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Abstract. We review theories and experiments on the effects of shear in fluids undergoing
phase transitions. We put emphasis on near-critical fluids and polymer solutions as representative
examples, but also discuss related problems in polymer blends, gels, and surfactant systems,
etc. In near-critical fluids, convective deformations can drastically alter the critical behaviour,
spinodal decomposition, and nucleation. In this case the hydrodynamic interaction suppresses
the fluctuations and gives rise to a downward shift of the critical temperature (shear-induced
mixing). The rheology in two-phase states, and effects of random stirring are also reviewed.
In semidilute polymer solutions near the coexistence curve, on the other hand, the composition
fluctuations can be strongly influenced by the viscoelastic stress. In shear flow, this dynamical
coupling results in enhancement of the composition fluctuations (shear-induced demixing). They
grow, but are eventually disrupted by convective deformations, yielding chaotic dynamical steady
states where phase separation is incompletely taking place. Such nonlinear shear regimes are
examined using computer simulations based on a viscoelastic Ginzburg—Landau model.

1. Introduction
2. Near-critical fluids under shear
2.1. The dynamical model
2.2. The strong-shear regime in one-phase states
2.3. The shift of the critical temperature
2.4, Spinodal decomposition in shear
2.5. Nucleation in shear
2.6. Rheology in strong shear and in two-phase states
2.7. Effects of stirring
3. Shear-induced phase separation
3.1. Dynamic coupling between stress and diffusion
3.2. Linear theory for shear flow
3.3. The normal-stress effect, and the non-Newtonian regime
3.4. Time-dependent Ginzburg—Landau theory
3.5. Simulation of shear-induced phase separation

4. Summary
Appendices

1. Introduction

Flows of fluids are described by a space-time-dependent velocity field. In contrast to solids,
fluids do not return to their original forms after experiencing shear deformation. The simplest
example is a plane shear flow whose average profile is

(v) = Sye, (1.1
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with a spatially homogeneous shear rate Hereafter the flow direction is taken to be
along thex-axis, e, being the unit vector along the-axis, and the mean velocity varies
in the y- or shear direction, while the-direction is called the vorticity direction. As is
well known, if a fixed shear is applied to a fluid of viscosify a shear stress,, = S
arises. In this typical example of nonequilibrium steady states, the sizeisfmostly
assumed to be much smaller than any underlying relaxation times of the fluid. This is
the necessary condition for justifying the usual hydrodynamic theory on the basis of the
local equilibrium approximation. However, in recent years, much attention has come to
be focused on nonlinear cases, in which a certain internal structure of the fluid is strongly
affected by the flow field [1-3]. Particularly striking effects arise when shear influences
phase transitions and phase separation of fluids. Though such effects have been known of in
polymer science, without satisfactory explanations [4—8], they are becoming very important
in the study of fluids near the critical point (near-critical fluids) and various complex fluids
such as polymers, liquid crystals, colloidal systems, and amphiphilic systems. This trend has
developed out of the foundation of a deep understanding of dynamical critical phenomena
[9, 10], kinetics of first-order phase transitions [11, 12], and polymer physics [13, 14].
Experimentally, this investigation has been accelerated through the recent application of
scattering techniques to nonequilibrium phenomena under shear. Other optical effects
such as birefringence and dichroism have also been useful for sensitively detecting spatial
anisotropy of composition fluctuations, and molecular alignment (see the last paragraph of
this section). The information gained by these means can then be combined with rheological
data on the shear stress and normal-stress differences, which in many cases exhibit unusual
behaviour in nonlinear-response regimes of shear. Though the study of complex fluids under
shear has often been conducted with the goal of producing engineering-oriented results, it is
now developing into a new interdisciplinary field, between engineering and physics. Here,
rheology and phase transitions are closely and uniquely tied.

Cases in which shear effects are particularly striking and well known include the
following.

(1) Fluids with slowly relaxing fluctuationsA representative example here is a fluid
near its critical point, in which the critical fluctuations are greatly deformed as they are
convected by a spatially varying velocity field [15-19]. The deformation time is given by
the inverse shear/F, so the deformation is strong or nonlinear when the so-called Deborach
numberDe defined by

De = S'L'g (12)

exceeds 1 (the strong-shear case), wherés the characteristic lifetime of the critical
fluctuations on the spatial scale of the correlation lerfgind can be measured by means

of dynamical light scattering. As other conspicuous examples, even not close to critical
points, entangled polymers [13, 14] and colloidal systems [20—22] exhibit slow stress and
density relaxations, and are easily driven into nonlinear-response regimes of shear.

(2) Phase-separating fluiddn a thermodynamically unstable or metastable fluid, two-
phase structures emerge after quenching a fluid. The domain size is small initially and
grows in time, so the driving force of the instability decreases, and shear can eventually
suppress the growth, resulting in a dynamically steady, two-phase state. On the other hand,
nucleation can be suppressed if droplets with the critical Rjzare unstable against break-
up in shear. Furthermore, surfactant molecules, if they are added, tend to be trapped in the
interface regions, and can stabilize two-phase structures, producing a number of complex
and intriguing effects on the two-phase domain structure. Shear flow can drastically affect
phase behaviour of such amphiphilic systems [23—-26].
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(3) Viscoelastic two-component fluid$Vhen the two components have very different
viscoelastic properties, there arises a dynamical coupling between the stress and diffusion in
such systems, leading to a number of viscoelastic effects. Among them, shear-induced phase
separation in semidilute polymer solutions is the most spectacular, and is one of the main
subjects of this paper. In this case the composition fluctuations produce inhomogeneities
of stress imbalance resulting in diffusion in the direction of phase separation, giving rise to
enhanced light scattering even above the coexistence temperature [8].

(4) Fluids composed of large (although perhaps simple) constituent elembntoll-
oidal systems, even when a relatively weak experimentally producible shear is applied, the
structure of the phase can be changed drastically. In particular, shear-induced melting of
crystal structures has been studied by means of scattering experiments [20-22]. In order to
produce the same type of change in fluids of small molecules, an unreasonably large shear
must be used. Moreover, a gas-liquid critical point has recently been found in colloidal
systems, in which the critical fluctuations are extremely sensitive to shear [27].

(5) Fluids with complex internal structure and long-range ordeExamples include
various mesoscopic phases of liquid crystals [28-31], block copolymers [32-36], and
amphiphilic systems [23-26]. It is obvious that structures such as lamellae or cylinders are
easily aligned by relatively weak shear. Even their structures and phase behaviour can be
altered by shear near the transition point. For example, shear can induce transitions between
phases of lamellae and monodisperse multilamellar vesciles [24] and between isotropic and
nematic phases giving rise to two-phase coexistence in homogeneous flow [23, 25]. Defects
can be removed or even generated by shear [37]. We also mention electro-rheological and
ferromagnetic fluids, in which stringlike structures of colloidal particles are formed due to
dipolar interaction under an electric or magnetic field. They exhibit unique rheology and
phase behaviour in shear flow [38, 39].

There can be many other cases. Less studied in physics but important in polymer science
are crystallization [40, 41] and gelation [42, 43] of polymers in a flow field. For highly
viscous fluids around the glass transition, the structural relaxation time becomes exceedingly
long, and a marked shear-thinning effect was observed [44]. Very recent molecular dynamics
simulations on a highly supercooled liquid have reproduced such behaviour [45]. We should
not forget to mention boundary effects such as the effects of slipping of a viscoelastic fluid
at a solid boundary [46, 47] or plug flow formation in dense suspensions passing through a
capillary [48-50]. Furthermore, application of shear to molecular systems inserted between
two solid plates with spacing of the order of 20has become possible. In such confined
systems, measurements of the shear stress give information on the shear-induced melting of
a solid phase and nonlinear rheology of a fluid phase [51, 52].

A large number of papers have thus been published on shear flow effects in various
fluids undergoing some phase transition. It is not easy to cover all of these topics in a single
review. This is also so because most of them are still developing and not well understood. In
this article we will focus our attention mainly on near-critical fluids in the above-mentioned
categories (1) and (2) in section 2, and semidilute polymer solutions in the category (3) in
section 3. The theoretical foundation of near-critical fluids has no ambiguity, while that of
polymer solutions has begun to be understood. We will also discuss cases of other fluids as
much as possible. The approaches here can be starting points for investigating other fluids
under shear.

We will thus treat bulk shear effects independent of the distance to the boundary. We are
above all interested in the structure facidyy) of the composition fluctuations observable
by scattering methods. Here we explain why it can be well defined in moving fluids under
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shear flow (1.1), which is not trivial. That is, we show that a sheared fluid still maintains a
translational invariance in spatial regions far from the boundary, which is an advantage over
other nonequilibrium situations such as those under a temperature gradient. It follows from
the fact that a shift of the origin of the reference frameabglong they-axis is equivalent

to a Galilean transformation to a new reference frame moving with a velecitye, [15].

This implies that, in homogeneous stationary states, the time correlation function of any
density variablep (r, t) may be written as

(@, D', 1)) = (p(r —7' = St —1)y'er, 1 —1)9(0,0)). 1.3

The equal-time correlation functioa = ) depends only on the relative position— .
Its Fourier transformation yields the steady-state structure factor

I(q) = / dr explig - (r — )] (@ (r. NP, 1)) (1.4)

which is observable by means of scattering experiments. Theoretically it goes without
saying that because of the translational invariance the Fourier transformation may be used
to greatly simplify the calculations. It is instructive to rewrite (1.3) in terms of the Fourier
components:

(Pg(DPr (1)) = (2m)8(q + k + g, S(t — NeyI(g,t —1") (1.5)
where

I(q.1) = / dr explig - (¢ (r. N (0, 0)). (1.6)

The first factor in (1.5) is the delta function i dimensions. To understand its origin

we note that a plane-wave composition fluctuationekp(iq - ) at + = 0) with a small
amplitude changes in time into a plane wave with a time-dependent wave vector given by
q(t) = q — Stg,e, if nonlinear couplings among the fluctuations are neglected. Then (1.6)

is nonvanishing only fog(—t + ') = —k on average over the fluctuations, yielding the
above delta function. It would be informative to measure the time dependericg,af in

(1.5), but dynamical light scattering in shear flow has not yet been successful. This seems to
be because the Doppler shift of scattered light depends on-to@rdinate of the scattering
position, and the observed signal strongly depends on the thickness of the scattering region
in the y-direction [53, 54].

We also note that anisotropic composition fluctuations in shear flow or electric field
give rise to anisotropy in the average dielectric tensor at optical frequencies even when
the constituent particles are optically isotropic [14, 55]. Its real and imaginary parts lead
to the so-called form birefringence and dichroism, respectively. In particular, the form
dichroism is significant when the spatial scales of scattering objects are comparable to the
light wavelength. This effect has been measured in near-critical fluids [56] and polymeric
systems [57] in shear flow. On the other hand, alignment of optically anisotropic molecules
in the external field gives rise to the so-called intrinsic birefringence, whereas the intrinsic
dichroism is negligible for visible light in most cases.

2. Near-critical fluids under shear

In this section we will mainly consider near-critical fluids in which the critical fluctuations

are important. However, readers need not be unduly concerned with the mathematical
details of the theory. We start with mean-field calculations, and take into account
the renormalization effects in the simplest manner. Shear effects arise solely from
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position-dependent convection or convective deformations of the composition fluctuations.
Nevertheless, the effects are very complex and even surprising, particularly in spinodal
decomposition and nucleation. We will also discuss the effects of stirring on the critical
behaviour and phase separation of fluids, which experimentalists have been interested in but
have not yet well understood.

2.1. The dynamical model

In near-critical fluids, a scalar order parametg¢i(r,t) exhibits enormous thermal
fluctuations on approaching the critical point [9, 10]. We will call this the composition,
supposing a fluid binary mixture near the consolute critical point with a weak singularity
of the isothermal compressibility. While its local variations remain small, its spatial
correlations extend over a long distargcevhich is the origin of various critical singularities.
This length is called the correlation length, and grows as &o(7/7. —1)™" asT — T,
at the critical value of the average compositiggpeing a microscopic lengtt~2 A) and
v = 0.625 being the critical exponent.

The Ginzburg—Landau—Wilson free-energy functional foris written in the usual
form [10]:

1 1 1
F = kgT, / dr [Erowz + Zuow“ —hy + EC0|V1p|2] ) (2.1)

Hererg is the mean-field reduced temperature, apds the nonlinear coupling coefficient.

h, which corresponds to a magnetic field in Ising spin systems, almost vanishes at the critical
composition abovd,. and on the coexistence curve. The coeffici€ptwill be set equal to

1 because it is almost unchanged even after the renormalization. The dynamical equations
for v and the velocity field deviatiom are given by [15]

9 Y ,OF

—_ = — _— . V —_— .

atdf Sy ox V - (Yv) + (Lo/kpTe) 5y + 0 (2.2)
9 SF

F—p = — - - v? . 2.3

v Vp1 wvwmo v+ (g (2.3)

The mass density is assumed to be a constant. It is known that slow motiotf @§ not
affected by the longitudinal part af, so we are allowed to consider the transverse part
only:

V-v=0. (2.4)
The pressurey; in (2.2) is determined to ensure this conditiaty and {; are Gaussian—
Markovian thermal noises related to the kinetic coefficidigsand g by

(Or(r, DO, 1)) = —2LoV?8(r — v)8(t — 1'). (2.5)

(Cri(r, )R (' 1)) = =2k Tnod;; V28 (r — r)8(t — 1'). (2.6)

Furthermore, because the timescalewois much shorter than that of, we may set
dv/dt = 0 in (2.3) as a very good approximation, and may expiess [58]

)

—no Vv = [— I/fV—F+cR] (2.7)
sy i

where [--]. denotes taking the transverse part (perpendicular to the wave veatothe

Fourier space). The same approximation is widely used also for colloidal systems (the

Stokes approximation).
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In renormalization group theory we decrease the upper cut-off wavenumludrthe
fluctuations by averaging over the small-scale fluctuations, and examine how the coefficients
in the dynamical model (as well as those in the free enétpgre changed or renormalized
[10]. Systematic analysis is possible here if use is made of the expansios h— d. In
our model the following static and dynamical quantities tend to universal numbers:

2
gOZKdMO/A€_>§€+"' (2.8)

24
fo= KakpT./LonoA* — o€t (2.9)

where the coefficients are functions af andK,; = (27)~4214/?/T'(d/2). If the fluid is
sufficiently close to the critical point, the above limits are attained evemfps £71, and

the nonclassical critical behaviour follows. Then the renormalized coefficients are obtained
at A = £71 because the fluctuation effects are weak for< £-1. In accord with this,

the Ginzburg criterion, under which the mean-field theory holds, is giveR &€ <« 1.

It is known that in many polymer blends the above asymptotic limits can be attained only
extremely close to the critical point, becausgis very small forA ~ 550—1 and/orng is very

large [13, 58]. On the other hand, the mode-coupling theory is a self-consistent decoupling
scheme originally constructed in three dimensions [9]. In these theories, if the fluctuations
with wavenumbers larger than the inverse correlation legth are coarse grained, we
obtain the usual hydrodynamic equations but with singular transport coefficients. For low-
molecular-weight fluids, the predictions of these two theories turned out to be surprisingly
close to each other, and agree excellently with experiments. One of the simplest results of
the mode-coupling theory is that the diffusion constant at long wavelerigths< 1) is

given by

D = kyT,/6mnE (2.10)

which is consistent with (2.9) and is analogous to the Einstein—Stokes formula for the
diffusion constant of a Brownian particle. The renormalized viscosithas a nearly
logarithmic singularity with a small amplitude, so it is not very different from the background
valueng in (2.3). The characteristic lifetime of the fluctuations for- £~ is thus

© = &°/D = (6rn/kpT)E® (2.11)

which increases strongly near the critical point. It can even be of the ofdesan near-
critical binary fluids. If the wavenumbey of the composition fluctuations is larger than
£71, the decay rate is almost independentof

I'(q) = (kpT/6m0)g° (2.12)
which has been confirmed by dynamical light scattering.

2.2. The strong-shear regime in one-phase states

In near-critical fluids, the main effect of shear is to deform the fluctuations by position-
dependent convections is the hydrodynamic deformation rate, so we should compare
the average decay rate of the fluctuations @ntb find a weak-shear regim&r: < 1,

and a strong-shear regiméz: > 1. Hereafter we are interested in the strong-shear
regime, Stz > 1, in which the critical fluctuations are drastically altered by shear before
they dissipate thermally. It is convenient to introduce a characteristic wavenumbex
['(k.) = S. Using (2.12) we obtain

ke = (6mn/kpT)">5Y3, (2.13)
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Then, by setting.£ = k.£or,", we may introduce a crossover reduced temperatuees
follows [19, 59]:

T, = (6 nEd kpT)Y> ST oc §954, (2.14)

Slightly different definitions ofk. and t, follow if use is made of the dynamical
renormalization group theory. The critical fluctuations are strongly deformed by shear
in the long-wavelength regiop < k..

Let us then calculate the steady-state structure factorgfor 0. We start with the
mean-field approximation or linearizing the dynamical equation (2.2). In the Fourier space
it reads

0 ad
o Ve = 58x 5 Vg = Log*(ro+ 4*)¥q + Org. (2.15)
t aq,
The fluctuations are simultaneously convected by shear, and thermally dissipated with the
decay rate (in the mean-field theory) given by

I'(g) = Log*(ro+ 4. (2.16)
The steady-state structure factbig) satisfies

ad

[ZF(q) — Sqx a—]l(q) = 2Loq°. (2.17)
qy

The right-hand side arises from the thermal noise tégg(z), giving rise to the Ornstein—

Zernike formI,z(q) = 1/[ro + ¢?] without shear. The simplest way to examine the shear

effect is to expand (g) in powers ofS as follows:

1(@)/Ioz(q) = 1—2q:q,102(¢)S/T(q) + - --. (2.18)

Thus the intensity increases most in the directions in whick= —q, in the ¢.—, plane.
Certainly, the shear effect becomes important when the (mean-field) strong-shear condition
S > Lor3 holds. Generally, taking into account the convection due to shear, we may solve
(2.17) in the following integral form:

o0 t
1@ = [ o exp| 2 [ dn Pt [2Loacr? (2.19
0 0
in terms of a deformed wave vector defined by
q(t) = q+ Stq,e, (2.20)

which is equal tog(—r) introduced below (1.6). Because (2.19) is complex, we give an
approximate expression interpolating between various limiting cases of (2.19):

1(q) = 1/[ro + ck¥®1q:17° + ¢°] (2.21)

wherec ~ 1, andk, is determined byLok? = S in the mean-field theory. Notice that
I(q) ~ kc_s/5|qx|*2/5 for most of the wave vectors smaller thanin strong shear (which
meansg < k? in the mean-field theory). Light scattering experiments supported the above
structure factor [17, 18]. A small-angle neutron scattering experiment was also performed
on a low-molecular-weight polymer blend [60].

We thus find thatl (q) is suppressed below the equilibrium level, and the perturbation
theory on the basis of (2.21) indicates that the critical dimensionality is lowered from 4
to 2.4 in strong shear. The precise meaning of this statement is that we may linearize the
dynamical equations once we have eliminated the fluctuations with wavenumbers larger than
k. in three dimensions. That is, the lower cut-off wavenumber of the singular fluctuation
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contributions isk. in strong shear, while it ig~! near equilibrium. For example, the
renormalized kinetic coefficient in strong shear is

L = kT /6mnk. x S™Y3. (2.22)

Obviously, ifk. is replaced by: 1, the renormalized kinetic coefficient near equilibrium is
obtained. The structure factor after the renormalization is roughly of the form

1(q) = 1/[A(T — T.(S)) + ck®°|q,1?° + ¢ (2.23)
with
A=E727Y T (2.24)

where k. and 7, are defined by (2.13) and (2.14). Again, 4f in equation (2.24) is
replaced by(T — T,)/ T, and the limitS — 0 is taken, we obtain the equilibrium result
AT —T,) — &2

In near-critical fluids, the statical and dynamical renormalization effects are crucial,
leading to (2.22) and (2.23). There are also systems in which the renormalization effects
are negligible. As an extreme example, Dhont and Verduin [27] have examined shear effects
in near-critical colloidal systems with attractive interaction superposed onto the hard-core
repulsion, in whichéy = 2000A and the mean-field theory holds.

2.3. The shift of the critical temperature

Next we discuss the critical temperat@igS) in shear flow. We define the inverse suscepti-
bility » = 1/I(q) in the limit whereq, = 0 andg — 0. It vanishes af’ = T.(S), and
differs from the coefficienty in F given in (2.1). The differenc&r = r — ry arises first
from the quartic term inF as follows:

1 1 1 1

and secondly from the hydrodynamic interaction as follows:
1 1
@ = (17 ) atismoto) [ - atr@ - (2.26)
q

where fq(- 2 = (Zn)‘dqu (---), and I (q) is the structure factor at the critical point.

We may derive (2.26) readily from the Kawasaki expression (2.7). Because shear flow
suppresses the fluctuations, the second termiAof), is negative and Ar), is positive,

while they vanish in equilibrium.

In our original theory [15], we considered low-molecular-weight fluids, and calculated
the shift of 7, assuming that the asymptotic limits (2.8) and (2.9) are attained foruch
larger thank.. Let us explain our result in this case using thexpansion. We note that
the dominant contributions in the last two integrals of (2.25) and (2.26) arise Jront,,
so by using (2.8) and (2.9) at a value &f~ k. we obtain

1 1
(Ar)s = Suo / — —0.0442¢k? (2.27)
q4

(Ar), = 0.1274¢k?. (2.28)
Using (2.23) and (2.24) and summing these two contributions, we obtain
(T.(S) — T.(0))/T. = (0.0442— 0.1274e7, = —0.0832¢7, (2.2%)
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wherert; is defined by (2.14). In three dimensions we expect
(T.(S) — T.(0)/T. ~ =0.17,. (2.2%)

The equilibrium critical temperaturg.(0) is already shifted downwards from the mean-field
critical temperature, which is simply the first term of (2.25) for smgll Shear suppresses

the critical fluctuations and reduces this contribution, giving rise to the second term of (2.25).
The nonlinear hydrodynamic interaction accelerates the diffusive decay of the fluctuations,
leading to a larger downward shift @f.

Beysenset al detected a downward shift from the turbidity and the structure factor,
with g perpendicular to the flow. It was proportional $8°2, but four times smaller than
the result (2.29) at = 1 in a few critical binary mixtures [18], so this aspect remains
undecided. We note that it is difficult to determine the small shift definitively in usual
binary mixtures, because the scattering is suppressed ever-&f.(S) as shown in (2.23),
and does not grow indefinitely belo#.(S) due to formation of stringlike domains, as will
be explained in the next subsection.

Hashimotoet al [61-67] used a ternary mixture of polystyrene (PS) and polybutadiene
(PB) in a common solvent of dioctylphthalate (DOP) to find a downward sR@jftS) —
T.(0))/T. ~ A.t, with 7, oc %> and A, = 0.06 [62]. That is, the scattering intensity above
T.(S) perpendicular to the flowg( = 0) was expressed as

YI(@) =& AT = T0)/T. + Ack? + > (2.30)
The second term gives rise to the downward shift. On the other hand, shear-induced
homogenization took place at the same conditior= 7,.(S) if shear was increased from
two-phase states at fixefl below 7,.(0). In their system the polymer volume fraction
¢ = ¢dps + ¢pp is of the order of the overlapping value, and the fluid may be treated as
a binary mixture of weakly interacting PS-rich blobs and PB-rich blobs [67]. The space
scale and timescale are much more enlarged than for usual binary mixturgs,-as s
even forT — T. ~ 10 K and&, ~ 50 A. The crossover reduced temperatayén (2.14) is
three or four orders of magnitude larger than for usual binary mixtures. In the temperature
region investigated, the static properties are described by mean-field theory, whereas the
diffusion constantD,,,; = Lolro| of molecular origin and thatD;,,; = kzT/6mn&, from the
hydrodynamic interaction are not very different, Bg,q /Do ~ 0.2-0.5 [62]. We believe
that the observed downward shift should be due to the hydrodynamic interaction, which
is consistent with (2.26). Very recently Yet al [68] have used fluorescence and phase-
contrast microscopy on a similar ternary mixture of P®B in DOP, and have reported
that the shift tends to saturate at very high shear.

We note that the shift (2.29) is calculated on the rather special assumption of the
asymptotic limits (2.8) and (2.9). However, they may not be satisfied in polymeric fluids,
on which a number of shear flow experiments have been performed. We need to know the
details of the critical fluctuations, the relevance of the hydrodynamic interaction, and the
degree of viscoelasticity to reliably estimate the shift of the critical temperature. Polymer
blends should exhibit complicated crossover effects in shear, depending on the distance to
the critical point and the molecular weights, etc (where complexity is further increased in
the presence of large asymmetry between the two components) [69-72].

Here, we also make a comment on the shear-induced shift of the transition temperature
in the microphase separation in diblock copolymers. In such systems the structure factor has
a maximum at an intermediate wavenumbgr and the nonlinear hydrodynamic interaction
is not relevant [33]. Cates and Milner [34] calculated an upward shift from (2.25) using
the bareug, neglecting the renormalization effect and the hydrodynamic interaction. Their
prediction was in qualitative agreement with subsequent scattering experiments [35].
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2.4. Spinodal decomposition in shear

More dramatic are the effects of shear in the unstable temperature and composition region.
This problem is of technological importance in polymer systems. Beysens and Perrot
performed a spinodal decomposition experiment on a near-critical binary mixture below
T. by periodically tilting a quartz pipe container [73]. Such a periodic shear was found
to prevent the development of decomposition, resulting in a permanent spinodal ring of
the scattered light. For steady shear, it was anticipated that domains are elongated in the
flow direction asSz& in an initial stage [74], which was in agreement with a subsequent
light scattering experiment [19]. In figure 1 we show light scattering patterns obtained
from a phase-separating fluid in shear, which are characterized by strong anisotropy (streak
patterns) even in weak shedft; <« 1, below7, [19, 59]. Computer simulations in two
dimensions have also shown strong deformations of bicontinuous domain structures just
after quenching [75—-79]. Moreover, it has also been observed that spinodal decomposition
is stopped in steady shear at a particular stage [61, 62], giving rise to dynamical stationary
states. Such sates can be realized only by balance of the two competing mechanisms of
thermodynamic instability and flow-induced deformation. In these two-phase states we may
neglect the gravity effect when the domain skés very small (as compared to the so-called
capillary length). The Reynolds numbge of a domain is given byRe = pSR?/n, and is

very small near the critical point [16]. (Far from the critical point we may well encounter
the opposite limitRe > 1, where the effect of inertia is crucial [16, 80].)

Figure 1. The time evolution of light scattering patterns from a phase-separating near-critical
binary mixture at the critical composition [19]. Hefe= 0.035 s and7, — T ~ 1 mK, so

Ste ~ 0.01. The upper patterns (A) are those in theg, plane, while the lower ones (B) are
those in theg,—g, plane.

Unfortunately, detailed information cannot be gained from scattering alone, so some
theoretical speculations were advanced regarding the domain morphology giving rise to
streak patterns [81]. Recently Hashimetal [82] have taken microscope pictures of a DOP
solution mentioned in subsection 2.3 to investigate the ultimate bicontinuous morphology
in shear in real space as shown in figure 2. They have found that domains are elongated
into extremely long cylinders in steady states except for in the case of extremely weak
shear. ForSt: < 1, such stringlike domains still contain a number of random irregularities
undergoing frequent break-up, interconnection, and branching, although the overall structure
is kept stationary. FoSt: > 1 the continuity of the strings increases, and extends even
macroscopically in the flow direction. The scattering intensity perpendicular to the flow is
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at 90 s and 250 s after cessation of the shear. We can see break-up of cylindrical domains into

droplets, which occurs on the timescalergf, /o, whereo is the surface tension arid is the

group). Here (a) and (b) were obtained under steady shearat hile (c) to (f) were obtained
cylinder diameter.

proportional to the squared Lorentzian formi[IL+ (¢&,)%]? due to cylindrical domains

whereé, represents the diameter of the cylinders, and decreases with shear as

(2.31)
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where ¢,,(0) is the peak wavenumber in spinodal decomposition without shear, and

o = 1/4 — 1/3. For very large shea§ > 10?/z¢, the diameter ultimately becomes of the
order of the interface thickness, and the contrast between the two phases vanishes, resulting
in shear-induced homogenization @t= 7.(S) for the case at the critical composition).

Very recently, Hobbieet al [83] studied the dynamics of the formation of the string
phase in a DOP solution after application of shear. Also, for usual binary mixtures, Hamano
has observed extreme elongation of domains in strong s$wap 1 [84]. Note that the
streak scattering patterns in DOP solutions closely resemble those in usual binary mixtures
[19, 59]. We should also mention that microscope pictures of stringlike domains were
reported for polymer blends [85].

We note that the surface tension is extremely smgll X0~4 cgs) in Hashimoto’s
case and those of usual binary mixtures. We believe that shear can suppress surface
undulations of cylindrical domains for very low surface tension. Such undulations grow,
resulting in break-up of cylinders into droplets in the absence of shear (the Tomotika
instability [86]). Figure 2 shows a dramatic example observed after cessation of the shear.
Interestingly, this capillary-driven instability is in essence the coarsening mechanism of late-
stage spinodal decomposition at the critical composition [87]. Rheologically, there should
be no appreciable increage; of the macroscopic viscosity in the string phase, where the
surfaces do not resist the flow. This point will be discussed again in subsection 2.6.

Very recently, spinodal decomposition under shear flow has been studied by molecular
dynamics (MD) simulation of a two-dimensional Lennard-Jones system consisting of 40 000
particles [79]. This has involved applying a very large shear realizable only in MD
simulations, and examination of elongated domain morphologies b&lowWe notice
that the simulation [79] has been performed in a regime with a relatively large Reynolds
number,Re = pSR?/n > 1, with significant velocity field fluctuations.

We may also consider spinodal decomposition under oscillating sfeae= So coSwt).

Krall et al [88] pointed out a new bifurcation effect under periodic shear on the basis of a
phenomenological domain growth theory of Doi and Ohta [89]. That is, if the maximum
shear strainf = Sp/w is larger than a critical valug,, the shear distortion is effective
enough, and the domain growth can be stopped, resulting in a periodic two-phase state.
If f < f., the shear cannot stop the growth leading to macroscopic phase separation.
Interestingly, a similar bifurcation was found in a spinodal decomposition experiment under
periodic quenching [90].

2.5. Nucleation in shear

2.5.1. Droplet break-up and coagulation in sheaiVe then slightly lower the temperature

T below the coexistence temperatufg by §T = T., — T in the off-critical case. To
observe appreciable droplets of the new phase, the critical droplet must not be torn by
shear, and hence we require

R. < R* (2.32)
whereR,. ~ £/A is the critical radius of nucleation and
R* ~o/nS (2.33)

is the Taylor break-up size [91-93\ (=A(0)) is the initial supersaturation, much smaller
than 1, and is related 897 andAT =T, — T,, by A = %(5T/AT) near criticality. Then,
a necessary condition for observing noticeable droplets follows [16, 81, 94]:

Ste < A < 1. (2.34)
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This gives an upper limit for the sheas? ~ A/, at eachST, or a lower limit for the
guench depth

8T* ~ ST(AT)  S(AT)*% (2.35)

at eachS, in order to have droplets. This simple criterion has been confirmed for binary
mixtures under gentle stirring [95, 96] and uniform shear [97].
The key quantity in the initial stage of nucleation is the nucleation rate [11, 12]

J x exp(—a(AT/8T)?) (2.36)

wherea is a number of order 1. It is the probability of finding droplets with radius larger
than R, per unit volume and per unit time. It is known thatcan be of order 1 whe8T
is equal to the classical Beckergbing limit

8Tpp = 0.15AT. (2.37)

We note thatsT* < §Tgp for very weak shear, which satisfies (2.34). If this inequality
holds, droplets will emerge &t = §Tgp on increasingdT from zero, but droplets will
disappear abT = §T* on decreasingT from a state in which droplets pre-exist. This
hysteretic behaviour was observed by Min and Goldburg [97], as shown in figure 3. Namely,

the point whereF = 1 on the branch H corresponds to the appearance of droplets, while
the point whereF = 1 on the branch C corresponds to the disappearance of droplets.
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Figure 3. The normalized forward intensity’ (the transmittency of light) from an off-critical
binary mixture as a function of the quench depth[97]. The curves H, C, and PQ correspond to

S = 340,340 and 20 s'. The lines are a guide to the eye. On the branch PQ the experiment
was started at the point P in an opaque state, and was ended at the point Q where droplets
disappeared due to the break-up mechanism. The branch H was started at the point where
F = 1, where the nucleation rate is appreciable. The branch C was ended at the point where
F =1, due to the break-up mechanism.

Another important mechanism is the flow-induced coagulation of droplets [98, 99]. Itis
known that in flow, both laminar and turbulent, a droplet collides with others on a timescale
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of order /¢S (the mean free time) whekg is the droplet volume fraction. This estimation

is valid when the sizes of the colliding droplets are of the same order. On the other hand,
flow-induced collisions rarely occur between droplets with very different sizes, because the
smaller one moves on the stream line of the velocity field around the larger one without
appreciable diffusive motion foPe >> 1 [100, 101]. Due to this coagulation, the average
droplet size grows as [99, 102]

(a—R> ~ SOR (2.38)
ot coll
leading to an exponential growth &.

For aggregating colloidal systems, the above exponential growth is well known [102].
Simulations of colloid aggregates have shown deformation, rupture, and coagulation of
clusters in shear flow [103, 104]. These hydrodynamic effects are of great technological
importance for two-phase polymers [105], in particular in the presence of copolymers [106].

Here we raise a fundamental question as to the existence of metastability itself in
relatively large shear for which (2.34) is not satisfied. That is§7f is increased in
such shear, droplet formation will be suppressed, because localized droplets larger than
R* cannot be stable. In particular, §fr: ~ 1, R, becomes of orde¢ and the suppression
is complete, in the sense that phase separation can be triggered only by instability of plane-
wave fluctuations. That is, a spinodal point becomes well defined in such relatively large
shear as the unique onset point of phase separation. Recall that the spinodal point obtained
in the mean-field theory has no definite theoretical meaning for quiescent fluids [11, 12].

2.5.2. Droplet size distribution in shearUnder (2.34), a nearly stationary distribution of
droplets is realized after a long relaxation time [97]. Remarkably, the size distribution is
peaked atR = R* and, once such a distribution is established, further time development of
the droplet distribution becomes extremely slow. Min and Goldburg [97] have found that the
supersaturatio’\ tends to a finite value\(S) dependent or$ by gradually increasingT
from zero, which corresponds to the branch H in figure 3. It can be determined because the
droplet volume fraction i = A(0) — A(S). Though such a state is nearly stationary, there
is still a diffusive current onto each droplet from the surrounding metastable region. Each
droplet will grow aboveR. and break into smaller droplets, which will then start to grow
again or dissolve into the metastable region depending on whether their radii are larger or
smaller thanR.. Each droplet will also collide with another one on the timescale/sip1
The evolution of the droplet size distribution is therefore very complex, and the observed
guasi-stationarity is produced by a delicate balance among these processes. Alternatively,
we may also start with an opaque state in whighis sufficiently large and\(S) = 0 (or
¢ = A(0)). Then, by gradually decreasidg" at fixed S, a nearly stationary state will be
obtained, which corresponds to the branch C in figure 3. Interestingly, it has been found to
be more opaque and to have a larger droplet volume fraction (or a smaller supersaturation)
than in the reverse case of increasi#i from zero.

Hashimotoet al [65, 66] have observed similar hysteresis in off-critical DOP solutions
by increasing or decreasingjover a very wide range with7 fixed. First, they increased
S from an opaque state with droplets to reach a transparent state without droplets at
Ti (0)—T o S, whereTy,; (0) is the cloud-point temperature at zero shear. We believe that
this disappearance of droplets should have been caused by the Taylor break-up mechanism,
though the difference betweeh,; (0) and the temperaturg., on the coexistence curve is
not clarified in their work. Second, they decreasefiom a disordered state homogenized
by large shear to reach a spinodal-like point at whigh(0) — T o %2, and below which
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droplets appear. However, they found that the quasi-steady states reached in the decreasing
branch are still slowly evolving towards the steady states reached in the increasing branch
on timescales of several hours. We believe that the experiments performed by Hashimoto
et al and those performed by Goldburg and Min are consistent with each other.

2.5.3. Acceleration of droplet growth in shearTo analyse their experiment, Baumberger

et al [107] argued that the growth of an isolated droplet in a metastable fluid can be
considerably accelerated even in very weak shear by an advection mechanism. If the growth
is slow, the composition, outside the droplet is determined by a quasi-static condition:

w-Vy+DVy =0 (2.39)

wherew is the average flow tending to a simple shear flow far from the droplet. The relative
importance of the two terms in (2.39) is given by the Peclet number

Pe = SR?/D = St:(R/&)>. (2.40)

We havePe > St¢/A? for R > R., and Pe ~ 1/St; at the break-up siz& ~ R*. Thus

Pe > 1 can hold over a sizable time interval even under (2.32) or (2.34). The deviation
from the spherical shape is small fBr<« o/nS or for R <« R*. For Pe > 1 it is important

that the composition gradient is localized in a thin layer, with a thickdgsgiven by

ts~ (D/S)Y? ~ R/ Pe (2.41)

around the droplet. This relation follows from the balance between the two terms in (2.39).
As a result, the diffusion current onto the droplet from the metastable fluid is enlarged by
£s/R ~ PeY? as compared to the case whete « 1 [108, 109], so the usual Lifshitz—
Slyozov equation [110] is modified as follows:

D p~ Q(A - 2—“)Pe1/2 ~ (SD)”Z(A = Q) (2.42)
R R

whereq is a capillary lengtii~&). Thus the timescale of the initial stage can be considerably
accelerated by the convection effect. However, the critical rafljus 2«¢/A is unchanged

by very weak shear, and there seems to be no drastic change in the nucleation rate, although
this is not confirmed.

The above mechanism is important in systems with a small diffusion constant such
as polymer blends. As another similar effect we note that, if surfactant molecules are
added to an oil-water two-phase system, they can be advected onto the oil-water interfaces
efficiently in shear flow, leading to shear-induced emulsification. Systematic experiments
in these cases should be interesting.

2.6. Rheology in strong shear and in two-phase states

The fluctuations of the order parametgrgive rise to the following additional shear stress
[114, 113]:

S An = —kpT((dy/0x)(dy/0y)) (2.43)

where the average is taken in a system under shear. Other important quantities include the
normal-stress differences:

N1 =0y — 0y, = kgT((0%/3x)% — (39/3y)?) (2.44)
N2 =0y, — 0. = kgT((9y/0y)? — (39/02)). (2.45)
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In the one-phase region, the above quantities may be expressed as integrals in the wave-
vector space using the structure factgg). We find thatAn is nearly logarithmic, varying

as logé& /&) in weak shear and as 1@ty k.&o) in strong shear. This crossover was first
predicted by Oxtoby [111]. If use is made of theexpansion in strong shear, we obtain
[112]

n=no+ An o (keko) ™ oc ST/ (2.46)

wherex, = €/19+ --. is a small dynamical exponent. This shear rate dependence
was measured by Hamaret al [115]. In weak shear, the normal-stress differences are
proportional toS? and are very small. In strong shear, the wave-vector integrals in (2.43)—
(2.45) are of ordenk?, and

N1 = 0.0461S N» = —0.032%7S (2.47)

to first order ine. (Note thatvV, and N> are even functions of, while the shear stress,,
is odd. If we allow the case where < 0, we should uséS| in (2.46) and (2.47).)

When a near-critical fluid is undergoing phase separation, larger stress contributions
arise from interface deformations [113] becaS&p)(V¢) behaves like @-function near
the interface multiplied by the tensam, wheren = (n,, n,, n;) is the normal unit vector.
In particular, in weak shear, interfaces are sharp and (2.43) yields a well-known expression
[116, 113, 117]:

1
(AN)ine = —5° / da nyn, (2.48)

whereo is the surface tensionads the surface element, and the surface integral is within

a unit volume. This surface contribution is the sole change of the macroscopic viscosity in
Newtonian two-phase fluids with the same viscosity. The problem is much more complicated
if the two phases have different viscosities [116, 118]. Similarly,

(NDini =0 / da (2 —nd)  (Npiw=0 / da (n5 —n?). (2.49)

If we suppose an assembly of largely deformed droplets near the break-up corditiat,
as given in (2.33), we estimate-n,n,) ~ (nZ —n3) ~ 1, and

(An)int ~ ¢ /SR ~ ¢n (2.50)
(NDint ~ (N2)int ~ 1nS¢ (251)

where the surface areal density is of ordefR in terms of the volume fractio of
the droplet phase. Because (2.50) is independent of shear, it is analogous to well-known
expressions for the macroscopic viscosity of suspensions or emulsions in the zero-shear
limit [116]. However, in our case, droplets are substantially deformed, so the rheology is
strongly nonlinear. The behaviour &f; and N, is marked, because they are nearly zero
for one-phase states, and jump to large values after quenching. Doi and Ohta re-derived the
above results by setting up constitutive equations for the interfacial stress tensor [89].

Krall et al [88] measuredAn(z) for a near-critical binary mixture using a viscometer
in which shear was oscillated and damped in time. After a pressure queneh@tAn(¢)
increased on the timescale gfin accord with (2.50). It tended to a constant for the droplet
case, whereas it slowly decayed to zero in the critical (bicontinuous) case after a long time
(~20 s). The origin of this slow decay was ascribed to the fact that shear cannot stop
coarsening after a certain decrease of the oscillating amplitude in their viscometer (see the
last comment in subsection 2.4). Subsequently, however, Haetaeld119] observed the
same decay of\n(¢) in steady shear in a rotational viscometer. Because a sharp streak
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scattering pattern emerges wilty () — 0, we may conclude that a string phase discussed
in subsection 2 was realized in their critical quench cases. For such highly elongated
domains, the interfaces are mostly parallel to the flow, apd= 0 in (2.48), leading to
An=0.

Recently, the rheology of phase-separating polymer blends has also been studied [120—
122] particularly when the two phases are Newtonian and have almost the same viscosity.
The observed\n and N; were in excellent agreement with the scaling relations (2.50) and
(2.51). It is of great importance in polymer physics to understand the rheology in more
complex two-phase states, such as in the case in which the viscosity difference between the
two phases is large [118, 123], or the case in which viscoelasticity is crucial. The latter
case will be discussed in subsection 3.5.

In aqueous surfactant solutions, marked increases of the viscosity;andre observed,
which was interpreted as arising from shear-induced aggregate formation or gelation [42].
In aqueous solutions of agarose, huge viscosity enhancement was also observed, in which
gelation was probably induced upon phase separation [124]. In colloids near the critical
point [125] and dense microemulsions near the percolation threshold [126], the viscosity
has been reported to grow strongly, in contrast to the weak-viscosity singularity in the usual
near-critical fluids. In such systems, near a phase transition, interesting nonlinear rheology
might well be expected at high shear and/or in two-phase cases.

Simulations of simple fluids in two dimensions have also shown an increase of the
viscosity in spinodal decomposition [75—77, 79]. In the MD study of a Lennard-Jones
fluid [79], dynamical steady states with irregularly elongated domains have been attained.
Simulations of fluids with internal structures in this direction should be of great importance.
(An example for the viscoelastic case will be given at the end of section 3.)

2.7. Effects of stirring

Fluids can be mixed even by gentle stirring, so it is always used in experiments and in
everyday life. Voronel and co-workers [127] measured the specific ¢igainder stirring

in one-component fluids near the gas—liquid critical point. Surprisingly, they could observe

a sharp peak o€, even very close to the critical point, which would have been masked

by the gravity effect in a quiescent fluid. To support their finding, we may argue [128] that
the density stratification in gravity is much reduced frempg(dp/dp)r t0 —pg(3p/dp)s

under stirring. The ratio of these two quantities(&/dp)r/(@p/dp)s = C,/C,, and is

very large near the gas-liquid critical point. This means that the entropy per unitsmass
tends to be homogenized in stirred fluids despite the presence of a pressure gradient. There
should also arise a vertical temperature gradient

dT/dz = —pg(3T/dp), (2.52)

which is —0.9 mK cnt?! on earth in xenon. Also, in binary mixtures, if use is made of the
derivative(aT /dp),x at fixed compositiorX, we can predict the same temperature gradient.
Cannell [129] first reported the presence of a temperature nonuniformity in stirred fluids in
gravity. But there has been no systematic experiment to confirm the above predictions.

We may also examine critical phenomena and phase separation of near-critical binary
mixtures in vigorous stirring or turbulence [130-133]. It is known that the maximum shear
rate S, in turbulence is given byn/p)kj, where

kg = Ly Re¥* (2.53)

is the Kolmogorov lower cut-off wavenumbeky being the size of the largest eddies and
Re being the Reynolds number, much larger than 1. We note that in the case of near-critical
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fluids, the composition fluctuations have sizes much shorter than the size of the smallest
eddies {1/k,), and are most effectively strained by the smallest eddies. These eddies turn
over on the timescale of/F,, during which the composition fluctuations are affected by

the eddies. Experiments showed that there is no sharp phase transition in turbulence, and
that the scattered light intensity increases gradually but dramaticallyiadowered below

T.. As in the case of laminar shear, there is a strong-shear regime determing$;by 1,

in which the fluctuations are strongly suppressed by random shear. If a fluid is further
guenched belows, into the weak-shear regionS; <« 1, the characteristic domain size
should be given by

R~ 0o /nSq ~ (po/nP)k;* (2.54)

as for laminar shear [16]. Note that the above scenario holds onlR ferl/k,, which is
equivalent to the conditiosr < (n?/p)k,. In fluids far from the critical point, this condition
is not satisfied, where the Kolmogorov scaling yields [134, 99, 16]

R~ (pa/n?)¥%k; % > k1. (2.55)

Here, instead of the shear stresk, the typical pressure variatian-pu%) over the distance

R is balanced with the capillary force densityo/R), whereuy (xRY3) is the typical
velocity of eddies with siz&k. An attempt has also been made to simulate phase separation
using a time-dependent Ginzburg—Landau model in the presence of a model random velocity
field [135].

We finally mention experiments by an Uzbekistan group [136]. They detected a peak
in the specific heat deeply inside the coexistence curve in stirred off-critical fluids, where
the peak height increased with increase in the degree of stirring. They claimed that a
spinodal point can be reached in the presence of stirring, but it should be checked by more
experiments. Their effect might be related to the question raised at the end of section 2.5.1.

3. Shear-induced phase separation

The effects of shear on polymeric systems are generally very complex [8]. As well as
shear-induced mixing, application of shear or extensional flow sometimes induces a large
increase of the turbidity, indicating shear-induced composition heterogeneities or demixing
[137]. In polymer blends, these two tendencies can occur in the same polymer mixture,
depending on the composition and temperature [70, 72]. Semidilute polymer solutions near
the coexistence curve most unambiguously exhibit shear-induced demixing, as reviewed by
Rangel-Nafaileet al in 1984 [138]. In particular, Kimer and Wolf [139] showed that the
tendency towards demixing is dramatically intensified by increase of the molecular weight
M (>2 x 1(P) and the polymer volume fraction above the overlapping value. In such
situations for non-Newtonian shear, significant shear-thinning behaviour has been observed
in steady states. At very high shear, furthermore, an onset of shear-thickening behaviour was
detected [140]. As will be discussed in the last part of this section, large stress fluctuations
were also reported upon demixing by shear [5, 6, 141], suggesting the formation of gel-like
aggregates under shear.

Recently, a number of scattering experiments have been performed on high-molecular-
weight polymer solutions under shear (polystyrene (PS) + dioctylphthalate (DOP) solutions)
[142-148], together with a dichroism experiment [57]. Theoretical efforts to understand
this complex problem have also been made intensively [149-156]. We will review the
recent theoretical progress together with some new analytic and numerical results. We
mention three main theoretical ingredients that are being established. They are (i) a
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dynamical coupling mechanism first applied to sheared polymer solutions by Helfand and
Fredrickson [149, 153], (ii) a viscoelastic Ginzburg—Landau scheme [150, 151, 154, 155]
with a conformation tensor as a new independent dynamical variable, and (iii) computer
simulations [156] which would give insights into strongly fluctuating polymer solutions
under shear. However, a number of puzzles remain unexplored in spinodal decomposition
and nucleation with (and even without) shear below the coexistence curve.

We should also mention intriguing small-angle neutron scattering experiments on gels
which are swollen and uniaxially expanded [157]. Heterogeneities of the crosslink structure
are believed to induce frozen composition variations giving rise to abnormal butterfly
scattering patterns [157-160], which are very similar to those from sheared polymer
solutions in theg,—g, plane [143, 147, 159]. For both polymer solutions and gels, the
problems encountered are those of the stress balance attained by composition changes in
heterogeneous systems. The difference is that the crosslink structure is permanent in gels
and transient in polymer solutions, which makes the problem simpler (though still complex)
for gels [159].

3.1. Dynamical coupling between stress and diffusion

Semidilute polymer solutions become highly viscoelastic when the molecular weight is
very large and when the polymer volume fractipnexceeds the critical volume fraction
¢. = N~Y/2, whereN is the polymerization index (the number of segments on a chain),
much larger than 1. We assume that the polymer volume fragtide much smaller
than 1, and will replace the factor-1¢ by 1 in many relations to follow. The viscosity
n and the stress relaxation timedramatically increase with increasiggand N, because
a large network stress is produced due to entanglement even against small deformations.
It has recently been recognized that the stress can influence spatial inhomogeneities of the
composition through a dynamical coupling between stress and diffusion. This coupling
gives rise to nonexponential relaxation of the time correlation function of the composition
fluctuations near equilibrium [161-165].

To illustrate this new concept, let us consider a simple two-fluid model of polymer
solutions [149-156, 166, 167]. The mass densitigsand p,, of the polymer and the
solvent are convected by their velocities, andv,, as follows:

0 a0
E:Op =-V. (:Opvp) 5/% ==V - (p5vy). (3.1)

The total densityo = p, + p, obeys the usual continuity equation with the momentum
currentpwv, where the average velocity is defined by

v = p_l(ppvp + ps5). (3.2)

Most polymer solutions have a very small compressibility or are nearly incompressible.
Therefore the density deviatiodp = p — p from the average is very small, and the
continuity equation may be linearized as

3
—8p=—pV -, 3.3
o 00 =—pV v (3.3)

For simplicity, we further assume that the mass densities of pure polymer and solvent are
the same. Then the mass fractipy o coincides with¢. It obeys

0
(5 +uv- V)¢ ==V @1l-pw) =-V-(pw) (3.4)
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where
w=v, — (3.5

is the relative velocity of the polymer and the solvent. The diffusion current is given by
¢w. The two velocitiesv, andv, are expressed as

v, =v+ (1l-p)w vy, =V — w (3.6)

so we havev, = v+ w andv, = v for ¢ < 1.
The equations of motion for the two components are

0

op Ev” =—p, Vi, —tw+F, (3.7
0

Ps gvs =—ps Vi, +w + 1o Vzv.v~ (3.8)

Here we consider only very slow motion, and neglect temperature inhomogengijiexid
s are appropriately defined chemical potentials, arisl the coefficient of friction between

the two componentsF, is the force arising from the network stress, Bp= V- o, in
terms of the network stress tensB;;. no is the solvent viscosity, much smaller than the
solution viscosityn. The scaling theory [13] shows thatis of the following order:

¢ ~ 6ok 2 ~ Bwnob2¢? (3.9)

where& ~ b/¢ is the thermal correlation length aridis the monomer size. From (3.7)
and (3.8), the relative velocitw is governed by

ad 1 1 1
W= _V(/J/p _:u;r) _§<_+_>w+_Fp' (310)
ot Py Ps Pp

The viscosity term(ocng) in (3.8) has been neglected. In our problems, the characteristic
frequencies are much lower thal/p, + 1/p5), SO we may sebw/dr = 0 in (3.10) to
obtain

1
w = (ppps/ip)[ = Vi(up — ps) + p—Fp] (3.11)
14
We substitute (3.11) into (3.4) by settidg, = V- 3p and
8
— — -1 _
[y — s 5 (3.12)

whereF is the free-energy functional, dependentg@nThe above relation will be justified
by means of (3.62) and (3.63) below. Then we obtain

0 6F 1 o

where
L =¢?/t ~b?/6mno (3.14)

is the kinetic coefficient, which is independent@fin the semidilute case. This equation
implies that imbalance of the network streﬁ-(? # 0) leads to relative motion of the
polymer and solvent. This form of the equation was originally derived for gels to analyse
dynamical light scattering [167]. Helfand and Fredrickson [149] used the above form for
sheared polymer solutions. Wittmann and Fredrickson [168] presented a formal theory using
the projection operator method, and claimed that the dynamical coupling arises even on the



Phase transitions of fluids in shear flow 6139

basis of the Rouse dynamics without entanglement. Similar efforts have also been made by
Sunet al [169].
The average velocity is governed by

_ 0
o E'U = _(lop Vﬂp + 05 Vis) + Fp + 7o vV (315)

where p is replaced by the average and v, in the last term is replaced by because
vy = v from (3.6). As in (2.7), we may further set in most cases

dv/ot =0 V-.-v=0. (3.16)

The above phenomenological theory is based on the assumption that the network stress
acts on the polymer and not directly on the solvent. In other words, the stress division
between the two components is one-sided. This idea has been extended to more general
asymmetric stress division in polymer blends [153, 165], and may be used to understand the
mutual diffusion between polymers [153] and to study viscoelastic spinodal decomposition in
asymmetric polymer blends [166]. The problem of stress—diffusion coupling or asymmetric
stress division is ubiquitous, but it is not well recognized in many other systems such as
dense colloidal suspensions, dense microemulsions [126], polymeric liquid crystals [14], or
fluids near the glass transition, where the two components are not alike and the viscosity is
large.

3.2. Linear theory for shear flow

Helfand and Fredrickson (HF) [149] examined the dynamical coupling in shear to linear
order in the composition fluctuations by assuming that the stress fluctuations instantaneously
follow the composition fluctuations. Their theory most simply illuminates the mechanism of
shear-induced fluctuation enhancement, but it is applicable only at very long wavelengths.
Here we present a more general linear theory which is valid over a wider wave-vector region
and is still analytically tractable. For simplicity, we first consider the Newtonian regime,

St <1 (3.17)

We shall see that fluctuation enhancement is rather mild in the Newtonian regime, and it
can be drastic in the non-Newtonian reginse, > 1. Interestingly, such effects become
apparent even whesi is still much smaller than the diffusion rate:

1/t = D& 2 (3.18)
over the correlation length. That is,
St < 1. (3.19)

The definition of the cooperative diffusion constdnt, will appear in (3.28) below. We

haver: « t except very close to the critical point. In this subsection, the temperature
region is assumed to be above the coexistence curve, where phase separation does not occur
without shear.

We linearize (3.13) around a homogeneous state under shear flow. To this end we
need to know a linear expression fgg,. When the timescale of the deformations under
consideration is much longer than the stress relaxation tipieis expressed in terms of
the gradient of the polymer velocity, as [152, 153]

) a 2
apij = n(¢) [EUP,' =+ EUW‘ — é(SUV . ’Up:| (320)
j i
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wherep is the (zero-shear) viscosity of the solution, strongly dependeit dror simplicity
we have made,;; traceless by subtracting the last term in (3.20) on the assumption that
isotropic expansion or shrinkage of the network takes place on a timescale shorter than
that of shear deformations. However, this assumption is problematic. In fact, they can
occur on the same timescale in gels. We here adopt (3.20) to make the theory as simple
as possible. In addition, we have neglected the normal-stress differdhaesd N,, which
should not be negligible foft 2> 1.

It is not trivial that the polymer velocity, appears in the constitutive relation (3.20),
which was first explicitly stated by Doi [152]. ¥ or v, were used instead af,, we would
reach very different conclusions [153]. For example, the dynamical structure factor would
become inconsistent with the Brochard—de Gennes form [161], and the kinetic coefficient
would not be modified as in (3.31) below. The key relation arising from usjng that,
in the linear orderV - v, is related to the time derivative of the deviatidg as

9 9 N
(E + Sy a)&p ~ ¢V v, (3.21)

Then we find

o 4 ) 9 2
V.-V.o,= - v2<— + Sy a—)3¢+2sn/ 8¢ (3.22)
X

3¢ ot dx dy
in terms of§¢. The first term arises from the space dependence of the gradient ahd
the second term from th¢-dependence of(¢), where

n'=an/d¢ ~ 6n/¢. (3.23)

Rheological data showed that o« N34¢p® with a ~ 6 for semidilute solutions in theta
solvent [170, 171]. In the HF theory, the fluctuations of the velocity gradient are neglected,
and the first term of (3.22) is absent.

Substitution of (3.22) into (3.13) yields a linear equation fgrof the form

(1-¢&2 vz)(% + Sy %)&;& = L[vz(ro —CV? - %n’s ajzy}aqb (3.24)
where

SF/8¢ = (ro — C V8¢ (3.25)
to linear order ind¢. The coefficient is related to the bulk osmotic modulus,; by

K,y = ¢°ro. (3.26)
The thermal correlation length is thus

£=(C/ro"? (3.27)
and the so-called cooperative diffusion constags is of the form

Deo = Lro = Ko5/¢ ~ kpT /67 N0 (3.28)

which is the diffusion constant not affected by entanglement, and measurable by means of
dynamical light scattering at long wavelengtlgs< £,.%, whereg,, will be determined in
(3.32) below). The scaling theory indicat€sx 1/¢ andé ~ b/¢ in the semidilute region.

The Fourier transformation of (3.24) yields a simpler equation for the Fourier component

¢q. As in (2.15), we also add a random source téyy on the right-hand side to obtain

B d 2n'
(5 — Sq» %)d’q = _Leff(f])[qz("o +Cq®) — ?quqy}% + Orq (3.29)
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with

(Org()0rq (1)) = 2(27)'8(q + q) Loss (9)q?8( —1). (3-30)

The noise is assumed to be unaffected by shear, and to ensure the Ornstein—Zernike structure
factorIoz(q) = 1/[ro+ Cq?] in equilibrium. The kinetic coefficient is modified as follows:

Lerr(q) = L/[1 + £24] (3.31)
whereé¢,, is defined by
4 1/2 4 1/2

If use is made of the estimate (3.14), we h&ye~ £(n/no)*/? > &, and find that,, can be
very long with increasingy. We notice that the diffusion takes place to achieve viscoelastic
stress balanceV\(- o — 0) on spatial scales shorter than. We should mention that this
length was first introduced by Brochard and de Gennes [172] for semidilute solutions with
a good solvent vig&,, = (D.,7)Y?, whereD,, is the cooperative diffusion constant ahd
is the correlation length~the blob size) in a good solvent. This definition indicates that
the usual diffusion is faster than the stress relaxation on spatial scales shorté&y, than
similar viscoelastic length was also introduced for asymmetric polymer blends [153], where
it plays an important role in dynamical scattering and phase separation [165, 166]. In fact,
strongq-dependence of the kinetic coefficient consistent with (3.31) has been observed for
asymmetric polymer blends in their early-stage spinodal decomposition [173].

Equation (3.29) shows that the composition fluctuations are convected by shear flow,
and relax with the modified relaxation rate:

2 /
LCerp(q) = L[qz(ro +Cq% — T?quqy}/[l +&2,q%. (3.33)

The equation for the steady structure factog) is obtained from (2.17) if°’(¢) and Ly are

replaced byl.;r(q) and L.sr(q), respectively. It depends ofithrough theS-dependence
of I'.sr(g) as well as that of the convection. If we expah@@) in powers ofS as in (2.18),

we obtain forgé <« 1

1(@)/102(q) = 1+ 2q:qy[1'Lesr (@) /¢ — E41S/ Tepr(@) + - - - (3.34)

Comparing this with (2.18), we find a surprising result even in the linear order. That is,
the correction due to the viscoelasticity is much larger than and has a sign opposite to
that due to the convection, in accord with a light scattering experiment performed by Wu
et al [142] at small shearSt < 1. The ratio of these contributions is aboub(,./£)?
for ¢&,. < 1 in the present approximation. (A more reliable expansion forni(gh can
be found in reference [153].) This suggests that the composition fluctuations are aligned
perpendicularly to the flow direction, which is opposite to the case for near-critical fluids.
Similar abnormal alignment perpendicular to the stretched direction has been observed in
heterogeneous gels [157].

As in (2.19), the integral form of (q) is given by

I(q) = /0 dr exp[—Z /0 dr Feff(qal))i|2Leff(|‘1(t)|)qu)2 (3.35)

whereq(t) = q + Stq.e, as in (2.20). It is important thaf,.;r(g) can be negative even
for positiverp for S > S, indicating growth of the fluctuations. The critical shear réite
is given by

Se = r0¢/77, = KUS/GU (336)
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where use has been made of (3.23) and (3.26). To examine the growth in more detail, we
define two parameters:

§=8/8. -1 (3.37)

M = (§./6)° ~ 1/t > L (3.38)

For simplicity, we assume & § < 1. Some calculations show that the maximum of
—TI'.rr(q) is attained ay, = g, = £¢,, andg, = 0, with

g2 =E728/[V1+ M5 +1] (3.39)
and is equal to

Tiax = Deot g (3.40)
In particular, foré > 1/M, we obtain

Gm =671/ MY = 6/ (55,01 (3.42)

Cax = i—i(Kos/n)zS. (3.42)

However, the growth is transient, becausg,(q) is negative only in the narrow region
whereg < 8721, and the convection brings the wave vector outside this unstable region.
The duration time* of the growth is of ordes/?/S, and the peak height,.. of I(q) is
proportional to the exponential factor &X,..t*). Foré > 1/M, it follows that

109(ar) = 272K 0,832 /S ~ 453/ (3.43)

where S in the denominator has been replacedShyand use has been made of (3.36). It

is certain that the enhancement is large o, 1, though our calculation is not applicable

for s > 1. Foré < 1/M « 1, the volume of the unstable wave-vector region is very
narrow, andl',,.t* <« 1, leading to no significant exponential growth. Obviously, our
linear theory can be used only when the fluctuation enhancement is weak, and a nonlinear
theory is needed to study the strongly enhanced regime.

In setting up (3.20), we have assumed that the timescale of the composition fluctuations
is longer thant. Here we confirm that the maximum growth rdtg,. given in (3.42) is
certainly smaller than /fx if K,,8 < G, whereG = 5/t is the shear modulus. We also
note that they-dependence of the modified kinetic coefficidng,(¢) in (3.31), which is
neglected in the HF theory, is crucial in the above calculation.

3.3. The normal-stress effect, and the non-Newtonian regime

In the previous subsection we have neglected the normal-stress effect. Because the
convection makes the mathematics very complex, let us assume that all of the deviations
are varying only in they- (velocity gradient) direction [151]. We take the long-wavelength
limit ¢&,, < 1 in (3.13) to obtain the equation for the deviatié:

d 92 1
55¢) =1L a_yz |:r0 (S¢ - 5 SO'pyyi| (344)

whererg = K,;/¢? is defined by (3.26), anéo,,, is the deviation of thery-component of
the polymer stress. This gives a diffusion constant in the velocity gradient direction given

by
D, = L[rO - (aapyv/a(p)/(b] (345)
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Here we take the derivative with respectitat a fixed shear stress, assuming #gathanges
more slowly than the shear stress deviation. Becaugg /d¢ ~ N1/¢ in terms of the first
normal-stress differenc#, the fluctuations varying along theaxis are linearly unstable

for K,s < ¢(d0p,,/9¢) ~ N1 [150]. In polymer solutions, however, the assumption of
neglecting fluctuations varying in the flow direction seems to be too restricted, as our
simulations will suggest. On the other hand, it may well be used to discuss flow instability
of layered structures aligned in the flow direction [176].

For a long time, considerable attention has been paid to migration or diffusion of
polymers [177] or colloidal particles [48, 178] in the velocity gradient direction. In
particular, Nozéres and Quemada [50] proposed the same equation as (3.44) to describe plug
flow formation in concentrated colloidal suspensions flowing through a capillary, where the
quantity corresponding v, is called a lift force. In a similar manner, we have discussed
how a slipping layer consisting of solvent appears at a boundary and grows for a semidilute
solution near the coexistence temperature [179].

We have found that light scattering increases wliesomewhat exceeds. defined by
(3.36). However,S, is of order ¥t above the coexistence curve, so the enhancement is
mild under (3.17) or in the Newtonian regime. We then advance some speculations for the
non-Newtonian regime. The dynamical equation (3.13) indicates that the fluctuations grow
when the typical value of the shear stregg, or the normal-stress differencdé, exceeds
the osmotic modulux,;. In the rheological literature [174, 175] it is known that

Opry ~ N1~ G(St)? (3.46)

with 8 ~ 0.2 in the non-Newtonian regime. The condition of strong fluctuation enhancement
will be given by

G(ST)! 2 Ko Or (ST 2 (T — T,))/(Tex — Typ) (3.47)

where Ty, is the spinodal temperature affy, is the coexistence temperature. The above
condition can also be obtained from (3.44) or (3.45) if (3.46) is used. Thus enhancement
is not expected in a good solvent whekg; > G, whereas it emerges noticeably as the
temperature approaches the coexistence curve whigre- G.

Rangel-Nafaileet al [138] developed a thermodynamic theory of shear-induced phase
separation, and claimed that their theory is in good agreement with experiments. They
assumed that the total free energy consists of the Flory—Huggins free energy and a stored
elastic energyf,; of the order ofN;. Such a form of the free energy was suggested by
Marrucci’s work [180] on the dumb-bell model. Then the spinodal was determined from

Koy + ¢%(92 fu/99%) = 0 (3.48)
where the derivative with respect t was performed with the shear stress held fixed.
However, the second derivative ¢ is positive, leading to a downward shift of the spinodal
if ¢ is much larger than a critical entanglement volume frac#itn They hence claimed that
an upward shift of the spinodal is expected §or ¢*. Similar approaches have been taken
also by other authors [181, 182]. In contrast, if the problem is treated dynamically as in
recent theories, the apparent shift due to the stress—diffusion coupling is definitely upward.
Apart from the sign, the absolute value of the shift from the thermodynamic assumptions
can be consistent with (3.47) in the non-Newtonian regime.

We believe that it is appropriate to introduce the concept of the stored free energy or the
elastic free energy to adequately describe viscoelastic fluids. In the thermodynamic theory,
however, Rangel-Nafailet al have followed the usual thermodynamics, not explicitly
examining space-dependent fluctuations, in contrast to the recent theories on polymer
solutions and those on gels. Jetial [182] stressed that thermodynamic arguments, if
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improved, can be useful in understanding shear effects in polymers, in view of the still
weak predicting power of the dynamical theory.

3.4. Time-dependent Ginzburg-Landau theory

3.4.1. Conformation and stress tensordn the phase transition of polymer solutions,
the order parameter is the polymer volume fractin In describing viscoelastic effects
on the composition inhomogeneities, it is convenient to introduce a new dynamical

<>
variable w = {W;;}, which is a symmetric tensor representing chain conformations

undergoing deformations. Note that changes more rapidly thaﬁ/ even at relatively

small wavenumbers for highly entangled systems. We need to construct a canonical form of
the dynamical equations, or a set of Langevin equations satisfying the fluctuation-dissipation
relations [150, 151], which is the traditional approach in critical dynamics [9, 10]. We should
mention that such formal frameworks for viscoelastic fluids have already been presented,
but without discussions of phase transitions [183, 184].

In the semidilute regime we may defim% as follows. Let us consider entanglement
points R, on a chain, and number them consecutively along ikas 1,2,..., N/N,,
where N/N, is the number of entanglements on a chain. THgnmay be defined as

1

Wi = N2

<Z(Rn+l - Rn)i(RrH-l - Rn)]> . (349)

chain

Here b is the monomer size, the sum is taken over entanglement points on a chain, and
the average- - -)chain iS taken over all chains contained in a volume element whose linear
dimension is of the order of the gyration radiusN*/25). In equilibrium, we assume the
Gaussian distribution R, 1 — R, to obtain(W;;)., = §;;, where(- - -)., is the equilibrium
average.

The free energy due to the fluctuations¢0hnd\7v is written as
Fl¢, W} = /dr [f + ECIV¢|2+ ZGQ(W)] (3.50)
f is the Flory—Huggins free-energy density [13], given by
1 1
f= (kBT/vo)[% Ing + (5 - x)¢2 + ézﬂ (3.51)

where vg is the volume of a monomer, ang is the so-called interaction parameter,
dependent on the temperatufe The osmotic bulk moduluk,, = ro¢? introduced in
(3.26) is expressed as

1
Koy = (kT/v0)¢? [¢ FA-20+ N—¢] . (352)

In the gradient free energy, the coefficigfitmay be determined using the random-phase
approximation [13] as

C = (kgT/vo)b?/18¢. (3.53)

The relationC « 1/¢ is important in the semidilute regimé& is the shear modulus, given
by
G ~ (kT /vo)p®. (3.54)
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Simple scaling arguments showed that 3, whereas experiments indicated tha¥ 2.25
in theta solvents [170, 171]Q(\7v) is assumed to be of the simplest Gaussian form:

oW) = S (W — 8,)° (3.55)
ij

which is questionable for large deformations [174, 175], but we will use (3.55) for
mathematical simplicity.

At the starting point of our theory, the gross variables that we conside¢>,a(ﬁ, the
mass-density deviatiodp, the relative velocityw, and the average velocity. The polymer
velocity isv, = v +w. The total free energy is of the form

F = Flp, W) + % / dr [%(3,0)2 + v+ /3(1)11)2} (3.56)

where B = p(dp/dp)r is the compressibility multiplied by? and is very small, and use
has been made of the relati@r,;vf) + psv? = pv? + ppw?.

BecausaX/ represents the network deformation, its motion is determined by the polymer
velocity v, and its simplest dynamical equation is of the form

0 1
o Wij + (0 - V)W = 3 (D Wiy + W Dj) = == (Wij = &) (3.57)
k

where D;; is the gradient of the polymer velocity

)
. (3.58)

D;; =
J ij

The left-hand side of (3.57) is called the upper convective time derivative in the rheological
literature [174, 175]. We choose it because of its simplicity, though there can be a class of
choices which satisfy the requirement of the frame invariancen the right-hand side is

the stress relaxation time, which is very long in the semidilute region. Once we have the

free energy and the dynamical equation W%r we may calculate the network stress tensor
induced byw as follows:

<~ <> <> <> 1 <>
o,=GW (W — I)+ZGQ |- (3.59)
See appendix A for its derivation. The total stress tensor is expressed as

<~ ) C g <~ <~
= [% Sp— f+ §|V¢I2} | +C(VP)(VP)— o) — 0yis - (3.60)

The first term is the diagonal paﬁ,: {8;;} being the unit tensor, and the last term represents

the viscous stress tensor arising from the solvent viscagityThe divergence oﬁ is of
the form

o §F 1 -
3 Vép — 7 Vo + 22 VG~ V-, —n V. (3.61)

<>

V. II=



6146 A Onuki

3.4.2. Chemical potentials.So far we have not taken the incompressible liBit— O.
This is just because we need to obtain unambiguous expressiops, fand 1., as given
below. In addition, before this limit is taken, we may naturally introduce the osmotic
pressurer (¢, T) as the pressure difference of a polymer solution and a solvent separated
by a semi-permeable membrane, which will be derived in appendix B.

We define the chemical potentials, and u, appearing in (3.7) and (3.8) in our
Ginzburg-Landau scheme by

8 1 1—¢SF
py=—F= = p+—-— (3.62)
P 8p, B o 8¢
8 1 ¢ SF
= —F == §p— L —. 3.63
e =5 3% %% (3.63)

We fix p, (or pp) andvT/ in the derivative ofF with respect top, (or p;), while we fix p

andvT/ in the derivative with respect t¢. Therefore, the chemical potential difference is
certainly given by (3.12), and

1._ oF
Pp Vi +pos Vg = E,o Vép — % V. (3.64)
From (3.15) and (3.61)F, is obtained as
1 =
F, = _ZQ VG+V-.o,. (3.65)

The first term &V G) has arisen from the composition dependencé ¢and is not included
in (3.13)).

3.4.3. Langevin equations.We have obtained a closed set of dynamical equations for the
gross variables. We then add three Gaussian noise terms on the right-hand sides of (3.10),
(3.15), and (3.57) as in the case of near-critical fluids. The amplitudes of the noise terms
are determined from the fluctuation-dissipation relations. The thermal fluctuations created
by the noise terms are indispensable in the shear effects above the coexistence curve. Recall
that I (¢) in (3.35) has arisen from the thermal noise. To make the equations as simple as
possible, we here set up the Langevin equations in two limits. In the incompressible limit,
8p, B, andV - v tend to zero, while the pressure deviati&m = p §p/B remains finite.
In the adiabatic limit we sedv/dt = dw/dr = O in their dynamical equations, as in the
Kawasaki limit (2.7) for near-critical fluids.

First, from (3.11),w is expressed as

1 SF
=—|—-¢V—+F, . 3.66
o {[-ev 5] o
whereF), is given by (3.65). The random relative velociiyz is characterized by
(wr(r, Dwg(r', 1)) = —2(kgT/C) V2S(r — )8t —1') | . (3.67)
Second is determined by
oF
—no Vv = [—¢V—+F,,+CR] (3.68)
¢ i

where [ - -], denotes taking the transverse part. The random force dehsiatisfies (2.6),
as for near-critical fluids. Third, we add a noise term on the right-hand side of (3.57):

d 1
EWU + (v, - VHYW;; — Z(Dikaj + Wiy Djy) = _;(‘/Vij —8ij) + frij (3.69)
%
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where
(frij(r 0) free(r' 1) = 2(K T /1 G) (Bik8je + 8ie8j)8(r — )8 (t — t'). (3.70)

At this stage,w andv have been expressed (or slaved)d#wand vT/ so the independent
dynamical variables are nogw and\Tv.

3.4.4. Linear coupled equationsThe Langevin equations obtained are so complex that
we can treat only their linearized versions in analytic work, in which the deviaors

coupledtoZ =V - V. vT/ Their Fourier components are governed by

0 0 2 2 /
(5 — 54 8_c1v>¢q = —L[g°(ro+ Cq°) — (2G'/$)TSqxqy)pq — (LG /P)Zg + Orq

(3.71)

3 3 1 /
(5 — Sq, %> [zq - (2q2/¢)¢q] = —=Zy = 25T/1)q:4,0q + frg (3.72)

whereG' = 3G/d¢, T = 9t/d¢, and the terms higher thas? are omitted. The random

forcesér, and fr, are the Fourier transforms ef¢ V - wg andV - V. ?R, respectively.

We notice that our previous linear equation (3.29) naturally follows from (3.71) and (3.72)
when the timescale @, is much longer thar. The coupling of the two variables becomes
stronger with increasing/K,;. They relax almost independently in a good solvent, where
G/K,; is typically of order 0.01. However, at the theta temperafure 7, (or atx = 1/2),
G/K,; is known to be of order 1 [170, 171].

Without shear, these equations may be used to calculate the dynamical structure factor
in one-phase stategy(> 0) [153, 161], and early-stage spinodal decomposition in unstable
states £, < 0) [166]. Transient relaxation after cessation of shear can also be studied
[163, 164]. In the presence of shear, they have been used to calculate the steady-state
structure factorl (gq). Here there arises a2 2 matrix equation involving the convection
operatorSg, d/dq,, so solving it analytically is still difficult. In a first attempt, only the
correction linear inS to I(qg) was calculated [153] (see a comment below (3.34)). Then
the equation was solved numerically in thespace by Milner [154] and by Ji and Helfand
[155], in qualitative agreement with experiments in the case of mild fluctuation enhancement
[142]. It goes without saying that the linear theory is not applicable to regimes of strong
fluctuation enhancement with non-Newtonian shear [143, 145], or below the coexistence
temperature.

3.5. Simulation of shear-induced phase separation

Recently we have solved our Langevin equations numerically for shear flow in two space
dimensions [156]. They have also been solved without shear to simulate deeply quenched
polymer solutions [185]. In this article, we choose somewhat different values of the
parameters and show results for non-Newtonian cases and below the coexistence curve.
In our schemeg obeys (3.4), wherew is given by (3.66),F), being given by (3.65). On

the other hand)TV obeys (3.69). In calculating the average veloaitydetermined from
(3.68), we use a new computer scheme which enables the FFT (fast-Fourier-transform)
method to be carried out for shear flow [186]. We integrate the Langevin equations on
a 128x 128 square lattice, by applying steady shear at 0. The space and time are
measured in units of = b(N/72)Y2 and g = (¢?/¢)kT /(voNY?¢?), where (3.53) is
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assumed an@?/¢ is independent of from (3.9). Let us consider a one-phase state in
which

(¢) = 2¢. = 2N /2 (3.73)
where
T=T, or u=N22xy -1 =2 (3.7%)

For this state, we may express the correlation lerggtthe cooperative diffusion constant
D.,, and the viscoelastic length, as& = 2¢ from (3.27), D., = £?/2t, from (3.28),
andg,, = 68Y2¢ = 17%/2¢ from (3.32). The shear modulus is assumed to be of the form
G = (kgT/vo)¢® from (3.54), leading toK,;/G = 1 — u(¢p./d) + (¢./P)?, whereu is
defined by (3.78). ThenK,,/G is 0.25 in the reference state (3.73) and 1.25 for the theta
conditionu = 0. We furthermore sef = 18n9¢?/b? from (3.9). The stress relaxation time

7 will be assumed to be dependent ¢rand Q, as follows:

T = 1[(¢/¢)* + 11/ (1 + Q) (3.74)

where Q is defined by (3.55). In reference [156] we have set 0.37p[(¢/¢.)* + 1], sot
is longer here. Then in a homogeneous state, the zero-shear viscosity due to deformations
is

1
np = Zno<¢/¢c>3[<¢/¢c>4 +1] (3.75)

and is equal to 34 in the reference state (3.73). On the other hand, in a homogeneous
state under strong shedty > 1, we solve (3.57) to obtain asymptotic nonlinear relations:

Opuy ~ S3/° Opxx — Tpyy ~ S¥° (3.76)

where Q > 1 in (3.74). We have thus introduced non-Newtonian behaviour simply from
the factor ¥(1+ Q) in z, with the Gaussian form of the elastic free energy unchanged,
though this is not the traditional approach [174, 175, 155].

We make the dynamical equations dimensionless, but there remains a parameter
e = [voN®?/¢%1%2, which has not yet been specified,being the spatial dimensionality.
It represents the noise strength, and our model is self-consistent for arkifraoywe set
¢ = 0.1 in our simulations. In an initial stage after application of shear, thermal fluctuations
begin to grow with wave vectors markedly aligned in the abnormal directjor-( g¢,).
If St is small, their growth stops at a certain level, giving rise to the abnormal structure
factor observed [142] and calculated in the linear theories. The elongated directions of the
fluctuations are opposite to those in near-critical fluidsSdf> 1, the fluctuations gradually
grow and coarsen into larger length scales. Eventually, there arises a dynamical steady state
with much enhanced fluctuations, as previously reported [156].

In figure 4, we show snapshots of the composition fluctuatigus, y,t)/¢. for
St = 0.05 and 01 atr = 120 in the state (3.73). The maximum and minimum of
¢(x,y,1)/¢. are 3.32 and 0.24 fafrp = 0.05, and are 3.78 and 0.095 Sty = 0.1. The
amplitude of the structure factor here is comparable to that in usual spinodal decomposition
without shear. We can see very complicated fluctuations with various spatial scales being
continuously deformed by shear. Comparing the two cases, we find that they become finer
and sharper with increasing shear. For the case whgye- 0.1, the polymer-rich regions
apparently form a network connected throughout the system. In our previous work [156],
we have shown similar snapshots with smatlefThe structure factor is fluctuating in time
because of the finite-system-size effect. Its time averages qualitatively resemble but much
exceed those in the previously obtained scattering pattern ig,thg plane [142].



Phase transitions of fluids in shear flow 6149

&I ST{} — 005 ST{_] = O-l

Figure 4. ¢(x, y,t)/¢. for Sto = 0.05 and 01 ats = 120, above the coexistence curve. At
this time, the system is in a dynamical steady state with strong fluctuations being deformed by
shear on the timescale of &. The system length is 128. The space and time are measured in
units of ¢ = £/2 andry = £2/2D,, £ and D,, being the correlation length and the cooperative
diffusion constant in equilibrium. The- (horizontal) axis is in the flow direction and the
(vertical) axis is in the velocity gradient direction.

T ST(; 0.025 S19=0.05

Figure 5. ¢(x, y,t)/¢. for Stop = 0.025 and Q05 atr = 200, below the spinodal point. The

system is in dynamical steady states, and the solvent-rich regions are finer and more elongated
for the larger-shear case. We can also see that the polymer in the solvent-rich rich regions is
more dilute than in figure 4. The space and time are measured in the same units as in figure 4.

In figure 5, we show snapshots taken at a lower temperaturewitiv/?(2y —1) = 3,
with the same volume fractiof@/¢.) = 2, for the two cases whetgry = 0.025 and 05 at
t = 200. The maximum and minimum @f(x, y, t)/¢. are 3.53 and 0.01 fo§zy = 0.025,
and are 3.23 and 0.01 fdfto = 0.05. The system is below the classical spinodal point
u = 2.5. Here we observe the formation of sharper interface structures. In the solvent-
rich regionsg becomes very small, whereas in the polymer-rich regions, it slowly increases
(where deswelling of the solvent is taking place, as in gels). Nevertheless, at relatively large
shear the system remains in a two-phase dynamical steady state, without infinite growth of
domains. As a marked feature, the solvent-rich regions are narrow and compressed.

But we observe that the system is finally divided into two regions, one mostly with
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solvent and the other polymer-rich, at very small shear and for deep quench depth
(Sto = 0.001 andu = 5, for example). In transient time regions in such cases, solvent-
rich regions are very easily deformed by shear into extended shapes, and the shear stress
decreases abruptly once such solvent-rich regions are percolated throughout the system.
(Recall that a gas droplet in a viscous liquid can be elongated into a slender shape in shear
flow [91, 92, 93].) Here, the thin solvent-rich regions should act as a lubricant, serving to
diminish the measured viscosity. This picture was originally presented by Wolf and Sezen
[187] to interpret their finding of a viscosity decrease which signals the onset of phase
separation at small shear in semidilute solutions. These aspects will be studied in more

detail in a future paper.

1.2 T T T T
1F -
variance
08 ) ) A
;
06 | f; -
' |
:"
0.4 :,' shear stress
i
0.2 ";
.f normal stress
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0 ! I 1 1 i
150 200 250

0 50 100
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Figure 6. The time evolution of the shear stress, normal-stress difference, and composition
variance in dimensionless forms after application of shear. The system is below the spinodal
point, andStp = 0.05 as in the second case of figure 5. The first overshoots of the shear
stress and normal-stress difference arise with development of the shear-induced fluctuations.

The temporal fluctuations after the second peaks are chaotic.

We next examine the time evolution of the shear stress and the normal-stress difference.

They are defined by
Oxy = (Opxy) — (C(P)(3¢p/0x)(3¢/3y))

N1 = (Opxx — Opyy) + (C(P)[(39/3y)? — (39p/x)?])

where the averages are taken over the lattice points. In our cases, the first terms,

the viscoelastic contributions, are much larger than the second terms arising from the
composition inhomogeneities, while the latter ones are the sole singular contributions in
near-critical fluids. In our previous report [156], we have found very strong temporal
fluctuations of the stress components in dynamical steady states, above the coexistence
curve. In such states the network composed of elongated polymer-rich regions supports
most of the stress. Obviously, continuous formation and disruption of the network produces
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abnormal fluctuations of the stress. In figure 6, we show these two stress components
divided by no/19 below the classical spinodal point. The parameters chosem ate3,

(¢/¢) = 2, and Sty = 0.05, which are common to the second case of figure 5. Hgre

andN; are considerably more reduced in the two-phase state than in the homogeneous state.
(The dimensionless shear stress would reach 1.7, from (3.75), if there were no composition
fluctuations.) As a result, their first peaks rat~ 20 look to be more pronounced than

in the previous case, above the coexistence curve [156]. Our simulations evidently show
that the shear stress and the normal-stress difference begin to decrease with the emergence
and growth of the shear-induced fluctuations. (Below the spinodal point, fluctuations grow
even without shear, but the timescale is much longer [166].) The first peaks thus created
are reproducible over many runs, while the temporal fluctuations after the second peaks are
chaotic and not reproducible. In figure 6, we also show the time evolution of the composition
variance defined by({¢/¢. — 2)%)]¥/? taken over all of the lattice points, which increases
with the local phase separation.

More than three decades ago, Lodge [5] reported abnormal temporal fluctuations of
the normal-stress difference in a hole of 1 mm diameter, from studying polymer solutions
contained in a cone—plate apparatus. He ascribed its origin to the growth of inhomogeneities
or gel-like particles. Peterlin and Turner [6] suggested temporary network formation in
sheared polymer solutions to explain their finding of a maximum in the shear stress after
application of shear. In subsequent measurements [141, 188 p144hdN; have exhibited
a peak after a relatively short time (the first overshoot), arising from transient stretching of
polymer chains [14], and a second peak (the second overshoot), arising from shear-induced
phase separation. In our dynamical model, we are neglecting the former relaxation process,
so our first overshoots in figure 6 correspond to the observed second overshoots. It would
be informative if further rheological experiments were performed at various temperatures,
including the case below the spinodal point, or in small spatial regions as in Lodge’s case.

4. Summary

In section 1, we have given a brief overview of the current research on fluids undergoing
phase transitions in shear flow. In section 2, we have critically reviewed theories and
experiments for near-critical fluids, and also discussed other fluids such as polymer solutions
or blends in which viscoelasticity is not important. We have examined in some detail the
critical temperature shift caused by shear, because it has been one of the main problems
in polymer science. The shear effects are particularly interesting in the course of phase
separation. In spinodal decomposition, extreme elongation of domains has been observed
in the strong-shear regime. In nucleation, the mechanisms of break-up, coagulation, and
advection come into play. We are interested in whether or not nucleation is suppressed by
the break-up mechanism, and spinodal decomposition remains as a unique route to phase
separation. We have also discussed the effects of stirring, gentle or violent, on critical
behaviour and phase separation. In section 3, we have treated shear-induced phase separation
in semidilute polymer solutions, in which viscoelasticity is crucial. We have explained
three major theoretical ingredients, a dynamical stress—diffusion coupling, a viscoelastic
Ginzburg—Landau theory, and computer simulations, together with some new analytic and
numerical results. Here, the problems that we think are interesting are highly nonlinear and
nonequilibrium, and are very difficult to attack analytically, while the formal theoretical
framework is now being firmly established. We stress that computer simulations can be a
very important method for gaining insights into such tough but fascinating problems.
Though not adequately discussed in this paper, MD simulations under shear will become
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increasingly important [22, 78, 79, 189, 190]. A new problem that we mention finally is
nonlinear rheology in glass-forming liquids and polymers. MD simulations can be used to
examine how glassy shear can affect glassy amorphous structures [45].
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Appendix A

We derive the reversible part of the stress terrgcarising from the deviations af and\Tv,
neglecting dissipation for polymer solutions. We follow a method for near-critical fluids
[191]. The velocity differencev between the polymer and the solvent will also be neglected.
We consider a small fluid element at positionand at timet. Due to the velocity field
v(r, 1), the element is displaced to a new positieh= r + v with u = v §¢, after a small
time intervaléz. Then the volume element-tlis changed as follows:

dr' =dr 1+ V - u). (A1)
The compositionp is unchanged:
¢'(r') = ¢(r). (A.2)

The time dependence of(r, t) and\Tv(r, t) will be suppressed, for simplicity. The change
of \TV is calculated from (3.57) as follows:

W/, (') = W) + > (D Wiy + Wi Djr) (A-3)
k

where D;; is defined by

~ ad
Di; = —uy. A4
J ax] Uui;. ( )

Against these changes, the incrementFgb, \Tv} is expressed as

<~ </ <> 8
SF{p. W)= F'{¢, W)} — F{p. W} = — / dr Y Miy——u (A.5)
i,j J
which is simply the definition of1;;. The displaced free energy is written as
</ G
F'{¢/,W}= /dr/ [f(¢>’) +— (¢ ) V)P + —— (@) Q(W)] (A.6)

Fromr’ = r 4+ u, the space derivatives are changed as follows:

8/0x] = 8/0x; — Y _(du;/0x;) 8/0x;. (A.7)
J

Using these relations, we obtain (3.59) and (3.60).
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Appendix B

Here we show that the osmotic pressurép, T) can be introduced using the original
definition. Let a polymer solution in equilibrium (which is not deformed, and for which

<>

W = T) and a pure solvent be separated by a semi-permeable membrane through which
solvent molecules can pass without resistance but polymer molecules are prohibited from
passing because of their large sizes. Then there arises a pressure difference between the
two regions, and the osmotic pressurép, T) is dependent on the volume fractignof

the polymer on the solution side. In our theory, equation (3.60) yields

(¢, T) = (p/B)(6p — 8po) — f (B.1)
wheredpg is the density deviation in the pure-solvent region. Because the solvent chemical

potentialu, in (3.63) is continuous through the membrane, we obtaifB)(5p — 5p0) =
¢ S8F /8¢, leading to

(@, T)=¢3f/dp— f (B.2)

in accord with the expression in the literature [13]. The osmotic bulk modulus is then given
by K,; = ¢ (37 /9¢)7, leading to (3.52).
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