
ar
X

iv
:2

20
1.

09
49

8v
1 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  2

4 
Ja

n 
20

22

Phase transitions in XY models with randomly oriented crystal fields

Sumedha,1, 2, ∗ and Mustansir Barma3, †

1School of Physical Sciences, National Institute of Science Education and Research,
Bhubaneswar,P.O. Jatni,Khurda,Odisha,India 752050

2Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai,India 400094
3TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad, India 500046

(Dated: January 25, 2022)

We obtain a representation of the free energy of an XY model on a fully connected graph with
spins subjected to a random crystal field of strength D and with random orientation α. Results
are obtained for an arbitrary probability distribution of the disorder using large deviation theory,
for any D. We show that the critical temperature is insensitive to the nature and strength of the
distribution p(α), for a large family of distributions which includes quadriperiodic distributions, with
p(α) = p(α + π

2
), which includes the uniform and symmetric bimodal distributions. The specific

heat vanishes as temperature T → 0 if D is infinite, but approaches a constant if D is finite. We also
studied the effect of asymmetry on a bimodal distribution of the orientation of the random crystal
field and obtained the phase diagram comprising four phases: a mixed phase (in which spins are
canted at angles which depend on the degree of disorder), an x-Ising phase, a y-Ising phase and a
paramagnetic phase, all of which meet at a tetra-critical point. The canted mixed phase is present
for all finite D, but vanishes when D → ∞.

I. INTRODUCTION

Randomly anisotropic crystal fields play an important
role in determining the magnetic properties of amor-
phous magnetic materials. In the random anisotropy
model (RAM) [1], each spin is subjected to a local
anisotropy with random orientation in addition to the
usual spin exchange interaction. While longitudinal ran-
dom anisotropy has no effect on Ising spins, for vec-
tor spins it competes with the ferromagnetic exchange
energy in determining the state of the system. The
model provides a theoretical basis for understanding
magnetic properties of many amorphous binary alloys [2–
5], nanocrystalline [4, 6, 7] and molecular [8] magnets.
The RAM can be defined for vector spins of any di-

mensionality m ≥ 2, but in this paper we study only XY
spins, corresponding to m = 2. In the limit of infinite
strength of a crystal field oriented randomly, the model
reduces to a quenched random-bond Ising model with
correlated random couplings [9], raising the possibility of
a spin glass phase in the RAM. In this limit, the model
was conjectured to belong to the same universality class
as the Edwards-Anderson Ising spin glass model [10].
Since its introduction, the model has been studied us-

ing many techniques such as mean field theory [11–13],
variational methods [14], field theories [5, 15–17, 19], and
Monte Carlo simulations [20–23]. The infinite crystal
field limit has been studied extensively [9, 13, 23–26] both
analytically and through simulations using the mapping
to random-bond Ising models [9]. Most ǫ-expansion and
Monte Carlo studies in three dimensions have been in-
conclusive in determining the nature of the low tempera-
ture phase. An intriguing feature of all the ǫ- expansion
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based renormalisation group studies is that the stable
fixed points cannot be reached from the initial condi-
tions given by unrenormalized physically relevant effec-
tive Hamiltonians [17, 18]. In general, the distribution of
the random axis plays a crucial role in determining the
low energy configurations and phase transitions.

We study the effect of random crystal field anisotropy
on XY spins (RCXY) on a fully connected graph, for any
distribution of the orientation of the crystal field axis
and any strength of the crystal field D, using large de-
viation theory (LDT) [27, 28]. In recent related work
on fully connected graphs, LDT was used to perform the
disorder averaging for discrete-spin random-field prob-
lems [29–32]. For vector spins, LDT was used to solve
the problem in the pure case [33], and more recently to
study XY models in random magnetic fields [34].

In this paper we use LDT to obtain the phase diagram
and low temperature properties of the XY model with
quenched uniform and bimodal distributions for the ori-
entation of the crystal field. Earlier the model had been
solved in the case D = ∞ [13]. Our solution for arbitrary
D brings out an unexpected invariance of the critical tem-
perature Tc: For a large family of distribution functions
of the orientation (which includes the uniform and sym-
metric bimodal cases) there is a continuous transition at
temperature Tc = 1/2, which coincides with Tc for the
pure XY model on a fully connected graph, even though
the nature of the ordered phase depends on the details
of the disorder distribution. Below we briefly discuss the
two cases studied in this paper, namely the uniform and
bimodal distributions of random orientations.

In amorphous alloys, the absence of the crystalline or-
der implies there is no preferred direction for the crys-
tal field and the system is often modelled as the RCXY
model with a uniform distribution of the random axis
orientation. In this case, we find that the T = 0 mag-
netization decreases as D increases, approaching a finite
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value 2/π as D → ∞ with a correction proportional to
1/D for large but finite D. Further the specific heat van-
ishes if D → ∞, in agreement with earlier results [13],
but we show that it approaches a constant as T → 0 for
finite values of D.
We also study an asymmetric bimodal distribution of

the orientation, with the crystal field pointing randomly
along x and y directions on different fractions of sites,
interpolating between the pure case and the quadriperi-
odic bimodal distribution. An interesting phase diagram
ensues with three ordered phases : two phases where
the magnetization is along only one of the x or y direc-
tions, and a mixed phase with a magnetization that is
canted in two different directions. Four critical curves
meet at a tetra-critical point which occurs for all asym-
metric bimodal distributions of the random crystal field
orientation. Tetra-critical points have also arisen in sev-
eral other contexts where there are two order paramters,
for instance anisotropic anti-ferromagnets [35], alloys of
materials with different anisotropies [36] , strongly corre-
lated SO(5) superconductors [37, 38] and other strongly
correlated theories like quantum chromodynamics (QCD)
[39]. In the RCXY model under study here, the tetra-
critical point originates from the asymmetric discrete dis-
tribution of the crystal field, which produces an x − y
asymmetry between order parameters.
The plan of the paper is as follows : In Section 1 we

define the model and derive the expression of the rate
function using the large-deviation theory, for any distri-
bution of the quenched random orientation of the crystal
field. We study the phase diagram and low temperature
phase for the case of uniform distribution (Sec. III) and
bimodal distribution (Sec. IV), obtaining a closed form
expression for the rate function as D → ∞, and an ex-
pression for largeD, in powers of 1/D. We study finite D
via Taylor expansion of the rate function. In Section V
we discuss the main results of the paper and some future
directions.

II. RANDOM CRYSTAL FIELD XY MODEL

The Hamiltonian of the model on a fully connected
graph is

H = − J

2N
(

N
∑

i=1

~si)
2 −D

N
∑

i=1

(~ni.~si)
2 (1)

where si are m-component vector spins in general. For
m = 2 (XY model), they can be represented as si =

cosθi î+ sin θiĵ. Here θi is a random variable chosen uni-
formly from the interval [0, 2π], D is the crystal field
strength, J is the coupling which we take to be 1 and
n̂i = cosαi î + sinαiĵ is the site dependent direction of
the crystal field. The coupling between pairs of spins has
been set equal to unity. The Hamiltonian depends only
on the orientation of the crystal field and hence we need
to consider α only on the half circle (α and π + α are

(a) (b)

FIG. 1: Low energy states with (a) J → ∞ and (b)
D → ∞ on a fully connected graph with N = 5 (five
spins). Spins are represented by blue arrows and the
random anisotropy axes by dotted red lines. In (a) the
spins align with each other while in (b) the spins align

with the random anisotropy axes.

equivalent). The direction of the crystal field at each site
is chosen randomly and frozen ; each αi is an i.i.d chosen
from a specified distribution, p(α). The ferromagnetic
coupling term in Eq. 1 tries to align spins in the same
direction while the crystal field term tries to align spins
with their random anisotropy axis (see Fig. 1), leading
to frustration. We take D to be positive, except for the
pure case (no disorder), we allow either sign.
We study different forms of p(α) and their conse-

quences in the subsequent sections. We use large de-
viation theory to perform the quenched disorder average
and obtain the free energy of the model defined by Eq. 1
as explained below.

Calculation of the free energy functional using LDP

Consider any random configurationCN ofN spins with

x1 =
∑N

i=1 cos θi/N and x2 =
∑N

i=1 sin θi/N . The prob-
ability of occurence of this configuration PH,β is pro-
portional to exp(−βH), where β = 1/T . The random

variables (
∑N

i=1 cos θi,
∑N

i=1 sin θi) satisfy the Large De-
viation Principle (LDP) [27, 28, 40] w.r.t to PH,β . This
implies that there exists a rate function I(x1, x2) such
that

PH,β(CN : x1, x2) ∼ exp(−NI(x1, x2)) (2)

The rate function I(x1, x2) is like the generalized free en-
ergy functional in that its minima give the free energy of
the system. Recently the rate function was calculated
exactly for discrete spin models with quenched random
fields such as the random field Ising model and the ran-
dom crystal field Blume-Capel model defined on a fully
connected graph. It was shown that the rate-function
when expanded in a power series is like a Landau free
energy and hence can be used to extract the phase transi-
tions in the system [29–31]. The extension of the method
to vector spins, outlined below, was carried out for the
random field XY model [34].
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There are two principal steps.

• Using the Gärtner-Ellis theorem [27, 28] and the
law of large numbers, we first calculate the rate
function R(x1, x2) associated with the the non-
interacting part of the Hamiltonian in Eq. 1 de-
noted by Hni and given by

Hni = −D

N
∑

i=1

(cos θ cosαi + sin θ sinαi)
2 (3)

Then R(x1, x2) is defined through

PHni,β(CN : x1, x2) ∼ exp(−NR(x1, x2)) (4)

As we will see later in this section, the rate function
R(x1, x2) becomes independent of the specific real-
ization of the disorder and depends only on p(α) in
the limit N → ∞.

• The probability PH,β(CN : x1, x2) for the Hamilto-

nian in Eq. 1 is proportional to
∫

A eNf(x1,x2)PHni,β,
where A is the subset of the all possible con-
figurations, with a given (x1, x2). The function
f(x1, x2) = β(x2

1+x2
2)/2. The tilted large deviation

principle [40] then connects the two rate functions
I(x1, x2) and R(x1, x2) through the relation

I(x1, x2) = R(x1, x2)−
βx2

1

2
− βx2

2

2

− inf
y1,y2

(

R(y1, y2)−
βy21
2

− βy22
2

)

(5)

The probability measure PH,β(CN : x1, x2) is the
tilted version of PHni,β(CN : x1, x2).

Let us first calculate the rate function R(x1, x2). Using
the Gärtner Ellis theorem it can be written as

R(x1, x2) = sup
y1,y2

{x1y1 + x2y2 − Λ(y1, y2)} (6)

provided that the scaled cumulant generating function
Λ(y1, y2) = limN→∞ ΛN (y1, y2)/N , is differentiable [27,
28]. We calculate Λ(y1, y2) for arbitrary distribution of
the crystal field and show that it is differentiable.
The function ΛN (y1, y2) is the log cumulant generating

function for the probability distribution PHni,β

ΛN(y1, y2) = log

〈

exp

(

y1

N
∑

i=1

cos θi + y2

N
∑

i=1

sin θi

)〉

Q

(7)
Here 〈...〉Q represents the expectation value w.r.t. the
probability distribution Q ∝ e−βHni, which is a product
measure over the probability distributionsQi for the non-
interacting spins. Since Qi ∝ exp

(

βD cos2(θ − αi)
)

, we
obtain

Λ(y1, y2) = lim
N→∞

1

N

N
∑

i=1

logSi (8)

where

Si =
1

Ñ

∫ 2π

0

dθ exp
(

βD cos2(θ − αi) + y1 cos θ + y2 sin θ
)

(9)

Here Ñ =
∫

dθ exp
(

βD cos2(θ − α)
)

is the normalisation
and is equal to

Ñ = 2π exp(βD/2)I0(βD/2) (10)

where I0(x) is the zeroth order modified Bessel function
of the first kind.

Average over disorder

Since αi are i.i.d’s chosen from a distribution p(α), the
strong law of large numbers implies that as N → ∞, Eq.
8 becomes

Λ(y1, y2) =

∫ 2π

0

dα p(α) log S (11)

We see that since the limit N → ∞ is taken, with prob-
ability 1, Λ is the same for all disorder realizations and
depends only on the distribution p(α).
To evaluate S, we define z = exp(iθ) and convert the

integral in Eq. 9 into a contour integral over z around a
unit circle. We evaluate the integral via a Laurent series
expansion of the integrand (see Appendix A). The result
is:

S(y1, y2) = I0(r) + 2

∞
∑

j=1

Ij(βD/2)

I0(βD/2)
I2j(r) cos 2j(φ− α)

(12)

where r =
√

y21 + y22 is the absolute value of the mag-
netisation and φ = tan−1(y2/y1) is its orientation. The
Ij represents the jth modified Bessel function of the first
kind. .
Let (y∗1 , y

∗
2) extremise the r.h.s of Eq. 6. Both y∗1 and

y∗2 are functions of x1 and x2, given by the solutions of
the equations:

x1,2 =
∂Λ(y1, y2)

∂y1,2
(13)

The rate function I(x1, x2) can then be written as

I(x1, x2) = g(x1, x2)− inf
x1,x2

g(x1, x2) (14)

where

g(x1, x2) = x1y
∗
1 + x2y

∗
2 − Λ(y∗1 , y

∗
2)−

β(x2
1 + x2

2)

2
(15)

In the thermodynamic limit, the probability PH,β(CN :
x1, x2) in Eq. 2 is dominated by the minimum of
I(x1, x2), where ∂I

∂x1
= 0 and ∂I

∂x2
= 0, which yields

y∗1 = βx1 and y∗2 = βx2. Note that the rate function is
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like a generalized free energy functional in that its min-
imum 1

β infx1,x2
I(x1, x2) provides the free energy of the

system. By susbtituting y∗1 and y∗2 in Eq. 14 we get

I(x1, x2) =
βr2

2
− log I0(βr) −

∫ 2π

0

dαp(α)

log

(

1 +

∞
∑

k=1

2ck cos(2k(θ − α))
I2k(βr)

I0(βr)

)

(16)

where r =
√

x2
1 + x2

2, θ = tan−1(x2/x1) and

ck =
Ik(βD/2)

I0(βD/2)
(17)

Equation 16 is the general expression of the free en-
ergy functional for the RCXY model on a fully connected
graph for an arbitrary distribution of disorder. The free
energy of the system is equal to 1

β infx1,x2
I(x1, x2). Here

x1 and x2 are the magnitudes of magnetisation in the x
and y directions respectively and are the two order pa-
rameters of the system. Eq. 16 is the main equation
that we use to study different disorder distributions in
the sections that follow.
We recover the pure XY model by setting D = 0, in

which case Eq. 16 reduces to

I(x1, x2) =
βr2

2
− log I0(βr) (18)

which is isotropic in x1 and x2 and a function of r, agree-
ing with [33]. The self-consistent equation for the mag-
netisation r is:

βr = β
I1(βr)

I0(βr)
(19)

The system has a continuous transition as can be seen by
expanding RHS in powers of r upto third order. We get

βr ≈ β2r

2
− β4r3

16
(20)

The transition from XY paramagnetic state (r = 0) to a
magnetic state (r 6= 0) occurs at βc = 2 (T = 1/2). The
magnetisation grows as r ∼

√
β − βc, close to βc.

For nonzero D, the phase diagram depends on the dis-
tribution of the disorder, given by p(α). For continuous
transitions, the coefficient of the second order term in
Eq. 16 decides the location of the transition. To second
order, we find

I(x1, x2) ≈
β

4
(2− β)(x2

1 + x2
2)−

β2c1
2

x1x2 < sin 2α >

− β2c1
4

(x2
1 − x2

2) < cos 2α > (21)

where <> represents an average with respect to p(α).
We observe that for distributions with < exp(2iα) >= 0,
if there is a continuous transition, it is at βc = 2 inde-
pendent of the value of D. This holds for a large class

of distributions, in particular for quadriperiodic distribu-
tions defined through p(α) = p(π/2 + α).
In the next two sections we study the phase diagram of

the RCXY model for uniform and bimodal distributions
of the crystal field disorder.

III. UNIFORM DISTRIBUTION

The uniform distribution of the anisotropy axis corre-
sponds to

p(α) =
1

2π
∀ α (22)

Substituting in Eq. 16 , the rate function becomes

I(x1, x2) =
βr2

2
− log I0(βr) −

1

2π

∫ 2π

0

dα

log

(

1 +

∞
∑

k=1

2ck cos(2k(θ − α))
I2k(βr)

I0(βr)

)

(23)

The integral over the disorder distribution can be per-
formed exactly when D → ∞ and also at large but finite
D. We first study these two cases and then examine the
case of arbitraryD by expanding the integrand in powers
of r.

A. Infinite D

The limit D → ∞ forces each spin si to point along
or opposite to αi, thus reducing it to an Ising spin along
the anisotropy axis.
As D → ∞ the coefficients ck → 1. Setting ck = 1 ∀ k,

we get

I(x1, x2) =
βr2

2
− log I0(βr) −

1

2π

∫ 2π

0

dα

log

(

1 +

∞
∑

k=1

2 cos(2k(θ − α))
I2k(βr)

I0(βr)

)

(24)

The summation inside the log term can then be done
exactly using the identity [41] :

∞
∑

k=1

cos(2kt)I2k(x) =
1

2
(cosh(x cos t)− I0(x)) (25)

leading to

I(r) =
βr2

2
− 1

2π

∫ 2π

0

dα log(cosh(βr cosα)) (26)

The minimum of I(r) w.r.t. magnetisation r results in a
self-consistent equation for r, given by

r =
1

2π

∫ 2π

0

dα cos(α) tanh(βr cosα) (27)
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To find βc, we expand I(r) in Eq. 26 in powers of r till
the fourth order:

I(r) =
βr2

2
− β2r2

4
+

β4r4

32
(28)

Since the coefficient of the r4 term is positive, βc for the
transition from XY ferromagnetic state to a paramagnet
is found by equating the coefficient of r2 to zero. This
yields βc = 2, the same value as for the pure XY model.
The resulting model maps to a quenched random bond

Ising model with correlated variables [9], allowing a so-
lution for the fully connected graph [13]. The self-
consistent equation for magnetisation obtained above
(Eq. 27) agrees with the expression obtained in [13].
Let us examine the low temperature behavior of the

system. For T = 0 the function tanh(βr cos(α)) = 1 if
cos(α) > 0 and = −1 if cos(α) < 0. Hence in this case
the magnetisation at T = 0 is

r0 =
2

π
(29)

For nonzero low temperature, we use tanh z ≈ ±(1 −
2 exp(−2|z|) to obtain

r =
2

π
− πT 2

4
(30)

Since the second term in Eq. 26 is a function of βr, the
internal energy for this model is proportional to r2. This
implies that specific heat Cv ∼ T for low temperatures,
vanishing as T → 0.

B. Large D

To study the largeD behaviour, we employ the asymp-
totic expansion of ck [41] in Eq. 23.

ck =
Ik(βD/2)

I0(βD/2)
≈ 1− 4k2

8βD + 1
(31)

Differentiating Eq. 25 twice we obtain the identity :

−
∞
∑

k=1

4k2 cos(2kt)I2k(x)

=
1

2
(x2 cosh(x cos t)sin2t− x cos t sinh(x cos t)) (32)

Using Eqs. 25 and 32 and retaining terms only of order
1/D, the rate function becomes

I(r) =
βr2

2
− 1

2π

∫ 2π

0

dα log (cosh(βrcos(α)))

− βr2

16πD

∫ 2π

0

dα sin2(α)

+
r

16πD

∫ 2π

0

dα cos(α) tanh(βr cos(α)) (33)

For low T , the free energy functional φ(r) = 1
β I(r), to

leading order in T is given by

φ(r) =
r2

2
− 2

π
r − r2

16D
+

Tr

4πD
(34)

Equating ∂φ/∂r = 0, we get the equation for magnetisa-
tion r as

r − 2

π
− r

8D
+

T

4πD
= 0 (35)

For T = 0, we find

r =
2

π

(

1 +
1

8D

)

(36)

The increase proportional to 1/D from the D → ∞ value
is consistent with the T = 0 mean field result of [11].
For low finite temperatures, the leading order correc-

tion to T = 0 value of r is proportional to T and is given
by r = 2

π

(

1 + 1
8D − T

8D

)

.

Since the internal energy U is proportional to r2, it is
linear in T , implying that the specific heat C goes to a
constant as T approaches zero for large finite D. This
is because for T << D the spins make excursions of low
amplitude δsi around their ground state positions, with
〈δs2i 〉 << T/D. This “Dulong-Petit” contribution results
in a finite value of C. When D = ∞, these excitations
are forbidden, leading to C → 0 as T → 0. The energy
spectrum develops a gap for D = ∞ and goes to zero
continuously for all finite values of D.

C. Expansion in powers of r for finite D

When the LHS of Eq. 23 is expanded in powers of
r, the integration over α eliminates terms which are not
isotropic in x1 and x2 and only the terms that are func-
tions of r =

√

x2
1 + x2

2 survive. Thus I(x1, x2) is a func-
tion of r alone for all values of D, for uniform distribution
of α. For example, the expansion to 8th order, reads

L(r) =
βr2(2− β)

4
+

(βr)4

64
(1 + c21)−

(βr)6

576
(1 + 3c21)

+
(βr)8

2

(

11

24576
+

49c21
18432

+
c22

73728
+

3c41
4096

− 6c21c2
3689

)

−... (37)

In analogy with Landau theory, we have denoted the
power series expansion of I(r) by L(r). We observe that
the terms in the expansion alternate in sign for all values
of D. Close to the transition temperature, r is small and
it suffices to keep second and fourth order terms. Since
the latter is always positive, we locate the critical point
by equating the coefficient of second order term (which
is independent of D) to zero. This gives

βc = 2 ∀ D (38)
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FIG. 2: Truncated Landau functional for uniform
distribution obtained by expanding till 10th (12th)

power in r shown as the dotted (solid) line, for a) D = 0
and β = 2.1; b) D = 2 and β = 2.1.

The limit D = 0, may be recovered on noting that the al-
ternating series can be summed and is equal to log I0(βr)
(see Eq. 18). The coefficients ai , associated with ith

power of r, decrease monotonically with i and the series
converges. But if D is nonzero, the montonicity of the co-
efficients is not retained. Their magnitude increases be-
yond a certain value of i which depends on D. We tabu-
late the coefficients upto i = 12 in Table I for D = 0, 1, 10
and 1000 at β = 2 to illustrate this.

D a4 a6 a8 a10 a12

0 0.25 -0.1111 0.0573 -0.0317 0.01825

1 0.3717 -0.2734 0.2423 -0.2361 0.2443

10 0.4875 -0.4277 0.4487 -0.5169 0.6321

1000 0.4998 -0.4443 0.4719 -0.5507 0.6819

TABLE I: Coefficients of rn for different values of D at
β = 2 in Eq. 37.

Due to poor convergence for D 6= 0, the series cannot
be used to study the low temperature behaviour. The

behaviour of the free energy functional changes for large
r, depends on the term at which we truncate the expan-
sion. Figure 2 shows the free energy to 10th and 12th

order for D = 0 and D = 2 for β = 2.1. The possibility
of a first order transition at low temperatures cannot be
completely ruled out, but in our investigation till order
24 , we did not find any evidence of it.

IV. BIMODAL DISTRIBUTION

Now consider the distribution

p(α) = pδ(α− 0) + (1− p)δ(α − π/2) (39)

i.e, a fraction p of the spins experience a crystal field
pointing along the x-axis, while the remaining fraction
(1 − p) are in a crystal field along the y-axis. The cases
p = 0 and p = 1 correspond to no disorder.
Substituting in Eq. 16, the rate function is

I(x1, x2) =
βr2

2
− log I0(βr)

−p log

(

1 +

∞
∑

k=1

2ck cos(2kθ)
I2k(βr)

I0(βr)

)

−(1− p) log

(

1 +

∞
∑

k=1

2ck cos(k(π − 2θ))
I2k(βr)

I0(βr)

)

(40)

where again r =
√

x2
1 + x2

2, θ = tan−1 x2/x1 and ck =
Ik(βD/2)/I0(βD/2). The minimum of this function for
a given set of parameters p, β and D gives the free energy
of the model.
We first discuss the phase diagram of the model in the

limit of D → ∞, in which case the summations inside
the log term can be performed.

A. D = ∞

We obtain the rate function by making use of Eq. 25
in Eq. 40, with ck = 1. We get

I(x1, x2) =
β(x2

1 + x2
2)

2
− p log(cosh(βx1))

− (1 − p) log(cosh(βx2)) (41)

Minimising the rate function gives two self-consistent
equations for the order parameters in x and y directions
as

x1 = p tanhβx1 (42)

x2 = (1− p) tanhβx2 (43)

For 0 ≤ p ≤ 1, the RCXY model reduces to two uncou-
pled Ising models, with a fraction p of spins along the
x-direction (x1 = p) and fraction 1 − p of spins aligned
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FIG. 3: p− T phase diagram for bimodal distribution
for infinite D.

along the y-direction (x2 = 1−p) in the ground state. In
the p − T plane, there are two lines of continuous tran-
sitions, one with T = p (separating x1 = 0 from x1 6= 0)
and the other with T = (1 − p) (separating x2 = 0 from
x2 6= 0). The phase diagram has four phases as shown in
Fig. 3. These phases are separated by four critical lines,
all of which lie in the mean field Ising universality class.
These lines intersect at (T, p) = (12 ,

1
2 ). For T < 1/2 the

phase between the critical lines p = T and 1− p = T is a
mixed phase with x1 6= 0 and x2 6= 0, with. a total lack
of coupling.

B. Finite D

For arbitrary D near the critical loci, we expand
I(x1, x2) in Eq. 40 in powers of x1 and x2 as they are
small. This then gives us the Landau free energy expan-
sion of the functional with known coefficients.

The lowest order term in expansion of I2k(βr)/I0(βr)

is of order r2k. Hence the expression cos(2kθ) I2k(βr)I0(βr)
, has

terms of order higher than four for k > 2. We expand
Eq. 40, by keeping terms only till k = 2.

The result is a two parameter Landau functional of the
form

L(x1, x2) = a+(x
2
1 + x2

2) + a−(x
2
1 − x2

2) + u1x
4
1

+ u2x
4
2 + 2u12x

2
1x

2
2 (44)

We denote this function by L(x1, x2) to distinguish it

from the full rate function I(x1, x2). Here,

a+ =
β

4
(2 − β)

a− = (1− 2p)
β2c1
4

u1 =
β4

192
(3− c2 + 6c21 + 8(2p− 1)c1)

u2 =
β4

192
(3− c2 + 6c21 − 8(2p− 1)c1)

u12 =
β4

64
(1 + c2 − 2c21) (45)

The phase diagram resulting from this functional is
worked out in detail in Appendix B; it depends on the
value of the ratio s, defined as s = u1u2

u2
12

. Here we

merely summarize the results. There are four possible
states: (0, 0), (0, x2), (x1, 0) and (x1, x2). For s ≤ 1, the
phase (x1, x2) is not stable and the system exhibits two
curves of continuous transitions given by the equations
a+ = a− and a+ = −a−. These two meet at the point
(a+, a−) = (0, 0) in the (a+, a−) plane. This point is
a bicritical point. It is also an end point of a first or-
der spin flop line separating the two Ising ordered phases
with finite magnetisations in the x and y directions re-
spectively (transverse and longitudinal Ising phases re-
spectively). For s > 1, all four phases are possible and
the phase diagram now has four critical curves meeting
at (a+, a−) = (0, 0). This point is now a tetra-critical
point.
We now use these results to obtain the phase diagram

of the bimodal RCXY defined by Eq. 40, as a function
of D,T and p.

1. Pure Case(p=0)

For D = ∞ there is a transition to the longitudinal
Ising phase at T = 1, as discussed in Section IVA. For
finite D the coefficient of the x2

1x
2
2 term in Eq. 44 is not

zero ; x1 and x2 are coupled to each other in general.
The ratio s = u1u2

u2
12

in this case is 1 for D = 0 and

decreases with increasing D. Hence the mixed phase
(x1, x2) is not stable and the system has a bicritical point
where the two critical curves meet. These two critical
curves are given by a+ = a− and a+ = −a−. They
separate the paramagnetic phase from the Ising phase
aligned longitudinally ((0, x2)) and transversely((x1, 0))
respectively. The equations of the critical curves are

2− βc = ±βcc1,c (46)

where βc = 1/Tc and c1,c = I1(βcD/2)/I0(βcD/2).

The critical curves Tc =
1±c1,c

2 are shown in the phase
diagram, in Fig.4. They separate the paramagnetic state
from a state with longitudinal (transverse) order for D >
0 (D < 0). There is a first order spin flop transition on
crossing the locus T < 1/2, D = 0, from transverse to a
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FIG. 4: Phase diagram for the pure XY model with
crystal-field in the y-direction. The solid lines are
critical curves separating the Ising phases from

paramagnetic phase. across the dotted line there is a
first order spin flop transition between the two Ising
phases. As D → ±∞, the two critical lines approach

T = 1.

longitudinal phase. The locus terminates in a bicritical
point at T = 1/2, D = 0.

2. Quadriperiodic bimodal disorder distribution (p = 1/2)

We study the case p = 1/2 first. In this case, a− = 0
and u1 = u2. Also s = (u1u2)/u

2
12 is greater than 1 for all

values of the crystal field strength D 6= 0. The Landau
functional in this case becomes symmetric in x1 and x2

and takes the form

L(x1, x2) = a+(x
2
1 + x2

2) + u1x
4
1 + u1x

4
2 +2u12x

2
1x

2
2 (47)

There is only one line of continuous transitions, given
by equating a+ to 0. This gives βc = 2 ∀D. This line
of continuous transition separates the XY ferromagnetic
phase from a paramagnet. Hence the phase boundary
in this case is the same as for the uniform distribution.
However the ordered phase is different. It is now a four-
fold degenerate phase with |x1| = |x2|.

3. Asymmetric bimodal distribution, 0 < p < 1

In this case there is a crystal field pointing in the x-
direction for a randomly chosen fraction p of the spins
and in the y-direction for the remaining fraction 1 − p.
The effect of disorder is maximum for p = 1/2. The ratio
s = u1u2

u2
12

is a function of p and w = βD alone.

For D = 0 and hence for w = 0, the ratio s = 1. For
a fixed w, s > 1 for pl(w) < p < pu(w), where pl(w) and
pu(w) are functions of w alone which rapidly approach
0 and 1 respectively as w increases (see Table II). For

p < pl(w) and p > pu(w), there is no mixed phase for
any value of p and T .

w pl(w) pu(w)

0.1 0.01582 0.98418

0.5 0.01445 0.98555

1.0 0.01107 0.98893

1.5 0.00739 0.99261

2.0 0.00449 0.99551

3.0 0.00144 0.99856

TABLE II: Lower and upper threshold on probability p
such that for p < pl(w) and p > pu(w) for a given w,
there is no mixed phase

In the next two subsections we study the phase dia-
gram for a fixed D and fixed w separately . The phase
diagram consists of four critical curves in the p−T plane,
meeting at a tetra-critical point.
The two critical curves separating the (0, 0) and (0, x2)

phases and (0, 0) and (x1, 0) phases are given by the equa-
tions a+ = a− and a+ = −a− respectively. Substituting
for a+ and a− as in Eq. 45, we get

Tc =
(1± (1 − 2pc)c1,c)

2
(48)

as the equations of the two critical curves, separat-
ing the transverse Ising and longitudinal Ising phases
from the paramagnetic phase. Here again c1,c =
I1(βcD/2)/I0(βcD/2).
Two other critical curves separate the (x1, 0) and

(0, x2) phases from the mixed phase, represented as
(x1, x2). They are given by a+ = α1a− and a+ = −α2a−
respectively. These two conditions give the equations of
critical curves to be

Tc =
(1 ∓ (1− 2pc)αc1,c)

2
(49)

where α = α1 = u1+u12

u1−u12
and α = α2 = u2+u12

u2−u12
respec-

tively as defined in the Appendix B. Note that u12, u1

and u2 are also functions of pc, D and Tc.

4. Phase diagram with fixed D

For any finite D, as β → ∞, w → ∞, there is a mixed
phase for all values of p at T = 0. The phase diagram
has a tetra-critical point at T = 1/2 and p = 1/2, where
the four critical curves given by Eqs. 48 and 49 meet.
The phase diagram for D = 0.2 and D = 1 in the p− T
plane is plotted in Fig. 5. As D increases, the area
under the mixed phase increases and the phase diagram
rapidly converges to the D → ∞ phase diagram given
in Fig. 3. All the critical curves in the phase diagram
belong to the mean field Ising universality class as does
the tetra-critical point. The critical curves are straight
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FIG. 5: Phase diagram in the p− T plane for a)D = 0.2
and b) D = 1 for the bimodal distribution. There is a
tetra-critical point at (1/2, 1/2) from which four critical

curves emanate, separating the four phases.

lines only near the tetra-critical point and develop non-
linearity at low temperatures, unlike the standard mean-
field solutions [42].

It is instructive to examine the magnetic suscepti-
bilities corresponding to the two order parameters x1

and x2. We define χ11 = (∂x1/∂h1)h1→0 and χ22 =
(∂x2/∂h2)h2→0 as the susceptibilities corresponding to
the the magnetisations x1 and x2 respectively (h1 and
h2 are the uniform external field in the directions x and
y).

To study the singularities along the two different crit-
ical curves, we plot χ11 and χ22 for p = 0.4 for D = 0.2
in Fig. 6. As expected χ11 diverges near the paramag-
netic to Ising transition and χ22 diverges near the Ising
to mixed phase transition. Interestingly, though χ22 does
not diverge near the paramagnetic to Ising transition, it
exhibits a discontinuity of slope. Similar behaviour is
seen also for p > 0.5, where the roles of χ11 and χ22 are
interchanged.

0.2 0.3 0.4 0.5 0.6

0

5

10

15

20

25

30

T

χ

χ22 χ11

FIG. 6: Transverse (χ11) and longitudinal (χ22)
susceptibility in the case of asymmetric bimodal

distribution with D = 0.2 and p = 0.4.

5. Phase diagram with fixed w

The phase diagram in the p − T plane for fixed w is
similar to the phase diagram for fixed D. The main dif-
ference is at T = 0. For T = 0, with w finite, the mixed
phase occurs only between two threshold values of p.
Taking T = 0 in Eq. 49, we find a lower threshold on

p through the self-consistent equation

p0l(w) =
1

2
− 1

2α1c1
(50)

where p0l(w) is the critical value of p, separating the
mixed and the longitudinal Ising phases at T = 0. Note
that α1 = u1+u12

u1−u12
appearing on r.h.s in Eq. 50 is also

a function of p0l(w). The analogous upper threshold is
given by

p0u(w) =
1

2
+

1

2α2c1
(51)

where α2 = u2+u12

u2−u12
.

It is instructive to plot the phase diagram in the (T, p)
plane for fixed w (Fig. 7). Four critical curves meet at
p = 1/2 and T = 1/2, which is thus a tetra-critical point.
The critical curves are straight only near the tetra-critical
point. The y-axis intercepts p0l(w) and p0u(w) of the two
critical curves approach 0 and 1 repectively as w → ∞.
As p increases the Ising phases shrink and the critical

curves approach each other. At p = 1/2, the critical
temperature becomes independent of w and there is a
single transition at T = 1/2 for all values of w from the
disordered to the mixed phase ( (0, 0) to (x1, x2)).

C. Canted state at large D

In this subsection, we address the nature of the mixed
state, and show that the magnetization vectors are
canted. At T = 0, the exact results for D = ∞ in Sec.
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FIG. 7: Phase diagram for w = 1 in the p− T plane.
Four critical curves meet at a tetra-critical point at

(1/2, 1/2) for all w. The phases represented by |x1| > 0
and |x2| > 0 are transverse and longitudinal Ising
phases with |x2| = 0 and |x1| = 0 respectively.

xm

m y
yθ

xθ

p

1−p

x

y

FIG. 8: The two red vectors respresent the average
magnetisation vectors along x and y directions for

D = ∞ at T = 0, which have magnitude p and 1− p
respectively. Blue vectors represent the canted average
magnetic vectors for large finite D at T = 0. We have

taken p such that p > 1− p and hence θx < θy.

IVA give a ground state with a fraction p of spins aligned
along x and a fraction 1− p of spins aligned along y. On
the other hand if D = 0, the ground state is rotationally
invariant with r =

√

x2
1 + x2

2 = 1. For finite D, we use
a large D expansion as in Sec. III B for the uniform dis-
tribution. Using Eq. 31 for ck for large D in Eq. 40 and
taking β to be large, the rate function reduces to

I(x1, x2) =
β

2
(x2

1 + x2
2)− pβx1 − (1− p)βx2

− p log

(

1 +
β2x2

2

1 + 8βD
− βx1

1 + 8βD

)

− (1− p) log

(

1 +
β2x2

1

1 + 8βD
− βx2

1 + 8βD

)

(52)

Keeping terms till order 1/D, we obtain

I(x1, x2) =
β

2
(x2

1 + x2
2)− pβx1

− (1 − p)βx2 −
(1− p)β

8D
x2
1 −

pβ

8D
x2
2 (53)

Equating partial derivatives w.r.t x1 and x2 to 0, we ob-
tain

x1 = p

(

1− T

8D
+

(1− p)

4D

)

x2 = (1− p)

(

1− T

8D
+

p

4D

)

(54)

Equation 54 describes a state in which the magnetisation
vectors −→mx and −→my are canted away from the x and
y axes respectively as depicted in Fig. 8, with canting
angles θx and θy (which are small for largeD). To leading
order in 1/D we may write

−→mx = mx(x̂+ θxŷ) ;
−→my = my(θyx̂+ ŷ) (55)

where mx = p and my = 1 − p for T = 0. Comparing
this with Eq. 54, we get the canting angles at T = 0 as

θx =
1− p

4D
; θy =

p

4D
(56)

While the crystal field D tries to align the spins along
the site with x or y axis depending on the value of α, the
mean field produced by other spins forces canting, and
spin makes a small angle with the preferred axis.
The low T phase for finite D differs from that obtained

withD = ∞. The specific heat shows the same behaviour
with the uniform distribution : it approaches zero for
D = ∞ and is constant for finite D as T → 0.

V. DISCUSSION

We studied the RCXY model for different distribu-
tions of the disorder orientation. We found a remark-
able constancy of Tc for all distributions which satisfy
< exp(2iα) >= 0, which includes quadriperiodic distri-
butions for which p(α) = p(α+ π

2 ). Uniform and symmet-
ric bimodal distributions are examples of quadriperiodic
distributions that we have studied in detail in this paper.
In both cases, there is a single transition at Tc = 1/2 from
a mixed magnetic phase to a paramagnetic phase. The
nature of the mixed phase depends on the distribution
of disorder as can be seen by looking at the disorder-
averaged ground state which inherits the symmetry of
p(α).
In the case of asymmetric bimodal distribution the

asymmetry of the distribution results in a new ground
state, namely the mixed phase in which the magneti-
sation is canted in two different directions for all finite
values of the crystal field strength D. The ground state
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for D = ∞ is not canted, with spins aligned completely
in the x or y direction.

We find that in general the behaviour of RCXY for
finite crystal field strength D is different from the be-
haviour for D = ∞. The specific heat vanishes at T = 0
for D = ∞, but approaches a finite value for finite D.
This is also reflected in the fact that D = ∞ RCXY can
be mapped to correlated random bond Ising model [13].
We also extracted the disorder-averaged ground state of
the model in the large D limit and confirmed an earlier
zero temperature mean field calculation where the order
parameter at zero temperature was shown to decay as
1/D for uniform distribution [11]

Similar studies can be carried out for the random
anisotropy model for vector spins with a number of com-
ponents m > 2. In particular the critical behvaiour can
be studied easily by obtaining an expansion till fourth
order in the order parameter r for uniform distribution
of the disorder. This yields the critical temperature for
these models to be 1/m, independent of the strength of
the crystal field on a fully connected graph. However the
full rate function needed to obtain the low temperature
behaviour is non trivial due to the integrals involved in
the calculation.

We have recently studied the XY model on a fully
connected graph in the presence of quenched random
magnetic field (RFXY) drawn from different symmetric
distributions [34]. In that case, the disorder is in the
field conjugate to the order parameter and has a much
stronger effect. Not only Tc but also the nature of the
transition changes as a function of the strength of the
magnetic field. The RFXY phase diagram consists of a
line of second order transitions meeting a line of first or-
der transitions at a tricritical point. Quenched random
crystal field orientation disorder on the other hand does
not couple directly with the order parameter and has a
weaker effect. As we have seen, it does not change Tc

for any quadriperiodic distribution. It would be interest-
ing to explore the quadriperiodic distribution of the ran-
dom crystal field orientation on regular random graphs,
in particular to see if Tc stays unchanged.
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Appendix A

We solve the integral in Eq. 9 using contour integra-
tion. The integral is

S =
1

Ñ

∫ 2π

0

exp
(

βD cos2(θ − α) + x1 cos θ + x2 sin θ
)

dθ

(A1)

where Ñ =
∫ 2π

0 exp
(

βD cos2(θ − αi)
)

.
We convert these integrals to contour integrals around

a unit circle in the complex plane , by making a substi-
tution z = eiθ and z0 = e−iα. Substituting, we get

S =
eβD/2

iÑ

∮

dz

z
exp

(

βD

4
(z2z20 + z−2z−2

0 )

)

exp
(x1

2
(z + z−1) +

x2

2i
(z − z−1)

)

(A2)

We define two new variables: a = x1−ix2

2 and b =
βDz2

0

4 .
The integrand in Eq. A2 has a form f(z)/z, where
f(z) = exp

(

bz2 + b̄z−2
)

exp
(

az + āz−1
)

. We can solve

the integral using the Residue theorem. We get, ÑS =
2πeβD/2A0, where A0 is the coefficient of the z0 term
in the expansion of f(z). The function f(z) can be ex-
panded in terms of modified Bessel functions of the first
kind as follows

exp
(

bz2 + b̄z−2
)

exp
(

az + āz−1
)

=



I0(βD/2) +

∞
∑

j=1

((zz0)
2j + (zz0)

−2j)Ij(βD/2)





(A3)


I0(r) +

∞
∑

j=1

Ij(r)

(

2

r

)j

(ziaj + ājz−j)





where r =
√

x2
1 + x2

2. We extractaed the coefficient of
the z0 term, A0 and it comes out to be

A0 = I0(βD/2)I0(r) +

∞
∑

j=1

Ij(βD/2)I2j(r)

(

2

r

)2j
(

(z0ā)
2j + (z−1

0 a)2j
)

(A4)

where recall that z0 = e−iα and ā = (x1 + ix2)/2. We
define φ such that tanφ = x2/x1. Then,

(z0ā)
2j + (z−1

0 a)2j =
(r

2

)2j

2 cos 2j(φ− α) (A5)

Substituting in Eq. A4, we get

A0 = I0(βD/2)I0(r)+ 2

∞
∑

j=1

Ij(βD/2)I2j(r) cos 2j(φ−α)

(A6)

Since Ñ = 2πeβD/2I0(βD/2), we get

S = I0(r) + 2

∞
∑

j=1

Ij(βD/2)

I0(βD/2)
I2j(r) cos 2j(φ− α) (A7)
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FIG. 9: Possible phase diagrams from a two parameter
Landau theory. Solid line represent the co-ordinate
axes. Dashed and dotted lines represent locus of

continuous and first order transitions respectively. For
u1u2 < u2

12, the phase diagram consists of two lines of
continuous transition and a line of first order transition

meeting at a bicritical point as shown in (a). For
u1u2 > u2

12 there are four phases, which meet at a
tetra-critical point as shown in (b), (c) and (d). The
topology though can be different depending on the

ratios of u12

u1
and u12

u2
.

Appendix B

In this appendix we study different types of phase dia-
grams found with the two parameter Landau functional
given in Eq. 44 :

L(x1, x2) = a+(x
2
1 + x2

2) + a−(x
2
1 − x2

2) + u1x
4
1

+ u2x
4
2 + 2u12x

2
1x

2
2 (B1)

where x1 and x2 are the two components of the order
parameter and a+, a−, u1, u2 and u12 are the coefficients,
such that u1, u2, u12 ≥ 0.
We observe that there are four possible states : (0, 0),

(0, v), (v, 0) and (v1, v2). The fixed points (x1, x2) of
Eq. B1 are obtained by equationg the first derivative of
L(x1, x2) w.r.t x1 and x2 to 0 and satisfy the following
equations

(a+ + a−)x1 + 2u1x
3
1 + 2u12x1x

2
2 = 0 (B2)

(a+ − a−)x2 + 2u2x
3
2 + 2u12x

2
1x2 = 0 (B3)

The stability of states can be determined by examining
the Hessian at a given fixed point. The (i, j)th element

of the Hessian matrix is ∂2L/∂xi∂xj . The eigenvalues of
the Hessian matrix for a stable state should be ≥ 0.
The general Hessian matrix for L(x1, x2) is

MH =
(

a+ + a− + 6u1x
2
1 + 2u12x

2
2 4u12x1x2

4u12x1x2 a+ − a− + 6u2x
2
2 + 2u12x

2
1

)

(B4)

There are four possible states. The region of stability of
these four states is obtained by using the condition on
the eigenvalues of the Hessain as follows :
Paramagnetic phase (x1, x2) = (0, 0) : For this state

Eq. B2 and B3 are trivially staisfied. The Hessian is
diagonal and the conditions for both eigen values to be
positive are: (a+ + a−) ≥ 0 and (a+ − a−) ≥ 0.
Longitudinal Ising phase (x1, x2) = (v, 0): Fixed point

equations are satisfied if

v2 = −a+ + a−
2u1

(B5)

The phase is stable if (a+ + a−) ≤ 0 and a+(1 − u1

u12
) ≥

a−(1 +
u1

u12
).

Transverse Ising phase (x1, x2) = (0, v) : Fixed point
equations are satisfied if

v2 = − (a+ − a−)

2u2
(B6)

The phase is stable if : (a+ − a−) ≤ 0 and a+(1− u2

u12
) ≤

a−(1 +
u2

u12
).

Mixed Phase (x1, x2) = (v1, v2) : Expression of v21 and
v22 from the fixed point equations is

v22 = − (a+ + a−) + 2u1v
2
1

2u12
(B7)

v21 = − (a+ − a−)− 2u2v
2
2

2u12
(B8)

The eigenvalues are:

λ± =
1

2
[(u1v

2
1 + u2v

2
2)±

√

(u1v21 − u2v22)
2 + 4v21v

2
2u

2
12]

(B9)
Both eigenvalues are greater than equal to zero when

u1u2

u2
12

≥ 1 (B10)

Thus if u1u2

u2
12

< 1, then there cannot be a mixed state in

the system.
Besides the above condition, it also required that v21 ≥

0 and v22 ≥ 0. Solving Eq. B7 and B8, we get

v21 =
a+(u12 − u2)− a−(u12 + u2)

2(u1u2 − u2
12)

(B11)
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v22 =
a+(u12 − u1) + a−(u12 + u1)

2(u1u2 − u2
12)

(B12)

Since v21 ≥ 0 and v22 ≥ 0, we obtain two more addi-
tional conditions for the existence of the mixed phase : 1)
a−(1+u12/u1) ≥ a+(1−u12/u1); and 2) a+(u12/u2−1) ≥
a−(1 + u12/u2)

We define s1 = u12/u1, s2 = u12/u2, α1 = 1+u12/u1

1−u12/u1
=

1+s1
1−s1

and α2 = 1+u12/u2

1−u12/u2
= 1+s2

1−s2
. Then the condition

for existence of mixed phase is : a+ ≤ α1a− and a+ ≤
−α2a−.
The Landau functional defined in Eq. B1, yields four

different kind of phase diagrams which are described be-
low.
For u1u2 ≤ u2

12 the state (v1, v2) is not possible. There
are three states in the system and the phase diagram in
(a+, a−) plane has a bicritical point at (0, 0), there is a
first order line along the negative x-axis starting at the
bicritical point, separating the (0, v) and (v, 0) phases.
The (0, v) and (v, 0) phase are separated from the (0, 0)
phase via line of critical points along a+ = a− and a+ =
−a− respectively as shown in Fig. 9a.
For u1u2 > u2

12, there are four critical lines: a+ = a−,
a+ = −a−, a+ = α1a− and a+ = −α2a−, which meet
at a+ = a− = 0 in the (a+, a−) plane. The phase (0, 0)

exists between the lines a+ = a− and a+ = −a−. There
are three different phase diagrams depending on the value
of s1 and s2:

• s1 < 1 and s2 < 1 ( α1 > 1 and α2 > 1) : In
this case α1 and α2 are both greater than one and
the mixed phase occurs between a− = a+/α1 and
a− = −a+/α2 as shown in Fig. 9b

• s1 < 1 and s2 > 1 (α1 > 1 and α2 = −|α2|, where
|α2| > 1) : In this case |α2|

α1
> 1 and the mixed

phase exists for a− ≥ a+

α1
and a− ≤ a+

|α2|
. The

phase diagram is as shown in Fig. 9c.

• s1 > 1 and s2 < 1 (α2 > 1 and α1 = −|α1|, where
|α1| > 1) : In this case |α1|

α2
> 1 and the mixed

phase exists between a− ≤ −a+

α2
and a− ≥ −a+

|α1|
.

The phase diagram is as shown in Fig. 9d.

We remark that the condition Eq. B10 for the exis-
tence of the mixed state was known earlier [42, 43]. Be-
sides reproducing the relation, we have shown above that
the phase diagram depends also on the ratios u12

u1
and u12

u2
.

Here we considered only the case with u12, u1, u2 ≥ 0;
negative values of u12 have been considered in [43].
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