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Abstract: The interferometry technique is commonly used to obtain the phase information of

an object in optical metrology. The obtained wrapped phase is subject to a 2π ambiguity. To

remove the ambiguity and obtain the correct phase, phase unwrapping is essential. Conventional

phase unwrapping approaches are time-consuming and noise sensitive. To address those issues,

we propose a new approach, where we transfer the task of phase unwrapping into a multi-class

classification problem and introduce an efficient segmentation network to identify classes.

Moreover, a noise-to-noise denoised network is integrated to preprocess noisy wrapped phase.

We have demonstrated the proposed method with simulated data and in a real interferometric

system.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Phase measurements are of considerable interest for many applications such as optical metrology,

medical diagnostics, and 3D imaging. However, by an inverse trigonometric computation, the

measured phase is normally wrapped onto the range of (−π,+π], which does not reflect the true

phase values. To address this problem, lots of phase unwrapping approaches [1–11] have been

proposed. The discontinuity arisen at residues is firstly identified in the Goldstein’s branch-cut

algorithm [1] and it is identified based on that the closed-path integral of phase gradient is not

zero. Quality-guided algorithms [2–4] rely on quality map to guide the integration path rather

than identifying residues. Approaches [5, 6] are designed to minimize the discontinuities in

the unwrapped surface. For methods [7, 8], the phase unwrapping problem is formulated as a

generalized minimum-norm sense to minimize the difference of local derivatives between true

and measured phases. Unwrapping algorithms [9–11] based on the transport of intensity equation

(TIE) were proposed to obtain the absolute phase map directly from intensity information. The

TIE unwrapping method is easy to implement and path independent.

Recently, deep learning has been successfully applied in the fields such as image classification

and restoration and many models based on deep convolutional neural network (CNN) achieve

promising results. This advanced technology has also been adopted in the field of optical metrology.

A multilayer perceptron neural network [12] was proposed to identify phase discontinuities. The

residual neural network was adopted in [13] to address phase unwrapping and the network was

trained on simulated phases with steep spatial gradients. However, the unwrapped phases shown

in [13] were not correct for some regions. In 2018, we filed a provisional patent application on

phase unwrapping using convolutional segmentation network and denoising network [14]. A

similar method using convolutional segmentation network was also demonstrated with simulated

data only in 2019 [15]. However, our work is different with [15] as followings: (1) Smaller filter

size, dynamic filter number, and deeper layers make a wider network and enlarge the non-linear
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of our network. (2) Since the unwrapped phase is reconstructed by adding integral multiple n of

2π to the wrapped phase, denoised network for noisy wrapped phases is integrated into our phase

unwrapping network.

In this paper, we propose a new approach based on CNN to unwrap phase, where we transfer

the task of phase unwrapping into a multi-class classification problem. A noisy wrapped phase

is firstly denoised by our proposed noise-to-noise denoised network. Then, it is fed into a

segmentation network to generate integral multiple and a post-processing is used to correct the

integral multiple. Finally, denoised wrapped phase and corrected integral multiple are combined

to generate the unwrapped phase. Simulated data and experiments with a real interferometric

system have demonstrated the effectivity of our proposed method.

2. Phase unwrapping via a convolutional segmentation network

The phase unwrapping problem is to add the integral multiple n of 2π at each pixel of wrapped

phase ϕw for obtaining the unwrapped phase ϕunw as:

ϕunw(x, y) = ϕw(x, y) + 2π ∗ n(x, y), (1)

where (x, y) is a position, ϕw, ϕunw ∈ RH×W and n ∈ {0,±1,±2,±3, . . .}. As formulated in Eq.

(1), phase unwrapping aims to determine the integral multiple n. From the other perspective,

phase unwrapping is a multi-class classification problem, where an integral multiple represents a

class. Thus, we can use a classification network to figure out this problem. To identify classes

accurately, we introduce an efficient segmentation network [16] that is used for image semantic

segmentation. To solve our task, the network is designed as shown in Fig. 1.

Fig. 1. The network architecture for phase unwrapping.

The goal of phase unwrapping is to determine the integral multiple n and then add 2nπ at each

pixel of wrapped phase. Thus, our network outputs the integral multiple with wrapped phase

as inputs. Moreover, the network includes an encoder path and a decoder path, followed by a

final pixel-wise classification layer. A constant kernel size of 3-by-3 over all convolutional layers

is chosen. Each encoder layer in the encoder path consists of operations: convolution (Conv),

followed by batch normalization (BN) [17] and rectified linear unit (Relu, f (x) = max(0, x)) [18].

Following that, max-pooling with a 2-by-2 window and stride 2 is used to reduce the dimension

of feature maps and achieve translation invariance over small spatial shifts. Moreover, the

max-pooling indices are memorized for subsequent up-sampling operations. The encoder path

consists of 13 encoder layers which correspond to the first 13 convolutional layers in the VGG16

network [19] designed for object classification. Each encoder layer has a corresponding decoder

layer, hence the decoder path has 13 decoder layers. An up-sampling operation is done on feature

maps before they go through a decoder layer. This operation is to up-sample input feature maps

using the memorized max-pooling indices from the corresponding encoder location. Finally,

the high dimensional feature representation is fed into a convolutional layer and a soft-max

classifier to produce a N-channel image of probability, where N is the number of classes. The

output n̂ corresponds to the class with maximum probability at each pixel. Actually, the output

n̂ is nonnegative because of soft-max operation. There is a constant difference C between n̂
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and n. In practice, the constant C can be chosen to make sure that C ≥ −min(n). To train the

network, the number of categories N need to be fixed and it can be set: N = max(n) + C + 1.

Too small category limits the range of fringe pattern. Too large N needs more training data to

obtain a well-trained network. After we get the integral multiple n̂, the unwrapped phase can be

reconstructed as:

ϕ̂unw(x, y) = ϕw(x, y) + 2π ∗ (n̂(x, y) − C). (2)

For training, given a training dataset {ϕ
(k)
w , ϕ

(k)
unw}

M
k=1

, where M is the number of the training

dataset, the network aims to learn the best end-to-end mapping F(·), which minimizes the

difference between prediction n̂k = so f tmax(pk = F(ϕ
(k)
w )) and ground-truth nk = (ϕ

(k)
unw −

ϕ
(k)
w )/(2π)+C. The item pk ∈ RH×W×N represents the intermediate output before going through

soft-max operation which produces the position with maximum probability at each pixel. To

measure the difference, cross entropy loss function [20] is used since it is commonly used in the

field of image classification. Thus, the loss function can be formulated as:

loss = −
1

M

M∑

k=1

∑

x,y

log(pk,t (x, y)), (3)

where pk,t is a predicted probability belongs to class t = nk .

To train the network, we built datasets (simulated and real datasets) which consist of training

and testing set, and these two sets were not intersected. Besides, we initiated the weights by the

method described in [21] and used the Adam optimizer [22] with the mini-batch size of 3. The

learning rate was initially set to 0.0001 and exponentially decayed with a rate of 0.99. The max

epoch number was set to 1000. For quantitative measure, we calculated the pixel classification

accuracy on the testing set. The number of pixel in class i predicted to belong to class j is

denoted as si j (includes sii) and the total number of pixels in class i is denoted as qi =
∑

j si j .

Thus, the pixel classification accuracy can be calculated as:
∑

i sii/
∑

i qi . We also calculated the

root mean square error (RMSE, | |ϕ̂unw − ϕunw | |2/(H × W)) between reconstructed unwrapped

phase ϕ̂unw and ground-truth ϕunw .

To generate the simulated data set, a list of Zernike coefficients up to 35 terms was randomly

generated to represent the surface ϕunw . The interferograms were generated by Eq. (4):

Ia = A + B(ϕunw + a ∗ π/2) + noise, (4)

where A and B are constant, a ∈ {0, 1, 2, 3} is used to generate phase shift fringe and noise is zero

for clean data. Then a four step phase shifting algorithm was used for calculating the wrapped

phase as:

ϕw = arctan

(
I3 − I1

I0 − I2

)
. (5)

For the experiment on simulated clean data, 10000 pairs of data (wrapped and unwrapped

phases) with size of 400-by-400 were generated, where 9500 pairs were used for training and the

rest was used for testing. Besides, the class number N and the constant C were set to 29 and 7,

respectively. The average pixel classification accuracy and the average RMSE on the testing data

are 94.62% and 0.0022, respectively. The experimental result on simulated clean data is shown in

Fig. 2. The wrapped phase in Fig. 2(a) was fed into the network as a input. The network output

and reconstructed unwrapped phase are shown in Figs. 2(b) and 2(d), respectively. Comparing

with ground-truth, we can see that our network produces pretty good results. The difference

between reconstructed unwrapped phase and the corresponding ground-truth is shown in Fig.

2(f). One can see that the difference is so small and a majority of pixel value is zero, which

demonstrates that our network works well on clean data for phase unwrapping.
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Fig. 2. Phase unwrapping results on simulated clean data. (a) Wrapped phase (input),

(b) output (integral multiple n̂), (c) ground-truth (integral multiple n), (d) reconstructed

unwrapped phase, (e) ground-truth (unwrapped phase), (f) difference.

Fig. 3. Phase unwrapping results based on post-processing. From top to bottom are: wrapped

phases ((a1), (a2)), ground-truth (unwrapped phase, (b1), (b2)), reconstructed unwrapped

phases ((c1), (c2)), post-processed unwrapped phases ((d1), (d2)) and differences ((e)=(c)-(b),

(f)=(d)-(b)).
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Fig. 4. Phase discontinuity extraction ((a), (c)) and connected region labeling ((b), (d)).

However, as shown in Figs. 3(c1) and 3(c2), there are corrupted regions in unwrapped phases

due to misclassification. To improve the classification accuracy, a post-processing operation

was done on the network output (integral multiple n̂). We firstly identified phase discontinuity

locations since they played a key role in phase unwrapping [23]. Fortunately, the identification

of phase discontinuity can be done by our network because the phase discontinuity task can be

considered as a two-class classification problem. We just changed the final classification layer to

predict two-class problem, correspondingly, binary images of phase discontinuity were treated as

ground-truth to train the network. The locations of phase discontinuity of wrapped phase Figs.

3(a1) and 3(a2) are shown in Figs. 4(a) and 4(c), respectively. Next, connected regions were

labeled based on the extraction result of phase discontinuity, as shown in Figs. 4(b) and 4(d).

Finally, based on the labeling results, we corrected the integral multiple n̂ according to a principle

that same label corresponds to same value of integral multiple. The post-processed unwrapped

phases are shown in Figs. 3(d1) and 3(d2) and they more closely resemble the ground-truth ( Figs.

3(b1) and 3(b2)). The last row in Fig. 3 shows differences, where Figs. 3(e1) and 3(e2) represent

the differences between reconstructed unwrapped phases and ground-truth, Figs. 3(f1) and 3(f2)

represent the differences between post-processed unwrapped phases and ground-truth. We can

see that the difference is much smaller after post-processing. Besides, after post-processing,

the average pixel classification accuracy and the average RMSE on the testing data are 96.88%

and 0.0014, respectively, which demonstrates that the post-processing is benefit to unwrapping

precision.

Fig. 5. The network architecture of denoising noisy wrapped phase.

3. Phase unwrapping via a convolutional segmentation and denoised networks

To validate the effectivity of our proposed approach, an experiment was carried out on the noisy

wrapped phase. Since the unwrapped phase is reconstructed by adding integral multiple n of
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2π to the wrapped phase for our method, denoising is necessary on noisy wrapped phase. In

practice, clean data is difficult to obtain.

To address this problem, a noise-to-noise denoised strategy [24] was integrated into a modified

version of U-Net [25]. The network architecture of denoising noisy wrapped phase is shown in

Fig. 5. Since image details were very important for our task, we removed pooling layers and

up-sampling convolutions. In the U-Net, the output image was smaller than the input, which

was unsuitable for our task. Thus, zero padding was used to keep the sizes of all feature maps

(including the output image) the same. A constant kernel size of 3-by-3 and a constant filter

number of 64 over all convolutional layers were chosen. Besides, we used two observations (for

the same fringe pattern, two images with different random noise) of noisy wrapped phase to train

our network. The observation 1 was treated as input and the observation 2 was used to calculate

the loss. We generated two observations of noisy wrapped phases for each group and 500 × 2

groups of data were cropped into small patches with a size of 40-by-40 to train the network.

Fig. 6. Unwrapping result on simulated noisy data (SNR = 4.0 dB). (a) noisy wrapped phase,

(b) denoised wrapped phase, (c) ground-truth (wrapped phase), (d) unwrapped phase, (e)

ground-truth (unwrapped phase), (f) difference.

The denoised result on wrapped phase is shown in Fig. 6. The noisy wrapped phase shown in

Fig. 6(a) was generated as followings: a combination of Possion and Salt-Pepper random noise

was added to interferograms Ia, then noisy wrapped phase was obtained according to Eq. (5).

The SNR(Signal-to-noise ratio) of the noisy wrapped phase is 4.0 dB. The denoised wrapped

phase and the corresponding ground-truth are shown in Figs. 6(b) and 6(c), respectively. We can

see that the proposed denoised network reconstructs almost clean result even for badly corrupted

wrapped phase. What’s more, the result was obtained by only using noisy data (not clean wrapped

phase) to train our network. After we obtained the denoised wrapped phase, it was fed into our

unwrapping network to produce the integral multiple n̂. Then, the post-processing and smooth

constraint were used to reconstruct unwrapped phase due to noisy contours of wrapped phase

and the reconstructed unwrapped phase is shown in Fig. 6(d). The difference between the

reconstructed unwrapped phase and corresponding ground-truth (Fig. 6(e)) is shown in Fig. 6(f)

and it is very small. The more badly corrupted data (SNR= 0.6 dB) was also used to test our

network. The same results are shown in Fig. 7. One can see that, by integrating noise-to-noise
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denoised network, our unwrapping network still works well on noisy wrapped phase. The average

pixel classification accuracy and the average RMSE on the testing noisy data are 90.04% and

0.0034, respectively.

Fig. 7. Unwrapping result on more badly corrupted data (SNR = 0.6 dB). (a) noisy wrapped

phase, (b) denoised wrapped phase, (c) ground-truth (wrapped phase), (d) unwrapped phase,

(e) ground-truth (unwrapped phase), (f) difference.

Fig. 8. Unwrapping results of other methods. Unwrapped phases (a) and (e) are produced by

Goldstein’s branch cut algorithm, (c) and (g) are obtained by Quality-guided path-following

method, (b), (d), (f), and (h) are differences.

Moreover, we compared our proposed method with Goldstein’s branch cut algorithm [1] and

Quality-guided path-following method [26] on noisy wrapped phases. For the noisy wrapped

phases shown in Fig. 6(a) and Fig. 7(a), the unwrapping results by these two methods are

expressed in Fig. 8. The results shown in Figs. 8(a) and 8(e) are unwrapped by Goldstein’s
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branch cut algorithm, and the corresponding differences are displayed in Figs. 8(b) and 8(f),

respectively. The unwrapped phased by Quality-guided path-following method are shown in Figs.

8(c) and 8(g), and the differences are expressed in Figs. 8(d) and 8(h), respectively. Compared

with our results (Fig. 6(d) and Fig. 7(d)), one can see that our method produces the best results

and the differences are the smallest. We also compared the running time and the RMSE results,

as shown in Table 1. The running time was evaluated on a machine with 3.4 GHz Intel(R)

Core(TM) i3-2130 CPU (8G RAM). We also evaluated the running time of our network on a

machine with a 3.5 GHz CPU and a Titan X GPU and the image size is 400-by-400. The value

on the left of “/” represents the RMSE result of unwrapped phase on Fig. 6(a), and the right value

is on Fig. 7(a). From Table 1, we can see that our network achieves the highest precision and the

running speed is the fastest. Besides, the running time on GPU makes our network available for

real-time applications.

Table 1. RMSE results and running time of the different methods.

Goldstein Quality-guided Ours

RMSE 1.0200/6.5202 0.4890/6.2683 8.6e-5/0.0027

Running time / s 19.53 330.44 3.91(GPU:0.22)

Fig. 9. Experimental setup to demonstrate the phase unwrapping method with denoised and

convolutional segmentation networks. L1: collimating lens; P: polarizer; PBS: polarized

beam splitter; QWP1, QWP2, QWP3: quarter waveplate; DM: deformable mirror; L2:

imaging lens.
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4. Experimental demonstration

Finally, we tested the network on real data. A HeNe laser source with wavelength of 632.8 nm

was used as light source. An AlpaoDM with 97 actuators and 13.5 mm aperture diameter was

placed in test arm to generate different fringe patterns, as shown in Fig. 9. To achieve snapshot

measurement, a pixelated polarization camera PolarCam from 4D Technology, Inc. was used

to capture 4 interferograms simultaneously [27]. Up to 15 terms of Zernike coefficients were

random generated and applied to DM during the experiment. Because there was no ground-truth

of unwrapped phase, the reconstructed unwrapped phases by a modified Goldstein’s algorithm

(followed by denoising wrapped phase, MG) were used as the ground-truth to train the network.

Totally, 1500 groups of data (wrapped and unwrapped phases) were obtained, where 1300 groups

were used for training and the rest was used to test.

As show in Fig. 10, the first column represents wrapped phases obtained by our setup. The

second and third columns show the reconstructed unwrapped phases by our network and MG,

respectively. The differences between these two are shown in the last column. From the results,

we can see that our network still works well on real data.

Fig. 10. Unwrapping results on real data. From left to right are: wrapped phases (input,

(a), (e)), reconstructed unwrapped phases by our network ((b), (f)) and MG ((c), (g)), and

differences ((d), (h)).

5. Conclusion

In conclusion, we propose a new approach based on CNN for phase unwrapping. The phase

unwrapping issue is transferred into a multi-class classification problem and an efficient segmenta-

tion network is introduced to identify classes. Besides, this network can be used to identify phase

discontinuity locations and a post-processing operation is adopted to improve the performance.

Moreover, a noise-to-noise denoised network is integrated to preprocess noisy wrapped phase.

Since our network is fully convolutional, it also works on other image sizes (different with training

image size). Simulated and experimental data have demonstrated the effectivity of our approach.

Our current networks were trained with and work well with continuous wrapped phase maps

which are typical cases in interferometric optical metrology. We are working on more complex

cases with discontinuous wrapped phases and will report the new approaches in the near future.
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