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The predictions of catastrophe theory for phase transitions involving more than one order 
parameter are given. These predictions are compared with those of other theories. For the 
simplest transition involving two order parameters it is found that there is a parameter which 
does not affect the topology of the phase diagram, which does affect certain angles in the 
diagram, and whose measured value will not depend on the scale of external physical variables. 
Comparison with renormalization theory predictions for this parameter leads to general obser- 
vations on the relation of catastrophe theory and renormalization theory. 

1. Introduction 

T h e r e  have  b e e n  a n u m b e r  of  r e c e n t  p a p e r s  ta) w h i c h  d i scus s  c o n t i n u o u s  
p h a s e  t r ans i t i ons  i nvo lv ing  two  or  more  o r d e r  p a r a m e t e r s .  In this  p a p e r  we 
p r e s e n t  s o m e  of  the  p r e d i c t i o n s  of  c a t a s t r o p h e  t h e o r y  3-5) fo r  such  t r ans i t ions .  
A new f e a t u r e  w h i c h  e m e r g e s  is the  p r e s e n c e  of  p a r a m e t e r s  w h i c h  affect  the  
g e o m e t r y  (angles)  of  a p h a s e  d i a g r a m  bu t  no t  the  t o p o l o g y .  Thus  we  shal l  
show tha t  for  two  c o u p l e d  o r d e r  p a r a m e t e r s  the re  is a quan t i t y  a s s o c i a t e d  
wi th  the  t r ans i t i on  w h i c h  does  no t  d e p e n d  on the w a y  e x t e r n a l  p h y s i c a l  
p a r a m e t e r s  have  been  e x p e r i m e n t a l l y  de f ined  bu t  wh ich  is n e v e r t h e l e s s  com-  
pu t ab l e  f r o m  va r ious  angles  in the  p h a s e  d i ag ram.  This  q u a n t i t y  a p p e a r s  not  
to su rv ive  as  a c o n t i n u o u s  va r i ab l e  u n d e r  sca l ing  and  this f ac t  will  l ead  us to 
s o m e  la te r  c o m m e n t s  on the  r e l a t ion  b e t w e e n  r e n o r m a l i z a t i o n  t h e o r y  and 
c a t a s t r o p h e  theo ry .  

The  s i m p l e s t  p h a s e  t r ans i t i on  invo lv ing  m o r e  than  one  o r d e r  p a r a m e t e r  is 
tha t  for  w h i c h  the  f r ee  e n e r g y  t akes  the  f o r m  

F 0 = x 4 + y  4 (1) 

(x and  y be ing  one  c o m p o n e n t  o r d e r  p a r a m e t e r s )  a t  the  c r i t i ca l  poin t .  T h e  
po ten t i a l  F0 has  been  s tud ied  6-8) u n d e r  the  d e s i g n a t i o n  " d o u b l e  c u s p "  ca tas -  
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trophe. What  is significant mathemat ical ly  about  this potential  is that it is the 
simplest  for which two different definitions of  the "dimension of the catas- 
t rophe"  are possible. The "dimension of the ca tas t rophe"  corresponds  phy- 
sically to the number  of the rmodynamic  parameters  needed to elicit all 
phenomena  associated with a given phase  transition. (The Gibbs phase rule is 
a s ta tement  about  an analogous number).  

The two sorts of dimensions are the " topological"  and "a lgebraic"  dimen- 
sions. We shall find that the topological dimension of F0 [eq. (1)] agrees with 
that found by Griffiths for the same potential  and that the motivat ion behind 
this definition is roughly the following. If by varying some n parameters  in the 
neighborhood of a critical point one gets a particular phase diagram and if for 
a range of values of some other paramete r  g this phase diagram shows no 
qualitative (i.e. topological) change, then g is not needed in the local descrip- 
tion of the phase transition. Hence  if there is no paramete r  which can further  
qualitatively affect the phase diagram and if the n parameters  already used 
are essential  in the sense of  the foregoing sentence,  then the dimension of the 
phase transition is n. 

The algebraic dimension of F0 [eq. (1)] is one greater  than the topological 
dimension and one of the purposes  of this paper  is to explore the physical 
significance of this additional parameter .  A paramete r  of this sort  has, to our 
knowledge,  not made any appearance  in physical  problems:  it is an invariant 
number  associated with a phase transition (in that it cannot  be eliminated or 
changed by a smooth change of coordinates)  but it is not a critical exponent  
and does not affect the topology of the phase diagram. As remarked above,  
coupled order parameters  represent  the first opportuni ty  to see such a 
pa ramete r  (the 180 ° rule9), which is also concerned with angular rather  than 
topological information in a phase diagram, is an inequality and therefore  
does not involve an additional parameter) .  

We first give the values of the algebraic dimensions of a class of catastro- 
phes and then return to discuss the topological dimension of the potential F0. 

2. The algebraic dimension 

The potential  for  a catas t rophe involving N order parameters  has the form 

N 

Ao(X~ . . . . .  xu) =- ~] x/2'', (2) 
i=1  

where {xi} are the order parameters  and {ti} are integers greater  than 2 [the 
" types  ''4"5) of the ca tas t rophes  in each of the order parameters  separately].  
The form A0 obtains at the catas t rophe point itself; at nearby points in 
thermodynamic  phase space there will be lower order monomials  also. The 
universal unfolding of A0 has the form 

A(x ,  . . . . .  x N ; { a } ) = A o +  ~, ai, . . iNxi~ . . . x~  ". (3) 
il  . . . . .  iN  
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The number  of parameters  {a} needed for  the universal  unfolding is the 
algebraic dimension of the catast rophe.  In the interpretat ion of phase  tran- 
sitions as ca tas t rophes  these paramete rs  are functions of the rmodynamic  
phase  space.  The monomials  in x~ . . . . .  xs  are free energy contributions that 
arise at the particular point in the rmodynamic  phase space for specific values 
of the xl. The actual state (for thermodynamics)  is the absolute minimum of A. 

The number  of parameters  needed for  the universal  unfolding (3) is known 
in the mathemat ica l  literatureS°), and is obtained as follows. Let  R be the ring 
of polynomials  in N variables over  the reals. Le t  I be the ideal whose  basis 
consists of the first partial derivat ives of A0. Then the ring R' =- R/I  is also a 
vector  space. The dimension of the vector  space is one more than the 
algebraic dimension of the catastrophe.  Fur thermore ,  the monomials  that 
appear  in the unfolding (3) are just those basis vectors  (i.e., the basis vectors  
can be so chosen). The reals, which form a subspace  of R' ,  are excluded by 
requiring that A take some specified value at a specified point. The algebraic 
dimension D is therefore  

N I  2,i 1,] 1 
The monomials  that appear  are 

X il , . . X i N  

with each ij satisfying 

0 ~< ij- ~< 2 t i -  2 

except  for il = i2 . . . . .  iN = 0. 
For the potential  F0 of eq. (1) the universal  unfolding is 

F=x4+y4+gx2y2+a12xy2+a21xEy+ax2+by2+allxy+alox+aoly  (4) 

(where the special notation g = a22, a = a20, b = a02 is used for later con- 
venience).  The algebraic dimension of F0 is therefore  eight. 

3. The topological dimension 

The catas t rophe theory analogue of the phase diagram is the bifurcation set 
[defined and studied in ref. 6] which appears  to differ f rom the physical  phase 
diagram only in the way first order transitions are handled. Specifically the 
bifurcation set includes what  in mean field theory would be called the "end of 
metas tabi l i ty"  rather  than the single line given by the Maxwell  convention.  
(This is why the van der Waals gas phase transition is described as a " cusp"  
in the ca tas t rophe literature). 

Rather  than a t tempt  generali ty we discuss the reduction of the dimension of 
F0 f rom 8 to 7. This reduction occurs  because  for  all values of g in eq. (4), 
[g[ < 2 ,  the phase diagram (or bifurcation set and its stratification) has the 
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same form. By "phase diagram" is included the specification of which subsets 
are 2nd or higher order t rans i t ions-  this corresponds to the stratification. 

The foregoing result is proved by Looijenga 8) and is related to the fact that 
F0 has modulus oneJ~'12). For completeness we include some remarks on the 
modulus. One can consider the orbit of the fourth order polynomial 

P(x,  y) = Ax  4 + Bx3y + Cx2y 2 + Dxy 3 + Ey 4 

under real linear transformations in x and y. The invariants of lower order 
polynomials under such transformations are discrete, e.g. the number of real 
roots. But for fourth order polynomials there is a continuous invariant (clear 
from counting generators of GL(2, R)) which is just the cross ratio of the 
roots of P ( I ,  z) = 0. 

The general definition of modulus 12) relates to the number of such con- 
tinuous parameters and that number is here unity, the number by which the 
algebraic dimension is reduced to reach the topological dimension. 

The eighth parameter in F is g and it is this parameter which does not affect 
the phase diagram. On the other hand, the cross ratio R of the roots of the 
fourth order part of F0 is 

R = 2/(2 - g). (5) 

Consequently for non zero g no linear transformation can bring F to the form 
x4+ y4 and therefore no smooth transformation near the identity can either. It 
follows that R and hence g is an invariant number associated with the 
potential F. 

4. Measurability of g 

Although g does not affect the topology of the phase diagram it has a 
simple physical interpretation: it is a measure of the extent to which the order 
parameters x and y interfere or cooperate.  

Suppose there is a phase transition for which by symmetry arguments the 
free energy near the critical point can be put in the form 

F = x 4 + y4 4- gx2y 2 + ax 2 + by 2. (6) 

Then the phase diagram in the a - b  plane has four regions: 

I. a > 0, b > 0; x = y = 0 neither ordering exists, 
II. a < 0 ,  b > l g a ;  y = 0 ;  x is ordered and x 2 = - ½ a ,  

III. b < 0 ,  a>½gb,  x = 0 ; y  is ordered and y2=_½b,  
IV. a < ~ g b  and b<½ga. Both are ordered and x 2 = y ( - a + ½ g b ) ,  yZ= 

y ( - b  +½ga) with y 1 = 2_½g2. 

For all g(Ig~[< 2) these diagrams are topologically equivalent, as expected. 
Measurability of g depends on the requirement that a and b be differentiable 
functions of the measured and controlled physical quantities. The region IV 
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(both ordered) takes up more  or less than a quadrant ,  depending on the sign of 
g. The boundary  between regions I I I  and IV makes  an angle 0 with the b-axis 
with 

tan 0 = ½g. (7) 

In the a-b  plane 0 (and hence g) is measurable .  But a and b are not the 
physically measured  quantities; ra ther  we assume that  a and b are smooth  
functions of those quantities and it is in fact  the exper iments  on the ordering 
or non ordering of x and y which fix the relation be tween (a, b) and physical  
quantities such as tempera ture ,  pressure ,  chemical  potentials,  external  fields, 
etc., denoted collectively by P. Up to scale the posit ive a and b axes can be 
determined by the values of P where x and y (separately) become  ordered.  

If  a and b are not just continuous functions of P but are differentiable 
functions also, then we can follow the axes to negative a and b and find that 
the line along which y becomes  ordered takes a sharp bend once x is ordered 
too. The angle of this bend is just the angle 0 given in eq. (7) above.  Of course 
the angle will be 0 only for correct  relative scaling of a and b - b u t  the 
relative scale of a and b can be fixed by requiring that the bending angle for  x 
ordering in the presence  of y and the angle for  y ordering in the presence  of x be 
the same. That  is, the angle of the I I I - I V  boundary  with the b-ax is  is required to 
be the same as the angle of the I I - I V  boundary  with the a-axis .  

The significance of g can now be summar ized  as follows: There  is at most  
one value of g for  which a and b can be taken as differentiable functions of 
the external  physical  parameters  P. 

The actual calculation of g f rom exper imenta l  data is simple. Using what-  
ever  coordinates  he pleases (so long as he preserves  the symmetr ies  x ~ - x ,  
y ~ - y )  the exper imenter  obtains 3 independent  angles represent ing the 
opening angles of  the various physical  regions depicted in fig. 1. Le t  m0 = 0, 
m, -- tan ~bl, rn2 = tan(~bl + ~b2), m3 = tan(~b~ + ~b2 + ~b4). Then by t ransforming to 
pr imed coordinates such that m;  = m0 = 0, m~ = 0% m~ = 1/m; (equal angles) 
we obtain 

, - m 2  sign(m,) 1[ m z m 3  ]-1/2 I 
~g = m~ . . . . .  . (8) 

m 2 -  ml { [ ( m z -  m l ) ( m 3 -  m 0 J  ] 

There  is no ambiguity in this number,  inasmuch as when the four  parameters  
of a linear t ransformat ion are reduced by 2 ( irrelevance of scale and rotation) 

o r d e r e d  

Fig. 1. Phase diagram with x ~ -x and y --*-y symmetry. 
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there are just 2 left to satisfy m~ = ~ and m~= 1/m~. The singularity in (8) at 
ml = 0 is reasonable since vanishing ml implies that Igl = 2. 

4. Effect of renormalization 

Scaling of the function F of eq. (6) has been studied j3-~5) in the E-expansion. 
It is found that g = 0,2 and 6 are fixed points, which is to say that close 
enough to the critical point there is either an uncoupling of the order 
parameters (g = 0, 6) or tangency of two lines in the phase diagram (g = 2 and 
(~1 = ~ 4  = 0 ,  (~2 = ~3  = 77" in fig. 1). g = --2 does not seem to be a fixed point 
despite its special role in the graph of F. Hence there is also the possibility 
that the phase transition between x ordering and y ordering is first order. This 
is what Fisher has called "bicritical," while the g = 2 case is termed tetra- 
critical. 

One therefore expects that far enough from the critical point for the mean 
field theory description to apply, some particular value of g could be 
measured, while closer in the values of this parameter would become limited. 

5. Scaling and flow in catastrophe theory 

The foregoing results on g shed light on an intimate relation between 
scaling theory and catastrophe theory. In both theories one considers a 
particular function (the hamiltonian H in scaling, and the potential A in 
catastrophe theory) and its orbit under a class of transformations. H flows 
under the scale transformations to other hamiltonians. A flows under some 
class of smooth functions to other potentials. In both cases one wishes to 
consider functions in the same orbit (or going to the same point) as equivalent 
to one another. It follows that the separatrices of orbits and the fixed points 
play special roles with respect to the equivalence classes. Furthermore,  by 
identifying coefficients in the Hamiltonian or potential with external physical 
variables these equivalence classes are interpreted as phases. 

Differences between the two theories arise because of differences in the 
class of allowable transformations. Catastrophe theory allows all C ~ (bijec- 
tive) coordinate changes. It is not so easy to characterize the scaling trans- 
formations, since they usually arise from a specific physical scale trans- 
formation and so there are probably many C ~ maps which are not scale 
transformations. On the other hand, scale transformations are not required to 
be differentiable and for two hamiltonians to represent the same phase they 
need only flow to the same limit point. This is why the parameter g is lost in 
renormalization but not in catastrophe theory. If one takes a weakened form 
of catastrophe theory in which only topologically distinct phase diagrams 
(bifurcation sets and stratification) are distinguished then one has weakened 
the smoothness requirements of catastrophe theory and one gets substantially 
the same phase diagrams as in renormalization theory. 



PHASE TRANSITIONS WITH SEVERAL ORDER PARAMETERS 603 

6. Conclusions 

Phase transitions involving several order parameters  may require for their 
full characterization more than just the topological form of the phase diagram. 
Put differently, there are properties of the transition whose full expression 
requires more thermodynamic parameters  than are needed to generate the 
phase diagram. For  the simplest such transition there is already one additional 
parameter  and in this paper we have shown how its measurement  depended 
on specific information about angles between various lines in a phase diagram. 

There are therefore  two sorts of external parameters  in higher order phase 
transitions: those essential to the topology of the phase diagram and those 
which enter only for finer questions (i.e. questions involving smoother classes 
of t ransformat ion-d i f fe ren t iab le  in the example of this paper). The existence 
of the second class is related to the distinction between the algebraic and 
topological dimensions of a catastrophe. It is only parameters of the second 
class which can disappear (i.e. become irrelevent to the phase diagram) under 
scaling transformations.  

Our observations on the role of g in renormalization and catastrophe theory 
help provide a formal mathematical answer to one of the puzzles of phase 
transitions: if mean field theory is so bad (on critical exponents),  how come it 
is often so good (on the qualitative description of phase diagrams)? The 
answer is that catastrophe t h e o r y -  without differentiability requirements '6) on 
the mappings to which potentials are s u b j e c t - b r e a k s  up the space of poten- 
tials in essentially the same way as does renormalization theory.  (This is 
because in both theories a phase is essentially an equivalence class of 
potentials and potentials are equivalent if they flow into each other or into a 
common point.) On the other  hand, while relaxing differentiability require- 
ments in catastrophe theory will change some features of the phase diagram it 
will not change the topology (in the sense of continuous mappings); hence in 
catastrophe theory the topology of the phase diagram is the same as if one 
had maintained differentiability r e q u i r e m e n t s - b u t  this is the mean field 
topology. 

These remarks help clarify what might have seemed an unjustifiably good 
agreement with the experiment  in ref. 5 where continuous but non differen- 
tiable functions were used to get correct  critical exponents .  The most ambi- 
tious aim of catastrophe theory is to get all singular behavior from the 
polynomials alone, but it would seem that for  phase transitions (or at least for  
our description of phase transitions as catastrophes) one must postulate in 
addition a continuous but non differentiable map from the coefficients and 
variables in the polynomial to the physically observed quantities. Such a map 
was proposed in ref. 4 and it is renormalization theory that justifies its 
introduction. 
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