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A noise robust phase unwrapping algorithm is proposed based on state space analysis and polynomial phase

approximation using wrapped phase measurement. The true phase is approximated as a two-dimensional first

order polynomial function within a small sized window around each pixel. The estimates of polynomial coeffi-

cients provide the measurement of phase and local fringe frequencies. A state space representation of spatial

phase evolution and the wrapped phase measurement is considered with the state vector consisting of polyno-

mial coefficients as its elements. Instead of using the traditional nonlinear Kalman filter for the purpose of state

estimation, we propose to use the linear Kalman filter operating directly with the wrapped phase measurement.

Adaptive window width is selected at each pixel based on the local fringe density to strike a balance between

the computation time and noise robustness. In order to retrieve the unwrapped phase, either a line scanning

approach or quality guided strategy of pixel selection is used depending on the underlying continuous or discon-

tinuous phase distribution, respectively. Simulation and experimental results are provided to demonstrate the

applicability of the proposed method. © 2017 Optical Society of America

OCIS codes: (120.5050) Phase measurement; (110.2650) Fringe analysis; (120.6160) Speckle interferometry.

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Phase unwrapping is of prime importance in various measurement

techniques such as holographic interferometry [1], electronic speckle

pattern interferometry [2], synthetic aperture radar interferometry [3],

magnetic resonance imaging [4] and fringe projection profilometry

[5]. In these techniques, information on the measurand is encoded

in the form of a two-dimensional phase. However, the arctangent

operation involved in these techniques provides the phase measurement

in a wrapped form, i.e., the phase values are mapped in the range of

(−π ,π ]. The measurand, however, is proportational to the true phase

which makes phase unwrapping an indispensable task. The relationship

between true phase ψ and wrapped phase φ is given as

φ (x,y) = W (ψ(x,y))

= mod (ψ(x,y)+π ,2π)−π

where, W (·) represents the wrap operator which maps the phase ψ

in the range (−π ,π ]. Note that φ represents the actual wrapped mea-

surement of the true phase. Two-dimensional distribution of φ is

usually termed as phase fringe pattern. In ideal conditions, i.e., in

the absence of any noise, phase unwrapping is trivial if continuous

phase distribution is assumed. A simple unwrapping algorithm pro-

vides the unwrapped phase estimate by performing appropriate addi-

tion/subtraction of integer multiple of 2π at each pixel depending on

the phase difference between the neighboring pixels. The estimated

phase is independent of the phase unwrapping path in such cases. How-

ever, if the true phase distribution inherently consists of discontinuities,

a path-following phase unwrapping strategy has to be adapted. More-

over, in practice, the wrapped phase is usually corrupted by various

noise sources. A wrongly chosen phase unwrapping path may lead

to error propagation and ultimately errorneous phase estimate. These

practical limitations make phase unwrapping a non-trivial operation.

Consequently, a lot of research on various phase unwrapping strategies

and algorithms have been reported over the years [6, 7]. A noise-robust

algorithm to evaluate spatial frequencies on fringe patterns based on

statistical image processing was described in Ref. [8] for the numerical

correction of an optical vortex present in the phase fringe pattern. Some

of the popular phase unwrapping methods can be given as branch-cut

[9–12], quality guided [13–16] and least-square algorithms [17–21].

While some of them are robust to certain level of noise, most of them

require phase fringe pattern denoising [22–24] as a pre-processing

operation.

In recent years, a number of alogrithms have been reported which

simultaneously perform noise filtering and phase unwrapping opera-

tion [25]. The progagation of phase estimation error associated with

independent filtering and unwrapping operations is avoided in such al-

gorithms. In some of these methods, the problem of phase unwrapping

is formulated in the form of state space analysis. The spatial evolution
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of phase and measurements are given by a state space representation.

Extended Kalman filter (EKF) [26, 27] and unscented Kalman filter

(UKF) [28–30] have been the main choices for the purpose of state

estimation. The proposed algorithm falls under this catergory of phase

unwrapping methods. However, instead of the conventional use of

nonlinear Kalman filters mentioned above, we propose to use linear

Kalman filter along with local first order polynomial phase approxima-

tion.

2. ALGORITHM

A. Local Polynomial Approximation of Phase

Different phase unwrapping algorithms have been proposed based on

segmentwise [31–33] or blockwise [34–36] polynomial phase approxi-

mation. Although these methods provide satisfactory results in some

cases, they are based on two important assumptions that require first,

the true phase distribution to be spatially continuous and second, the

wrapped phase measurement to be available over the entire segment or

block. However, these assumptions are somewhat restrictive in practice.

For example, in some cases, a certain portion of the phase fringe pattern

may need to be masked during the phase unwrapping process in order

to bypass an occluded or low intensity area on the object surface. At

such locations, lack of fringe measurement may cause inaccurate phase

unwrapping which may propagate in the valid fringe regions. The

assumption of continuous phase distribution allows one to perform the

phase unwrapping in either row-by-row or column-by-column manner,

that is, using a line scanning approach. However, this approach cannot

provide a reliable phase estimate if the true phase contains inherent

discontinuities such as step changes. Furthermore, the presence of

noise may cause false indication of absolute phase jumps greater than

π between two neighboring pixels.

Recently, we have proposed a noise robust phase unwrapping algo-

rithm [37] based on first order polynomial phase approximation within

a small size window around each pixel. This pixelwise phase unwrap-

ping method is capable of providing the unwrapped phase estimate

from a highly noisy phase fringe pattern which may contain masked re-

gions. However, the restrictive assumption of continuous phase impairs

the method in providing phase estimate containing discontinuities. In

this paper, we consider a similar model of local phase by approximat-

ing the true phase around each pixel as a two-dimensional first order

polynomial function of spatial coordinates. That is,

ψL(xL,yL) = c0 + c1xL + c2yL, (1)

where, xL ∈ [−L,L] and yL ∈ [−L,L] represent the spatial coordinates

within a window around the pixel (x,y) such that ψ(x,y) = ψL(0,0) =
c0; L represents the window width; and [c0,c1,c2] represents the set

of polynomial coefficients. The unwrapped phase estimate at (x,y)
is obtained using the wrapped phase measurement available within

the analysis window. In fact, a similar polynomial phase model has

been considered in phase unwrapping methods proposed in [38, 39].

A fixed window width is used in [38] and adaptive window width is

evaluated at each pixel from a pre-defined set of values in the PhaseLa

method [39]. In these techniques, a nonlinear least square method

of polynomial coefficient estimation is applied in a sliding window

manner to obtain continuous unwrapped phase distribution. On the

other hand, the method proposed in [37] utilizes state space analysis in

a sliding window manner to estimate polynomial coefficients at each

pixel.

B. Polynomial Coefficient Estimation Using State Space Anal-

ysis

A state space analysis based polynomial coefficient estimation algo-

rithm similar to the one proposed in [37] is described in this paper as

follows:

CCCl = FFFCCCl−1, (2)

Γl = φL(xL,yL) (3)

where, CCC = [c0,c1,c2]
T represents the state vector containing poly-

nomial coefficients as its elements. The fringe within analysis win-

dow consists a total of (2L+ 1)2 meausurement samples which are

scanned in a row-by-row manner for state vector updation. Accord-

ingly, the variable l takes values within the range [1, (2L+ 1)2]. Equa-

tion (2) represents the state transition model with transition matrix

FFF . The state estimation is performed within the analysis window uti-

lizing the wrapped phase measurement φL(xL,yL) defined such that

φ (x,y) = φL(0,0). Since the polynomial coefficients are defined to

be constant within the analysis window in accordance to Eq. (1),

the state transition model does not bring any change in the state

vector. Consequently, FFF is defined to be an identity matrix of size

3× 3. The major distinction between the state space model consid-

ered in [37] and in this paper is the definition of measurement vector.

Whereas a 2× 1 sized vector Γl = [cos(φL(xL,yL)), sin(φL(xL,yL))]
is considered in [37], we consider a single element vector as given

in Eq. (3). Since we have, cos (ψL(xL,yL)) = cos (φL(xL,yL)) and

sin (ψL(xL,yL)) = sin (φL(xL,yL)), a nonlinear measurement model is

considered in most of the state space analysis based methods. Accord-

ingly, the Γl is modelled as a nonlinear function of state vector in the

presence of additive noise. On the other hand, in the prosposed method

the measurement is modelled as a function of state vector as follows,

Γl = W (HHH lCCCl)+ εl , (4)

where HHH l =
[

1 xL yL

]

; εl represents the additive white Gaussian noise

of zero mean and variance Rl .

It is important to note that the term HHH lCCCl essentially represents the

true phase ψL(xL,yL). Since the phase is considered to be corrupted by

white Gaussian noise, we can treat ψ as a random variable. We have

the measurement φ of this random variable such that φ = W (ψ). Con-

sidering normal distribution of ψ = N (µ ,σ2), the wrapped Gaussian

distribution of φ is obtained as [40],

P(φ ; µ ,σ2) =
∞

∑
k=−∞

1
√

2πσ2
exp

[

−
(φ − (µ + 2πk))

2σ2

]

. (5)

Recently, a design of wrapped Kalman filter based on circular data

statistics has been proposed [41] as an alternative to the EKF and

the UKF for non-linear dynamic systems. It has been shown that

the linear Kalman filter with one dimensional measurement (Γl =
φL(xL,yL)) and wrapped phase statistics in Eq. (5) can provide better

accuracy in state estimation compared to the EKF or UKF with the

measurement vector (Γl = [cos (φL(xL,yL)) , sin (φL(xL,yL))]). A one

dimensional phase unwrapping algorithm has been proposed utilizing

this wrapped Kalman filter [42] based on assumption of continuous

phase distribution. We propose a linear Kalman filter based algorithm

of state estimation for the purpose of phase unwrapping as follows

[43]:

1. Initialize the state vector estimate at l = 0 and its error covariance

matrix as

ĈCC
+
0 = E [CCC0] , (6)

PPP+
0 = E

[

(

CCC0 −ĈCC
+
0

)(

CCC0 −ĈCC
+
0

)T
]

, (7)

where, E is the expectation operator. The superscripts − and +
indicate the a priori and a posteriori estimates of the associated

variables.
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2. Since the state vector remains unchanged during the prediction

operation at the lth step, set

ĈCC
−
l = ĈCC

+
l−1, (8)

PPP−
l
= PPP+

l−1. (9)

3. Compute the unwrapped phase estimate using the predicted state

vector as

Γ̂l = HHH lĈCC
−
l . (10)

4. Perform the measurement update of the state vector as

KKKl = PPP−
l

HHHT
l

(

HHH lPPP
−
l

HHHT
l +Rl

)−1
, (11)

ĈCC
+
l = ĈCC

−
l +KKKlW

(

Γl − Γ̂l

)

, (12)

PPP+
l
= (III −KKKlHHH l)PPP−

l (III −KKKlHHH l)
T +KKKlRlKKK

T
l , (13)

where, KKKl is Kalman gain. Note that the error between the esti-

mated unwrapped phase and measured wrapped phase is wrapped

prior to the measurement update of state vector estimate. The

proposed method of state estimation differs from that used in the

design of wrapped Kalman filter. In [41], upto three replicas of

the measurement are used in the state vector updation. That is,

ĈCC
+
l = ĈCC

−
l +KKKl

k=1

∑
k=−1

[(Γl + 2πk)− Γ̂l)]ηl,k, (14)

where,

ηl,k =
N (Γl + 2πk; Γ̂l ,Rl)

∑
m=1
m=−1 N (Γl + 2πm; Γ̂l ,Rl)

. (15)

It should be noted that the main aim in [41] was to accurately

compute the wrapped estimate of the state vector. In order to do

so, it is required to wrap the predicted state vector estimate prior

to the measurement update step. On the other hand, the differ-

ence of estimated (unwrapped) and observed (wrapped) phase

(See Eq. (12)) should be wrapped to obtain reliable estimate of

the state vector in the measurement update step in the proposed

method.

Figure 1 shows an example to demonstrate the direct use of wrapped

phase measurement in Kalman filter based state estimation. The true

phase and its wrapped form are shown in Fig. 1(a). The high mag-

nitude difference between the unwrapped phase and wrapped phase

shown in Fig. 1(b) is prone to be wrongly interpreted in Eq. (12) by the

Kalman filter and which can result in inaccurate polynomial coefficient

estimation. However, if this difference is wrapped prior to the mea-

surement update of the state estimate, the state estimation is performed

accurately on account of small magnitude of the wrapped difference

shown in Fig. 1(b).

C. Adaptive Window Width Selection

We have seen that the coefficient estimate ĉ0 at l = (2L+1)2 provides

the unwrapped phase estimate at pixel (x,y). At the same time, the

coefficient estimates ĉ1 and ĉ2 provide the local fringe frequencies in

function of x and y, respectively. The total local frequency (TLF) can

be defined as

T LF(x,y) =
√

ĉ2
1 + ĉ2

2. (16)

Typically, it is suggested [39] that small and high window widths should

be used while analyzing high and low density fringe areas, respectively.

This is done to ensure that the local fringe frequencies are estimated

accurately which in turn provide accurate unwrapped phase estimation.

As a matter of fact, in speckle metrology, the phase noise is higher in
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Fig. 1. (a) Simulated ψ and φ (in radians) and (b) unwrapped and

wrapped difference (ψ −φ ).

high density fringe areas compared to that in low density fringe areas

[44]. Consequently, the use of a small window width at high density

fringe areas provides phase estimate with lower bias at the expense

of increased noise sensitivity due to insufficient fringe measurement

samples. We propose to utilize adaptive window width selection in the

process of state estimation at each pixel. The adaptive window width

is selected from a pre-defined set of values based on the value of the

TLF computed at the already unwrapped pixel and which is used in the

initialization step (Eq. (6)) of the current pixel. We empirically select

the adaptive window width based on the following criterion:

Ladaptive(x,y) =



















1, if T LF < 0.75

2, else if T LF < 1

3, else if T LF < 1.5

4, otherwise

It is important to note that in [39], the polynomial coefficients are

required to be estimated for each value of window width from the pre-

defined set in order to compute the adaptive window width at each pixel.

On the other hand, in the proposed method, the adaptive window width

is selected based on the value of the TLF computed at the initilalizing

neighbor pixel.

D. Phase Quality Map And Guiding Strategy

As mentioned earlier, phase discontinuities and noise sources can

cause error in unwrapped phase estimation if path indepdendent

fringe scanning is performed. Accordingly, a number of phase quality

maps and unwrapping path guiding strategies have been reported in

the literature [13]. Whereas the phase quality maps decide accuracy

with which the unwrapped phase can be estimated, the path guiding

strategies determine the computational effeciency of phase unwrapping

operation. A comparison of number of phase quality maps, such

as, phase derivative variance, phase difference and transform based

quality maps has been provided in [13]. Considering the measurement

of wrapped phase alone, we propose to use phase derivative variance

based phase quality map along with the classical guiding strategy of

operating at high quality pixels with higher priority over low quality

pixels. The choice of qualily maps and an unwrapping path guiding

strategy may depend on the optical measurement setup.

The flow chart of the proposed phase unwrapping algorithm is

provided in Appendix for readers’ convenience.

3. SIMULATION AND EXPERIMENTAL RESULTS

Figure 2(a) shows simulated true phase map of size 384× 384. The

phase values are in radians. A noisy wrapped phase shown in Fig.

2(b) is derived with the noise variance σε = 0.7. As the phase is

continuous throughout the frame, the phase unwrapping is performed
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Fig. 2. (a) Simulated true phase (b) noisy wrapped phase simulated

with σε = 0.7. Errors in the unwrapped phase estimation in radians

computed using (c) linear Kalman filter with fixed window L = 1,

(d) linear Kalman filter with adpative window, (e) extended Kalman

filter with adpative window, and (f) the PhaseLa method.
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Fig. 3. (a) Speckle noise corrupted phase fringe pattern. Maps of

adaptive window width corresponding to Fig. 3(a) computed us-

ing (b) the proposed method and (c) the PhaseLa method. (d) Re-

wrapped phase estimate computed using the proposed method.

using both LKF and EKF with the line-scanning approach. Figures

2(c) and (d) show the error in the unwrapped phase estimates computed
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Fig. 4. Simulated phase fringe patterns with (a) a random phase

noise region, and (b) a true phase discontinuity. (c) and (d) Un-

wrapped phase estimates computed from the phase fringe patterns

shown in (a) and (b), respectively, using the proposed method. (e)

and (f) Re-wrapped phase maps corresponding to (c) and (d), respec-

tively. All the phase values are in radians.

using LKF with fixed window width L = 1 and adpative window width

selected from L = [1,2,3,4], respectively. The use of fixed window

resulted in an errorneous phase estimate due to the error propagation

as observed in Fig. 2(c). On the other hand, the selected adaptive

window width avoided such error propagation and provided accurate

phase estimate. This result demonstrates the higher noise robustness

offered by the adaptive window width selection strategy over the fixed

window width strategy in phase unwrapping. Errors in the unwrapped

phase estimation computed using the EKF based method with adaptive

window width selection and the PhaseLa method are shown in Figs.

2(e) and (f), respectively. Although the accuracy offered by LKF and

EKF based methods are equivalent, the LKF based method is found to

be two times faster than the EKF based method. On the other hand, the

PhaseLa method failed to perform accurate phase unwrapping.

A more realistic simulation of a speckle noise corrupted phase

fringe pattern is performed using the method proposed in [44]. Accord-

ingly, the phase decorrelation noise is predominant in the high fringe

density area compared to the low fringe density area as indicated in Fig.

3(a). Two contrary views exist on the selection of adaptive window

width in the PhaseLa method and the proposed method. Whereas a

small(wide) window width is selected at high(low) fringe density pixel

in the PhaseLa method, a wide(small) window width is selected in

the proposed method. Both the methods are implemented with the

set L = [1,2,3,4] for the adaptive window width to select from. The

maps of window widths selected at each pixel in the proposed method

and the PhaseLa method are shown in Fig. 3(b) and (c), respectively.
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Fig. 5. (a) Phase fringe pattern recorded in a digital holographic in-

terferometry setup corresponding to the out-of-plane displacement of

a square aluminum plate. The fringes are obtained within a circular

area illuminated by the laser beam. (b) A manually generated binary

mask (c) unwrapped phase estimate (in radians) computed using the

proposed method with line-scanning approach and (d) re-wrapped

phase estimate.

Whereas the inappropriate selection of window width in the PhaseLa

method resulted in an inaccurate unwrapped phase estimation, the pro-

posed method provided accurate unwrapped phase estimate as can be

observed from the re-wrapped estimate shown in Fig. 3(d).

In order to demonstrate the ability of the proposed method in per-

forming quality guided phase unwrapping, two noisy wrapped phase

maps are simulated as shown in Figs. 4(a) and (b). Whereas the phase

fringe pattern in Fig. 4(a) carries random phase noise over a certain

region, the phase discontinuity is inherent in the true phase map cor-

responding to the phase fringe pattern in Fig. 4(b). The unwrapped

phase estimates shown in Figs. 4(c) and (d) are obtained using the LKF

based quality guided phase unwrapping method. The re-wrapped form

of these estimated phases shown in Figs. 4(e) and (f) substantiates the

applicability of the proposed method.

Figure 5(a) shows a phase fringe pattern recorded in a digital holo-

graphic interferometry setup corresponding to the out-of-plane dis-

placement measurement of a non-uniformly clamped square aluminum

plate. It can be seen from the figure that the fringes are contained in

the circular area illuminated by the laser beam. This area was manu-

ally selected using a binary mask shown in Fig. 5(b). The proposed

method was implemented using the line-scanning approach. The un-

wrapped and re-wrapped phase estimates are shown in Figs. 5(c) and

(d), respectively.

Another example of phase unwrapping from an experimentally

recorded phase fringe pattern is shown in Fig. 6. Figures 6(a) and

(b) show, respectively, the object image, and the phase fringe pattern

corresponding to the deformation measurement of a fiber reinforced

concrete specimen obtained using phase shifting single beam holo-

graphic interferometery. Based on the intensity level of the light beam

scattered by the object surface and recorded by the CCD camera, a

binary mask is generated to separate the bright field associated with

the object surface from the dark background. Since the phase fringe

pattern carries information on the discontinuous surface displacement

profile caused by the crack propagation, we apply a path following
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Fig. 6. (a) Object image (b) wrapped phase (c) binary mask (d)

normalized phase derivative variance based phase quality map (e)

unwrapped phase estimate (in radians) and (f) re-wrapped phase

estimate.

phase unwrapping. A normalized phase derivative variance based

phase quality map is computed as shown in Fig. 6(d). Note that a high

value of phase derivative variance at given pixel in Fig. 6(d) actually

indicates low phase quality at that pixel. The proposed method based

on the LKF with quality guided pixel selection approach is applied to

the masked phase fringe pattern with L = 1 to obtain the unwrapped

phase estimate shown in Fig. 6(e). The re-wrapped phase estimate

in Fig. 6(f) indicates that the unwrapped phase estimate is obtained

without any error propagation even in the presence of multiple phase

discontinuities.

4. DISCUSSION

In the implementation of the proposed method, we have selected

ĈCC
+
0 = [φ (x,y),0,0] at the first pixel. The state vector initialization

of subsequent pixels is performed using the already estimated state

at its highest quality neighbor pixel. In order to make the algorithm

withstand different types of fringe variations and noise levels, over-

estimates of P̂PP
+
0 = diag([100,10,10]) and Rl = 200 are considered

at each pixel, where, the function diag(·) defines a diagonal matrix

with its diagonal elements given by its argument vector. However,

in principle, initialization of the error covariance matrix and noise

covariance should vary pixel to pixel. An adaptive selection of their

values may improve the accuracy of phase unwrapping albeit at an

increased computation cost. Note that these settings remain the same

in obtaining all the simulation and experimental results provided in the

paper. It is important to note that phase unwrapping methods proposed

in [26, 29] require the estimate of local fringe frequencies to be com-
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puted a-priori using some suitable method. The errors in the estimated

local frequencies may propagate in the estimation of unwrapped phase.

On the other hand, the proposed method is devoid of this problem be-

cause the local frequencies are simultaneously estimated along with the

phase. Although we have used phase derivative variance based phase

quality map, a different quality map can be used depending on the

measurement technique and application at hand. Similarly, a different

computationally efficient guiding strategy [13] can also be utilized.

The computation time can be significant in handling large sized

phase fringe pattern, especially with the implementation of quality

guided fringe scanning strategy. However, utilization of computation-

ally efficient strategy and implementation with a lower level program-

ming language such as C, C++, etc., can help in reducing noticeably

the computational burden.

Some concerns may also arise while handling phase fringe patterns

containing phase discontinuities. In the presence of phase discontinuity

within the analysis window around a certain pixel, the phase may not be

approximated reliably as first order polynomial of spatial coordinates.

Although the use of small size window may circumvent this problem

to a certain extent, a more robust scheme needs to be developed to

address this issue in the future research.

5. CONCLUSION

The proposed phase unwrapping algorithm is found to be noise robust

and capable of providing continuous and discontinuous unwrapped

phase distributions using either the line scanning or a quality guided

approach. The adaptive window selection based on the local fringe

density provides higher accuracy in phase unwrapping compared to that

using a fixed window method or the adaptive window selection based

PhaseLa method. The phase unwrapping results obtained using the

wrapped phase measurement based linear Kalman filter are equivalent

with the traditional nonlinear Kalman filter, however, with an improved

computational efficiency. The fusion of quality guided pixel selection

and Kalman filter based state estimation provides noise robust phase

unwrapping in the presence of phase discontinuities.

APPENDIX

Figure 7 shows the flow chart of the proposed phase unwrapping

algorithm.
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