these neighbour spins are 
always the same K lattice neighbours, and thus the spins are spatially correlated, as 
customary in statistical mechanics. Now the spin value after t iterations depends on a 
number td  of spins at t = 0, in contrast to the exponential increase for infinite dimensions. 

The questions we would like to study are: Which properties of infinite dimension persist 
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in finite dimension? For example, 

i) Are annealed and quenched model still identical for N+= CO? 

ii) Are eqs. (3), (4) still valid? 

iii) Are there still two phases, frozen and chaotic? 

iv) If yes, is the phase transition related to other models of statistical physics? 

v) Are there new effects in finite dimension which are absent in infinite dimension? 

ATLAN et al. [21, FOGELMAN [4] and VICHNIAC et al. [ 5 ]  already investigated numerically 
some possible phase transitions using different criteria, like whether a small initial 
perturbation of a limit cycle is spreading, using mostly two or three input spins (instead of 
our four); however, these authors did not work with our distance function $(t) between two 
states. 

For numerical investigations of possible phase transitions we prefer a continuously 
varying parameter. Thus instead of vaiying K as in the analytic treatment of infinite 
dimension [3], we now keep the number K of neighbours fixed and vary the probability p 
that the random function fi is unity [3,4] 

f i  = 1 with probability p ,  fi = 0 with probability 1 - p .  (6) 

Because of the symmetry between the Boolean values 0 and 1, if initially half of the spins are 
zero, only the range O S ~ S ~  needs to be studied. 

For infinite dimension, eq. (5) is easily generalized to this case 

By looking at  the stability of the fixed point a&= 1 corresponding to identical spin 
distributions, we see that again for K S 2 only the frozen phase persists, whereas for K > 2 
also the chaotic phase exists in the interval p c  < p < 1 - p,, with a critical value p ,  given by 
2Kp,(l- p c )  = 1; for example p c  = 0.1464 for K = 4. If p approaches p,, 1 - a& vanishes 
linearly in p - p,. 

Let us first discuss the annealed model in finite dimension. First we show that, as far as 
the overalp between two configurations is concerned, the d-dimensional annealed model is 
equivalent to directed percolation [6] in d + 1 dimensions, as was pointed out before [6] for 
different cellular automata. From a d-dimensional lattice L one can build a (d + 1)- 
dimensional lattice L‘ by adding the time direction. Each spin of the plane t + 1 is connected 
to  its K neighbours (input sites) of the plane t. Thus a one-dimensional chain L gives in this 
way a square lattice, whereas the Kaufman model on the square lattice, with the time 
dimension added, gives a body centred cubic lattice. 

Let us now iterate according to the same rulesf, two configurations {oz} and {,st} on the 
same lattice L. We denote a site (i, t )  of the (7 + 1)-dimensional lattice L” as <<occupiedn, if 
s,(t) and differ, whereas we call it “empty,,, if they have the same value. A site i at  time 
t + 1 would always be empty if its K neighbours a t  time t were empty. If at least one of the K 
neighbours is occupied at  time t ,  then the site will be occupied at  time t + 1 with probability 
2p(1 - p ) ,  since this is the probability that its function6 gives different values from the two 
different neighbour configurations. Thus the distances + (or overlaps alz) in the d- 
dimensional annealed Kauffman model on lattice L reduce to counting the number of sites in 
the infinite cluster of the directed site percolation problem [6] in d + 1 dimensions on the 



742 EUROPHYSICS LETTERS 

expanded lattice L’, with a concentration 

of occupied sites. (For the overlap at  the new site it does not matter if all the four neighbours 
are different, or only one, two or three; in all these cases this site becomes occupied with the 
probability x of eq. (8). Thus we deal with site percolation, not with bond percolation.) If P ,  
is the probability that a site belongs to the infinite cluster of the percolation problem on 15’. 
then for long times we have a fixed point 

for the distances between different configurations, independent of the initial distance 
,!4t=0) (provided it was not zero). In this sense, criteria (3), (4), derived initially[3] for 
infinite dimension only, remain valid also for finite dimensions. Moreover, percolation 
theory [61 now tells us how the limiting distance $ vanishes if p approaches pc  from above. 
Our rough estimate of p ,  = 0.22, taken from the condition + = 0 (see later in fig. 21, is in good 
agreement with the more accurate x, = 0.344 of directed percolation on the b.c.c. lattice, 
which gives p ,  = 0.221. 

For the chain with nearest-neighbour interactions, K = 2, only the frozen phase exists, 
not the chaotic phase, because the concentration x = 2p(l- p )  varies between 0 and t only, 
and thus cannot reach the square-lattice percolation threshold [6] CT, = 0.706. However, by 
working with both nearest and next-nearest neigbours ( K  = 4), one can decrease x, and then 
observes also a chaotic phase for p larger than about a in one dimension. 

Thus in the annealed case the situation is qualitatively similar to infinite dimensions 
except for the numerical values of thresholds and critical exponents: Two different phases, 
characterized by criteria (3) and (4), are possible in all dimensions including d = 1. We now 
shall see that the quenched d-dimensional model behaves qualitatively different, with the 
final distance +(t+ m) in the chaotic phase depending on the initial distance +(t = 0). 

Let us now discuss the quenched model. There, in contrast to the annealed case, we did 
not find a relation between the Kauffman automata and some already studied percolation 
model, and thus rely on computer simulations on the square lattice. Most of our algorithm 
was automatically vectorized on a Cray machine and investigated there more than one 
million sites per second, with two configurations following the same iteration rules. Lattices 
containing up to 250 x 250 sites were simulated, with ten different runs for each parameter 
set. Some simulations in one dimension with K = 4 used 10 000 sites. For t = 0 half of the 
spins were 0, the others were 1. We iterated the system up to 1000 time steps. (To vary the 
initial overlap a12, we first produced two identical configurations, and then overturned 
randomly selected spins in one of the two sets.) Of course, neither the time over which the 
sample was observed, nor the sample size, were truely infinite as would be required 
theoretically. (For t-+ x ,  we see small oscillations (within a limit cycle) in the fraction of 
zero spins which diminish only slightly if we switch from size 50 x 50 to size 250 x 250. We 
also found $(m) to vary slightly if the spin configurations were still chosen independently, 
but with more spins zero than unity.) 

We observed in the quenched model a threshold concentration p ,  near ?. In contrast to 
the annealed case as  well as the quenched model for infinite dimension, the final distance 
$t-+ a) = 1 - a12 does not vanish for concentrations p below the threshold p ,  and it does 
depend on the initial distance $(t = 0) between the states. Figure 1 shows +(m) as function of‘ 
$0) for the quenched model in two dimensions. No such variation with the initial overlap is 
observed in the annealed case. Moreover, there is a discontinuity in the variation with d(0) :  
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Fig. 1. - Log-log plot of final distance +(m) 'us. initial distance +(O) at p = 0.3 (chaotic phase) and p = 0.2 
(frozen phase). For p = 0.2 we see that +(m) is linear in +CO) for small +(O). In contrast, for p = 0.3, +(E) 
approaches a finite limit for +(O) ---f 0. This difference indicates our phase transition. 

If the initial distance is exactly zero, i . e .  if the two states are identical, it always stays 
exactly at zero. If the initial distance +(O) is very small, then for p larger than about 4 it 
increases drastically with time, until it reaches its asymptotic value $(=); for small p ,  on the 
other hand, $(t) stays quite small. 

Thus within our numerical accuracy we see a discontinuity in $(m) for p above some 
threshold p,, but not below: 

lim +(t= m ) = Q ( p ) > O ,  if p > p , ,  
X O I  - a 

lim $(t = m ) = 0 , if P<P, , 240)- 0 

lim +(w)/+(O) = ~ ( p )  > 0 , if p < p ,  , I a I - 0  

I $(m)=O,  if $ ( O )  = 0 , for all p . 
The discontinuity Q ( p )  is seen in fig. 2, together with the asymptotic distance $(t= =) 
estimated for both the quenched and the annealed model with the two initial states being 
uncorrelated ($(O) = +). As usual in critical phenomena, close to the threshold p ,  near 0.26 
the transition is rounded due to finite $(O),  finite number of iterations, and finite system size. 
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Fig. 2. - Variation of final distance $(m) us. p for the annealed and the quenched model on the square 
lattice; points from simulations up to 1000 time steps for several sizes (squares 100 x 100 and 
225 x 225) and for several initial distances ($(O) = 0.01 and +(O)  = 0.0025). The full curve represents the 
quenched model for $40) = 0.5. We see that the annealed and the quenched model have different phase 
transitions with pO,annealed = 0.22 from directed percolation [6] and pOcquenched - 0.26 k 0.02 from these 
data. 

This discontinuity in the quenched square lattice is reminiscent of other phase 
transitions, like the ferromagnetic Curie point. If we identify $40) with the magnetic field H 
and $ ( w )  with the magnetization M ,  then for the paramagnet, p < p,, the magnetization $ ( E )  
goes to zero if the field +(O) goes to zero, with a constant .susceptibility. $ (~ ) /+ (0 )  for small 
fields. On the ferromagnetic side, p >p, ,  we have on the other hand a finite spontaneous 
magnetization $(CO), if the field $(O) approaches zero. The case $(O) = 0 is pathological for 
both the Kauffmann model and the ferromagnet. Indeed, just as the susceptibility in the 
paramagnet, according to fig. 3 also our ratio $(w)/$(O) seems to diverge if p c  is approached 
from below, as do the sample-to-sample fluctuations of $(m) in one dimension, for the 
quenched model we never expect to find the chaotic phase, even by increasing the number of 
neighbours; we confirmed this expectation numerically with K = 2 and K = 4. 

ATLAN et al. [2] studied similarly the influence of a small disturbance +(O), called .noise., 
on the limit cycles, and found it sometimes to increase, sometimes not. If we simply 
investigate $(t)l+(O) for intermediate times, we find it to increase drastically with t for p 
above p ,  and to remain roughly constant for p below p,. 

In this work we have seen that Kauffman’s model exhibits a phase transition in all 
dimensions d 2 1 in its annealed version and in dimension d = 2 for its quenched version. 
From fig. 2 we estimate 

(11) pcgUenched = 0.26 -i- 0.02 . 

We think that the quenched model has a phase transition for d > 1, but not for d = 1. The 
criteria we have used to see the phase transition are based on the history dependence of the 
asymptotic overlap, see eq. (10). 
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Fig. 3. - Susceptibility x defined by (10) vs. p for the quenched model in the frozen phase. x was 
computed as +(m)/+(O) for $(O) = 0.005 and $(O) = 0.0025. The susceptibility diverges at 

It would be interesting to look for more accurate measurements of the transition 
threshold p ,  and for the critical exponents in the quenched case. Figure 2 shows, however, 
that p ,  for the annealed model is smaller than for the quenched model on the square lattice. 

It would also be interesting to look with high precision at  other properties proposed in the 
past to characterize a phase transition, like the response to disturbances during the limit 
cycle[Z], the dependence of the period length on system size and p ,  the percolation of 
<(forcing structures. [2,4,7] or of the network of frozen-in spins [4,7], and to see whether 
these quantities exhibit a phase transition at the same threshold. 

p ,  - 0.26 k 0.02. 
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