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Chapter 1

Introduction

Modern time series analysis offers a great variety of measures to characterize and
quantify chaos and / or nonlinearities. The bandwidth of applications is immense,
stretching from physiology1 or epidemiology2 over physics3 to finance and economics4.
With the help of nonlinear diagnosis, it became possible to detect or to even forecast
life threatening diseases5, stock market behavior6 or rogue events in ocean waves or
photonic media7.

The most celebrated tools in the field are typically borrowed from dynami-
cal systems- [Kantz, 1994; Sugihara and May, 1990] or fractal topology-analysis
[Grassberger, 1983] and applied to higher dimensional attractors obtained by delay-
coordinate-embedding [Packard et al., 1980; Takens, 1981]. Although revealing
astonishing significances in separating suspicious data from surrogate-based null
hypothesis [Schreiber and Schmitz, 1997], they can only be obtained by huge compu-
tational effort and lack the ability to clearly separate linear from nonlinear features.
Fractal- or correlation-dimension estimates are further often unable to distinguish
static from dynamic properties.

To identify non-Gaussianities in the Cosmic Microwave Background, it turned out
very beneficial to search for correlations or anomalies in the phases of spherical
harmonics8. Very recently, a similar approach has been used to uncover nonlinearities
induced by surrogate generation algorithms [Räth et al., 2012] by seeking correlations
in the Fourier phases. Moreover, fundamental scaling properties of highly nonlinear
financial time series have exactly been reproduced by imposing a set of linear corre-

1[Richman and Moorman, 2000; Hoyer et al., 1997; Andrzejak et al., 2001]
2[Pascual et al., 2000; Altizer et al., 2006]
3[Vautard and Ghil, 1989; Kurths and Herzel, 1987; Vio et al., 1992]
4[Alvarez-Ramirez et al., 2002; LeBaron, 1994; Strozzi et al., 2002]
5[Ivanov et al., 1999; Lehnertz and Elger, 1998; Ho et al., 1997]
6[Golestani and Gras, 2014]
7[Birkholz et al., 2015]
8See for example [Coles and Chiang, 2000; Coles et al., 2004; Stannard and Coles, 2005; Chiang

and Coles, 2000; Chiang et al., 2002, 2003, 2007; Wu, 2007a,b; Sung et al., 2010; Modest et al.,
2014]
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lations on the Fourier phases of Gaussian white noise [Räth and Laut, 2015].
In fact, from the definition of the linear time series traits alone it already follows by
the Wiener-Khinchin-Theorem that all nonlinear properties are constrained to the
Fourier phases9. Yet, to the best of the author’s knowledge, no measure exists so far
to extract phase information.

The substance of this thesis is an attempt to show how Fourier phases take effect on
nonlinear time series features (and vice versa) and to employ this concept to derive
a novel class of nonlinearity tests. It starts with a short introduction into commonly
used tools (Chapter 2) and continues with an analytic study of the relationship
between certain nonlinear events and the Fourier phases (Chapter 3). The main focus
here is on leptokurtic data, that is, data showing heavy-tailed probability distribution
functions. Next, in Chapter 4 some methods and techniques are developed that help
to extract the features expected to appear and a few analysis results for experimental
and simulated data are presented in Chapter 5. Finally, a short conclusion at the
end briefly summarizes the contents and results and gives an outlook on possible
further implementations and strategies.

9A detailed explanation is presented in Section 2.3.



Chapter 2

Nonlinearities in Time Series

2.1 Linear and Static Time Series Features

Many time series show statistical features that can be divided into two categories.
First, there are properties that stretch over the whole time series (global properties),
neglecting temporal correlations. These properties are fully represented by the
probability distribution function (PDF) of the time steps in real space and can be
further abstracted as the statistical moments. This category will also be referred to
as static. It may contribute to the linear as well as to the nonlinear regime. The
second is the temporal or dynamic properties of the time series. These features
may as well stretch globally over the whole data or be variable in time. Since the
differentiation of these two kinds is one of the major subjects treated in this work, a
more detailed view on the distinctive characteristics of the both is presented in the
following.

2.1.1 Static Time Series Properties

As mentioned above, all static properties are given by the PDF of the investigated
time series in real space. Since practical applications do usually not demand to know
the exact shape of the PDF it is often sufficient to describe it by a few values that
can be derived from the statistical moments

µn,c = 〈(x− c)n〉x =

∞∫

−∞

(x− c)np(x)dx. (2.1)

In the discrete case they can also be written as

µn,c = 〈(x− c)n〉x =
∑

x

(x− c)np(x). (2.2)

Here, µn,c is the nth statistical moment about the value c of the PDF p(x). The
notation 〈◦〉x is used for the expectation value of a variable ◦ averaged over x in
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Meaning Derivation Related moments

Mean µ µ := µ1,0 = 〈x〉x 1
Variance σ2 σ2 := µ2 = 〈(x− µ)2〉x 1, 2

Skewness γ1 γ1 :=
µ3

σ3 = 〈(x−µ)3〉x
σ3 1, 2, 3

Kurtosis γ2 γ2 :=
µ4

σ4 − 3 = 〈(x−µ)4〉x
σ4 − 3 1, 2, 4

Table 2.1: Important statistical values and their relation to the first four statistical moments.

Figure 2.1: Various centered probability density functions with normalized standard
deviation: Platykurtic uniform distribution with γ2 = −6/5, platykurtic raised cosine
distribution (f(x) = 1/2s[1 + cos(πx/s)] with s = σ/

√
1/3− 2/π2) with γ2 = −0.6,

mesokurtic normal distribution with γ2 = 0 and three leptokurtic Student’s t-distributions
(γ2 = 1, γ2 = 2, γ2 = 8). The distributions with γ2 > 0 decay much slower towards distant
values than the normal distribution. The resulting tails are often referred to as fat tails or
heavy tails.

both, either in the discrete or in the continuous case. µn := µn,µ1,0
with only one

index refers to the nth centered moment. The first four moments are used to distill
some prominent and important descriptors in statistical data analysis. A brief
overview is given in Tab. 2.1. The square root of the variance, σ, is also called
the standard deviation and describes the variation of values around the mean. The
skewness γ1 measures the asymmetry of a distribution. Finally the excess kurtosis
[Kenney and Keeping, 1951] - or simply kurtosis - γ2 describes the behavior of the
distribution’s ”tails”. If γ2 is negative, the distribution is said to be platykurtic
and leptokurtic if it is positive. The latter case is of great importance in this work.
Leptokurtic distributions are also called fat-tailed or heavy-tailed. If γ2 is equal to
0, the distribution is mesokurtic, which is the case for Gaussian distributions. See
Fig. 2.1 for some typical representations of the various cases.
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2.1.2 Dynamic Time Series Properties

The most commonly computed dynamic time series properties are the linear ones,
which are defined as all that are captured in an autoregressive (AR) model [Whitle,
1951; Box and Jenkins, 1976] of the general form

x̃t = µ+

p∑

i=1

cix̃t−i + ǫt. (2.3)

Here, ci are the model parameters, ǫt is Gaussian white noise with variance σ2
ǫ and

p is the order of the AR process (AR(p)). x̃ = {x̃t}N−1
t=0 is a time series, generated

by the AR process, with N time steps. This definition constrains the quantifiable
dynamic linear properties to µ and the ci. The latter are chosen such that the process
optimally reproduces the behavior of the investigated time series x. The probably
most convenient way to obtain these parameters is by means of the autocorrelation
function (ACF)

A(τ) = 〈(xt − µ)(xt+τ − µ)〉t
σ2

(2.4)

where σ is the standard deviation of x and the numerator 〈(xt − µ)(xt+τ − µ)〉t =:
cov(xt, xt+τ ) = C(τ) is the autocovariance. cov(◦, ⋄) denotes the covariance between
◦ and ⋄. The ci can be constructed by the Yule-Walker equations [Yule, 1927; Walker,
1931]:

C(τ) =
p∑

i=1

C(τ − i) · ci + σ2
ǫ δτ,0. (2.5)

δτ,0 is the Kronecker delta1. Multiplying all equations with τ 6= 0 by σ2 yields

A(τ) =
p∑

i=1

A(τ − i) · ci (2.6)

or equally



A(1)
A(2)
...
A(p)


 =




A(1− 1) A(1− 2) · · · A(1− p)
A(2− 1) A(2− 2) · · · A(2− p)

...
...

. . .
...

A(p− 1) A(p− 2) · · · A(p− p)







c1
c2
...
cp


 . (2.7)

The one remaining equation for τ = 0 can be solved as well, once the {ci}pi=1 are
determined by Eq. 2.6. Note that A(−τ ) = A(τ ). In this form it is clear that Eq. 2.6
is a bijection between the autocorrelation coefficients A(τ) and the AR coefficients
ci. Hence, it follows that all linear properties can as well be expressed by
the ACF coefficients. To gain some intuition about how time series can behave if
purely generated by a linear process, consider the following two cases, or combinations
of both.

1δi,j = 1 if i = j and 0 else.
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Harmonic oscillations
An AR process can describe a periodic harmonic oscillation or a superposition
of such oscillations.

Exponential decay and growth
An AR model can lead to an exponential decay or growth.

All other phenomena that may occur in a linear process are stochastic variations,
induced by an external noise source ǫt.

2.2 Nonlinear Time Series Analysis

Nonlinear time series properties, as the term itself obviously implies, are all properties
that are not linear. Hence, by definition it is all features not represented by the
autocorrelation coefficients. To imagine those, consider every time series behavior
that is neither a harmonic oscillation nor an exponential decay nor a Gaussian
random fluctuation. The variety is infinite. In the following, an attempt is made
to categorize some different types of nonlinear behavior just to gain a little more
overview.

2.2.1 Static Nonlinearities

The perhaps simplest type of nonlinearity is the static type, where a linear stochastic
process dependent on time L(t) serves as the input of a nonlinear function f(x). The
outcome is a process S(t) = f(L(t)), that shows nonlinearities in its PDF but not in
any temporal aspect. If f(t) is bijective and S(t) has a stable mean µS and a finite,
stable variance σS, L(t) can near-completely be reconstructed by mapping S(t) onto
a Gaussian PDF with mean µM and variance σ2

M
2. The choice of µM defines the

offset of the reconstructed time series L′(t), and σ2
M its standard deviation. In any

case, if L(t) is a linear process, also L′(t) is one. Thus, nonlinearities of solely static
kind can be isolated and in some cases even be identified.

2.2.2 Dynamic Nonlinearities

Maybe the simplest example of a dynamic nonlinear process D(t) would be a linear
process L(t) that is multiplied by a function of time g(t), which is no linear process
by itself: D(t) = L(t) · g(t). Note that the multiplication alone is a linear operation
and only the nonlinear variability of one factor over time induces the nonlinearity.
This type could for example occur in remote sensing devices, where the measured
signal travels through a dynamically changing medium (e.g. air) before it reaches the
sensor. If the modulating distortion g(t) is much slower than the observed process,

2A linear process has a Gaussian PDF by default (see Appendix A.3 and Sec. 4.2). Hence,
except for the initial mean µL and variance σ2

L, L(t) can be completely reconstructed.
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one way of getting rid of it, is to distill the envelope function e(t) and normalize the
measured signal by it: L′ = D(t)/e(t). Also, if some knowledge about the modulating
medium or the signal source exists, simple dynamic nonlinearities can be detected
and isolated. In general though, it is substantially impossible to reconstruct g(t)
from the recorded data.

Furthermore, most types of dynamic nonlinearities in stochastic time series can
of course not be modeled by a simple multiplication with a modulation function.
Often dynamic nonlinearities are not even visible at first sight.
To overcome theses difficulties, a lot of measures and tools to classify and quantify
nonlinearities have been developed in the past. Some of them will be presented in
the next section.

2.2.3 Common Measures and their Limitations

In this section, a few common measures and tools are introduced that are routinely
used in nonlinear time series analysis. Although not all of these are relevant to the
analysis later conducted in this work, they are mentioned anyway to present a brief
overview over the state-of-the-art methods in the field. For simplicity and shorter
notation, the measures are defined for centered signals, i.e.

xt = xt − 〈xt〉 (2.8)

which of course implies that the signal xt has a finite mean 〈xt〉.

2.2.3.1 Higher Order Correlation Functions

The probably most obvious extension of the set of linear analysis tools that were
encountered in Section 2.1 are the higher order autocovariance functions:

Cn(τ) = 〈xt · xt−τ · xt−2τ · · · xt−nτ 〉t. (2.9)

Here, not only two points in time are correlated but n.

2.2.3.2 Time Reversibility

Another quantity, somehow similar in form to higher-order covariance functions, is
the time-reversibility [Schreiber and Schmitz, 1997]:

T (τ) =
〈
(xt+τ − xt)

3
〉
t
= 3

[〈
xt+τx

2
t

〉
t
−
〈
x2
t+τxt

〉
t

]
. (2.10)

Significant deviations of (T (τ )) from 0 indicate that the signal is not invariant under
time reversal. Although this ”is a sufficient and powerful indicator of nonlinearity”,
it is ”not a necessary condition”, as already Schreiber and Schmitz mentioned. In
the next sections some measures and techniques are introduced that may be a little
more sophisticated in their derivation but do very successfully manage to overcome
this problem.
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2.2.3.3 Embedding

Packard et al. [1980] suggested a method to reconstruct a multidimensional phase
space picture from a one dimensional time series by using delay coordinates :

xi = {xi, xi+τ , xi+2τ , . . . , x(d−1)τ} (2.11)

For experimental time series, the delay time τ is suggested to either be determined by
the first zero-transition or the first minimum of the ACF or of the mutual information
[Shannon, 1948; Cover and Thomas, 1991]. The embedding dimension d can for
example be estimated using the method of false nearest neighbors [Kennel et al.,
1992]. The idea is, that the time steps of the embedded time series may be too
close together, only because they are projected into a space of too low dimension.
Thus, one starts with a low embedding dimension and successively increases it until
a proper ratio between false and true nearest neighbors is reached. Takens [1981]
proved that the reconstructed multi-dimensional time series – also called attractor –
is topologically equivalent to the one the experimental time series originated from.
Hence, this embedding technique enables many measures from chaos- and complex
systems-theory to be applied to experimentally obtained data sets.

2.2.3.4 Lyapunov Exponent

The Lyapunov exponent [Lyapunov, 1892, 1992; Bylov et al., 1966] characterizes
the divergence of infinitesimally close trajectories in time. For a known iteration
xt+1 = f(xt), the Lyapunov exponent is given by

λ = lim
t→∞

1

N

N−1∑

t=0

ln(f ′(xt)) (2.12)

where ◦′ denotes the derivative of ◦ with respect to xt in this case. If the exponent
is greater than 0, the flow diverges and if it is smaller than 0, it converges. For
an experimental time series, f(xt) is most likely unknown and λ can thus not be
computed this way. One method to estimate it though was suggested by Kantz
[1994]:

S(τ) =

〈
ln

[
1

|Ut|
∑

xi∈Ut

|xt+τ − xi+τ |
]〉

t

(2.13)

λ =
δS(τ)

δτ
(2.14)

Here, Ut is a spherical volume with radius ǫ around a data point xt. xi are data
points that are located within this sphere, i.e., they can be regarded as origins of
neighboring trajectories. If the distances of the data points that follow xi to those
that follow xt remain the same in average, the attractor behaves predictable and the
Lyapunov exponent, which is basically the slope of the logarithm of the normalized
distances, stays small. The Lyapunov exponent is therefore a measure of how chaotic
or unpredictable a system behaves.
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Approach Method

Fixed Ball fτ (xt) =
1

|Uǫ|
∑
Uǫ

xi+τ

Soft Ball fτ (xt) =
1

|Uǫ|
∑
Uǫ

wixi+τ

Fixed Mass fτ (xt) =
1

Nnn

Nnn−1∑
i=0

xi+τ

Table 2.2: Three different options to get the average over the trajectory movement in the
neighborhood of a data point xt. fτ (xt) is the predicted coordinate xt+τ after τ time steps,
Uǫ is the spherical region around xt and wi is a weighting factor (e.g. wi = e−|xt−xi|2/σ2

ǫ ).

2.2.3.5 Nonlinear Prediction Error

A similar approach to characterizing chaotic behavior in time series is the nonlinear
prediction error (NLPE) [Farmer and Sidorowich, 1987; Sugihara and May, 1990].
The idea is to predict the trajectory of a chosen data point by averaging over the
trajectories of its neighboring data points. If the prediction diverges significantly
from the real path, chaotic dynamics are assumed to underlie the process.
To perform this analysis, one starts again with embedding the time series into a
more dimensional phase space. Then, one data point xt is selected and a set of
corresponding neighbors is determined by either selecting all points in a spherical
region around xt (fixed ball or soft ball) or by taking a fixed number of nearest
neighbors Nnn (fixed mass). In the first approach one can choose between a simple
or a weighted sum over all points within the sphere. See Tab. 2.2 for a more detailed
description.
The next step is to calculate the temporal mean of the squared distances between
prediction and real trajectory over all times t. The NLPE finally becomes the square
root of this mean:

Ψ(τ) =
〈
[fτ (xt)− xt+τ ]

2〉 1

2

t
(2.15)

2.2.3.6 Generalized Dimensions

The last kind of measures to be addressed here are the generalized dimensions. The
formulation that is most convenient for use in time series analysis was probably given
by Grassberger [1983]. Since a detailed derivation would go beyond the frame of this
chapter, the generalized dimension is introduced just by its definition:

Dq = lim
ǫ→0

Iq(ǫ)

ln(1
ǫ
)
=

1

q − 1
lim
ǫ→0

d ln(Cq(ǫ))

d ln(ǫ)
(2.16)

with the order-q correlation integral

Cq(ǫ) =
〈
〈Θ(ǫ− rij)〉q−1

i 6=j

〉
j
=

1

N

N−1∑

j=0

[
1

N − 1

N−1∑

i=0,i 6=j

Θ(ǫ− rij)

]q−1

. (2.17)
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Here, rij is the Euclidean distance between the embedded data points xi and xj,
Θ(◦) is the Heaviside step function3, ǫ is a distance threshold, and q is the index of
the dimension. Iq is the Rényi information [Rényi, 1961]. The derivative in Eq. 2.16
is to be understood as the slope of a (linear) fitting function for very small values of
ǫ in a numerical analysis.
Generalized dimensions are usually employed in analysis where the actual value of
the questioned time series is compared to a null distribution derived from surrogates
(see Sec. 4.8). The result alone can in general not hint to nonlinear features without
external reference.
In the following analysis however generalized dimensions will not be utilized as
reference measures, since they deliver no better results than the NLPE for time series
analysis (see [Schreiber and Schmitz, 1997]).

There exist much more measures or varieties than those presented so far, but these
are presumable the most reliable and common ones in nonlinear time series analysis.
A few of them will therefore accompany us through the remainder of this work and
serve as references for later analysis.
In the next section, a concept is introduced that enables a very clear confinement of
nonlinear traits and the derivation of a new class of measures.

2.3 Wiener-Khinchin-Theorem

Let us first provide an adequate convention for the continuous Fourier transform:

F (k) =

∞∫

−∞

f(t)ei2πktdt. (2.18)

Its inverse is then given by

f(t) =

∞∫

−∞

F (k)e−i2πktdk. (2.19)

This form is generally more relevant to the theoretical treatment of problems than
to the practical, since experimental data is usually obtained in discretized form. In
this case one can use the following transformation to switch to Fourier space

F (k) =
N−1∑

t=0

f(t)ei2πkt/N . (2.20)

3Θ(◦) = 1 if ◦ > 0 and Θ(◦) = 0 if ◦ < 0. An analytic expression is for example given by
Θ(◦) = d/dx(max{0; ◦}). For the current case, it is convenient to further define that Θ(0) = 1, so
that all distances including ǫ are counted.
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The corresponding inverse transform is then given by

f(t) =
1

N

N−1∑

k=0

F (k)e−i2πkt/N . (2.21)

An extremely useful and famous quantity that can directly be derived from the
Fourier transform is the power spectrum or the spectral density :

P(k) = x∗(k) · x(k) = |x(k)|2. (2.22)

◦∗ denotes the complex conjugate of ◦. P(k) ”describes how the variance of the data
x(t) is distributed over the frequency domain”4.
The power spectrum of a stationary random process is directly linked to the autocor-
relation function by a Fourier transform:

P(k) = 1

2π

∞∫

−∞

A(τ)ei2πkτdτ . (2.23)

This relation is known as the Wiener-Khinchin-Theorem [Wiener, 1930]. A proof is
given in Appendix A.1. The Fourier transform, as a complex function or series, can
generally also be written as F (k) = |F (k)|eiφ(k), where | ◦ | indicates the modulus of
◦ and φ(k) are the Fourier phases.

Historically it may have had its first practical application in 1955 for an analog
correlator system for brain potentials [Barlow and Brown, 1955]. Until the mid
twentieth century Fourier transforms were carried out by mechanical Fourier ana-
lyzers [Otnes, 2008] which provided good results for smooth and regular data but
unfortunately not for noisy, stochastic time series [Wiener, 1961]. Barlow and Brown
recorded electroencephalograms on magnetic tapes and played them back by a special
device with two magnetic pick-up heads separated by a variable distance τ . The two
output signals were then multiplied by an analog circuit and fed into an integrator
(low pass filter) consisting of a resistor and a capacitor. At a fixed distance τ (that
of course corresponds to a time difference), the tapes were completely played back
and the integrator averaged over the product of the two signals s(t) and s(t + τ).
The voltage at the integrator is hence directly proportional to the ACF A(τ) of the
recordings.
In the next steps, the tapes were reversed and played back again for further values
of τ and the voltage was measured each time, until the whole ACF was constructed
successively. Due to the averaging, the result became a relatively smooth function,
that could then easily serve as the input for a mechanical harmonic analyzer which
finally revealed the power spectrum.

Nowadays the Wiener-Khinchin-Theorem still finds a practical application in
computing the ACF from the power spectrum (ironically the exact opposite direction

4Phrasing borrowed from [Wikipedia, 2015].
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as in 1955), which, in turn, can easily be calculated by very efficient and often even
hardware-accelerated Fourier transform algorithms. This can lead to much shorter
computation times compared to deriving the ACF directly by repeatedly averaging
over the time series product for various τ .

For the current purpose, the Wiener-Khinchin-Theorem will help to enclose all
nonlinear time series properties into a finite set of numbers.

From Eq. 2.6 it already became clear that all linear time series properties are
represented by the ACF. On the other hand, the Wiener-Khinchin-Theorem (Eq. 2.23)
provides a bijective mapping between the ACF and the power spectrum. Hence, all
linear information must be fully represented by the power spectrum as well. Since
the power spectrum is just the squared absolute values of the Fourier transform (see
Eq. 2.22), all remaining necessary information to reconstruct the time series f(t) is
the Fourier phases φ(k).

It follows that all nonlinear information resides in the Fourier phases. In the
following chapters, this concept will be employed to find a novel time series analysis
tool that is exclusively sensible to nonlinearities.



Chapter 3

Analytic Description

In this chapter, an unusual description of a leptokurtic time series is used to derive
its effect on the phases in Fourier space analytically. Although the following time
series are discrete in general, the temporal dependence is indicated with brackets
◦(t) instead of indices ◦t to avoid confusion with other indices.

3.1 Leptokurtosis as Superimposed δ-Peaks

To construct a simple leptokurtic time series ξ(t), consider first a series of uncorrelated
Gaussian random variables η(t) with finite standard deviation ση and vanishing mean
µη = 0. The power spectrum of this series does of course not show significant
irregularities and is statistically flat over the whole range of frequencies (white noise).
Also the Fourier phases of η(t) do not show any anomalies1.
To induce heavy tails, some of the data points now get shifted away from the mean:

ξ(t) = η(t) +
P−1∑

j=0

ajδ(t− τj). (3.1)

Here aj is the additive magnitude (the amount of shift) of the jth data point (outlier)
at the temporal position τj. P is the total number of outliers and δ(t− τj) = 1 if
t = τj and 0 else. Thus, ξ(t) can simply be written as a superposition of Gaussian
noise and some delta functions. ξ(t) is certainly a very rude approximation for
usually appearing experimental leptokurtic time series, but it is perfectly suited for
an analytic treatment and suffices to explain basic effects of heavy tails. Fig. 3.1
illustrates an example for P = 3 and ση = 1. The kurtosis reaches a high value of
γ2 = 111.9.
Let us now turn our attention to the Fourier representation.

1Further details in Section 4.2
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Figure 3.1: Left: Some data points (in this case P = 3) of white Gaussian noise (gray) are
shifted (blue) to construct outliers similar to those in time series with heavy tails. The
blue curve corresponds to ξ(t)− η(t) (see Eq. 3.1). Right: The Fourier phases of ξ(t)− η(t)
(blue) and ξ(t) (gray). Both show a common overall trend and some oscillations although
only three samples share similar values.

3.2 Effects on the Fourier Phases

A discrete Fourier transform according to Eq. 2.20 of ξ(t) yields

Ξ(k) = H(k) +
P−1∑

j=0

aje
i2π

τj
N

k = H(k) +
P−1∑

j=0

Aj(k). (3.2)

H(k) is the discrete Fourier transform of η(t). It becomes clear that also the Fourier
representation of ξ(t) is a superposition of H(k) and some complex numbers Aj(k)
that represent vectors of length aj and angle

φj(k) =
2πτj
N

k ∝ k (3.3)

in the complex plane. For all τj 6= 0, the angle increases with k and for τj = 0, also
φj becomes zero.
To illustrate the effect of the Aj(k), consider the simplest case of only one dominating
outlier represented in Fourier space by A0(k). The phase Φ(k) of Ξ(k) then becomes
the angle of the sum of the two vectors A0(k) and H(k). To obtain an outlier with
a significant leptokurtic effect, |A0(k)| = a0 is required to strongly dominate over
|H(k)|. Hence, Φ(k) will be φj(k) plus a relatively small random fluctuation around
0, since the direction, or phase of H(k) is randomly and uniformly distributed for
Gaussian noise. As φj(k) ∝ k, also Φ(k) grows linearly with k.
If there is more than one outlier, a more complicated but still vivid picture in
the complex plane might be imagined. The noise floor H(k) can still be regarded
as random numbers with a relatively small magnitude compared to the aj and a
uniformly distributed direction. The Aj(k) however, rotate with a slope of

φ̇j =
dφj

dk
=

2πτj
N

(3.4)
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as k increases. Note, that also the slope increases as the temporal position τj of the
spike moves from the beginning of the time series to its end. In the complex plane,
this corresponds to a chain of rotating vectors with a small random fluctuation,
given by H(k). If the number of outliers with roughly equal magnitude is large (this
would not meet the assumption of leptokurtosis), this results in a chaotic mixture of
cycles and epicycles. But if there is still a limited number of dominating outliers, an
overall trend in the rotation of Ξ(k) can be recognized. (This is of course the case for
leptokurtic and especially scale-free PDFs.) The right-hand graph in Fig. 3.1 shows
the phases for this type of situation with three distinctive outliers. Another point to
mention is that the direction of the vector Ξ(k) can also be essentially steered into
one particular direction, if the Aj(k) rotate nearly coherently with k. This happens,
if many τj share roughly equal values, corresponding to a cumulation of outliers and
hence, to a burst event in the time series.
The artificial construction of leptokurtic noise according to Eq. 3.1 leads to a useful
description of the behavior in Fourier space.
In the next chapter, some tools are introduced and developed to extract features like
those from the Fourier phases of experimental time series.
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Chapter 4

Methodology

4.1 Unwrapping

A number in the complex plane can be considered as a vector with a certain length –
the modulus – and a certain angle – the phase. The latter are cyclic with a period of
2π. I.e. a number with a phase of α is equal to a number with the same modulus
and a phase of α mod 2π. Therefore, the phases of the Fourier coefficients can be
constrained to an interval of length 2π, which can freely be chosen to start at −π:

Iφ = {x ∈ R| − π < x ≤ π} (4.1)

As a consequence, possible trends or long-range correlations in a series of phases may
become hard to detect. Linear trends for example might result in sawtooth behavior
(see Fig. 4.1 (left)). To overcome this problem in a limited scope, a technique
known as phase tracking or unwrapping can be utilized. For the methods covered
in this work, it suffices to use the presumably simplest and most famous algorithm,
introduced by Itoh in 1982.

The differences between two consecutive, wrapped1 phases can simply be written as

∆φ(k) = φ(k + 1)− φ(k). (4.2)

To construct the differences of the unwrapped phases ∆φ′(k), the following recursion
rule can then be applied:

∆φ′(k) =





∆φ(k)− 2π if ∆φ(k) > +π

∆φ(k) + 2π if ∆φ(k) ≤ −π
∆φ(k) else

(4.3)

Intuitively speaking, every clockwise phase difference gets reinterpreted as counter-
clockwise if it exceeds +π and vice versa if it falls below −π. The unwrapped phases

1The phases that are constrained to Iφ are called ”wrapped”. A numerical Fourier transform
self-evidently returns wrapped phases by default.
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Figure 4.1: Left: A linear trend in the Fourier phases results in a sawtooth behavior, when
the phases get wrapped into the interval Iφ. The blue vertical lines indicate wraps. Right:
The unwrapped phases (gray) and the accumulated changes caused by the unwrapping
procedure (blue).

are then obtained by a cumulative sum over the differences with φ′(0) = φ(0) = 02.

φ′(k) =
k−1∑

i=0

∆φ′(i) (4.4)

Noisy data, which is by far the most common case in time series analysis, can induce
so called fake wraps [Itoh, 1982; Jenkinson, 2003]. This motivated the development of
more sophisticated unwrapping algorithms (see for example Ghiglia and Pritt [1998]).
Most of them though assume the Nyquist criterion [Nyquist, 1928] and a relatively
high signal-to-noise ratio, which is not in general the case for experimental data.
Especially the Nyquist criterion is not fulfilled by the data that is later considered
for analysis. Moreover, Eq. 3.4 implies that φ̇j, which is equivalent to ∆φ(k) in the
model case, exceeds π if τj lies in the second half of the time series, leading to fake
wraps intrinsically. Therefore, fake wraps can indeed not be excluded completely,
but extensively sufficient for the current purpose.
Note here that, due to the periodicity of the phases, the unwrapping procedure leaves
the Fourier phases in a modified state which, however, has no consequence for the
Fourier representation at all. A back transformation of a Fourier representation of
a time series with wrapped phases would yield the very same time series as of one
with unwrapped phases.

Important to mention is that Eq. 4.4 happens to show a form that can be recognized
as a one-dimensional random walk [Pearson, 1905], if it is rewritten as

φ′(k + 1) = φ′(k) + ∆φ′(k). (4.5)

2The 0th phase belongs to the Fourier mode that describes the offset. As this mode has a
frequency of 0 and is hence just a constant, it is invariant under phase shifting. φ(0) can therefore
freely be chosen to be 0.
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More precisely, Eq. 4.5 describes a discretized Wiener process [Wiener, 1923] without
drift. This inspires us to refer to the unwrapped phases as phase walks. In the
following section some statistical properties of the unwrapped phases as well as of
their differences are derived for uncorrelated, Gaussian noise.

4.2 Statistical Properties of Phase Walks

Let us start with a stochastic time series of independent and identically distributed
Gaussian random variables – Gaussian white noise. ”White” means that it shows a
statistically constant power spectrum and hence, no linear temporal correlation (see
A.2). In fact, Gaussian white noise is also obtained by maximizing the entropy of an
arbitrary time series with finite mean and variance (a proof is given in Appendix A.3).
In Fourier space, a maximization of entropy with a given power spectrum (that
is Fourier amplitudes), results in random, independent and identically distributed
Fourier phases (a proof is provided in Appendix A.4):

Pφ(k)(x) =

{
1
2π

if − π < x ≤ π

0 else
. (4.6)

P◦(⋄) denotes the PDF of a random variable ◦ at the value ⋄.
The distribution of the phase differences then becomes

P∆φ(k)(x) = Pφ(k+1)−φ(k)(x) =

+∞∫

−∞

Pφ(k)(y) · Pφ(k+1)−x(y) · dy =

1

4π2

+π∫

−π

{
1 if − π < y + x ≤ π
0 else

}
· dy =





1
2π

+ x
4π2 if − 2π < x < 0

1
2π
− x

4π2 if 0 ≤ x ≤ 2π

0 else

.

(4.7)

This is a triangular shaped PDF, symmetric around 0 and spanning from −2π to 2π.
To obtain the distribution function of the steps of the unwrapped phases, one can
straightforwardly wrap3 Eq. 4.7:

P∆φ′(k)(x) =





P∆φ(k)(x) + P∆φ(k)(x+ 2π) if − π < x < 0

P∆φ(k)(x) + P∆φ(k)(x− 2π) if 0 ≤ x ≤ π

0 else

. (4.8)

Hence, the steps of the unwrapped phases are distributed uniformly between −π and
π just like the steps between the wrapped phases:

P∆φ′(k)(x) = Pφ(k)(x) =

{
1
2π

if − π < x ≤ π

0 else
(4.9)

3Wrapping is the inverse of unwrapping: φwrapped = [(φ+ π) mod 2π]− π
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Figure 4.2: Left: Nine realizations of artificially generated random walks with uniform
step distribution according to Eq. 4.9 (red) and phase walks, obtained by unwrapping
the phases of Gaussian white noise (blue). Right: Empirical distribution functions of the
random walks (red) and the phase walks (blue) after k = 1000 steps. The dashed line

corresponds to a Gaussian normal distribution with variance π2

3 · 1000.

Thus, the series φ′(k) does indeed behave like a true random walk with an indepen-
dent uniform step distribution in the case of Gaussian white noise. We can therefore
continue with finding an expression for the variance of the phase walk itself.

From the central limit theorem [Pólya, 1920; Feller, 1945] it follows that the dis-
tribution of a random walk with independent and identically distributed steps will
converge to a normal distribution after a sufficient number of steps. The correspond-
ing variance is given by the variance of the step distribution σ2

1 times the step index
i [Wiener, 1923]:

σ2
i = i · σ2

1 (4.10)

The proof can be found in Appendix A.5. The variance of P∆φ′(k)(x), which corre-
sponds to the step distribution, is

σ2
1 =

∞∫

−∞

x2P∆φ′(k)(x) dx =

π∫

−π

x2 1

2π
dx =

π2

3
(4.11)

and hence, the variance of the phase walk after k steps becomes

σ2
k =

π2

3
k. (4.12)

Fig. 4.2 visualizes this result by illustrating the empirical distribution functions of
ideal random walks, phase walks of Gaussian white noise and a normal distribution
with the theoretically derived variance for reference. Comparing the variance of
empirical phase walks to the variance from Eq. 4.12 lends itself as a good criterion
to decide whether a phase walk is really random or biased in any sense. This can be
achieved by means of an adjusted version of a classical variance ratio test. If the
phases behave truly independent and random according to Eq. 4.12, they are said to
fulfill the random walk hypothesis.
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S(κ) Interpretation

≪ 1 Phase walk is likely to be centered around zero.
0− 3 Phase walk is likely to fulfill the random walk hypothesis.
& 3 Phase walk is likely to have a trend.

Table 4.1: Interpretation of SRT results.

4.3 Variance Ratio Test

Lo and MacKinlay [1988] introduced a test to show that stock prices do not behave like
ideal random walks. They argued that for the latter, the variance of the increments
should directly scale with the distance over which is incremented. This is equivalent
to Eq. 4.10. Even if σ2

1 is unknown, the following condition should be satisfied

σ2
a·τ

a · σ2
τ

≈ 1. (4.13)

Lo and MacKinlay basically used violations of this equation to show that stock
market time series do not behave like ideal random walks.
In the current work, deviations from ideal random walk behavior in the unwrapped
Fourier phases are detected by comparing variances computed from experimentally
gathered data with the theoretical variances from Eq. 4.12. The former are calculated
by averaging (similar to the method presented by Cochrane [1988]). The experimental
variance is then given by

σ2
κ =

〈
[φ′(k + κ)− φ′(k)]2

〉
k
=

1

K − κ

K−κ−1∑

k=0

[φ′(k + κ)− φ′(k)]2 (4.14)

where K is the number of phases and κ is the phase index difference. From that,
one can now define a quantity that measures the deviation from the random walk
hypothesis as

S2(κ) =
3 · 〈[φ′(k + κ)− φ′(k)]2〉k

π2
=

3
K−κ−1∑
k=0

[φ′(k + κ)− φ′(k)]2

π2κ[K − κ]
. (4.15)

4.4 Standard Deviation Ratio Test (SRT)

To obtain a more intuitive ratio of standard deviations rather than a ratio of variances,
also S(κ) can be used by simply taking the square root of Eq. 4.15. This test is also
referred to as the standard deviation ratio test (SRT) from now on.
Tab. 4.1 provides interpretations of various co-domains of S(κ). As it turned out in
Section 3.2, leptokurtic time series tend to induce trends, that is non-zero slopes, into
the Fourier phases. As an example, Fig. 4.3 (left) shows SRT results of the artificial
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Figure 4.3: Left: Standard deviation ratio test (SRT) for 100 time series of Gaussian
white noise (gray) and for the time series with three shifted data points (green) from
Eq. 3.1/Fig. 3.1. The modified time series shows a relatively steep increase in S(κ), while
the results for Gaussian noise basically stay below 3. Right: The frequency dependent SRT
at four fixed values of κ. (The curves are stretched to the proper length.)

time series ξ(t) from Eq. 3.1, that is also pictured in Fig. 3.1, and of Gaussian
white noise. In Section 5.1, the connection between leptokurtosis and Fourier phase
correlations is studied and quantified in further detail.

4.4.1 Frequency Dependent SRT

Another way to characterize a phase walk is to not average over the increments
to get σ2

κ (see Eq. 4.15), but to simply compare the moduli of the increments
|φ′(k + κ)− φ′(k)| at various index positions k to the reference standard deviations√

κ · σ2
1:

S(κ, k) =
√

3

π2κ
· |φ′(k + κ)− φ′(k)| (4.16)

Although the increments alone are not valid estimators for the corresponding standard
deviations of course, this analysis (frequency dependent SRT ) can reveal which
frequency bands have the strongest impact on phase correlations. Fig. 4.3 (right)
shows S(κ, k) of the artificial time seres from Fig. 3.1 for four different values of κ.
The mean of each curve (not explicitly shown) is just S(κ) for the corresponding κ
(left figure). For none of those curves a striking deviation from being constant over
all ks can be observed. This agrees with Section 5.1, where we obtained that shifts
of single time steps affect all Fourier phases.
On the other hand, a slow nonlinear process (without any high frequency components)
that is distorted by uncorrelated Gaussian white noise should for example carry no
nonlinear information in its high frequency modes. The phases in this region should
therefore fulfill the random walk hypothesis, while for low indices they should not.
Fig. 4.4 illustrates the results for a time series that has been generated to fit this
criteria. The slow nonlinear components of the pictured time series have been crafted
by iteratively adjusting the PDF of a low-pass filtered Gaussian random process to
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Figure 4.4: Left: Artificially generated time series that is a superposition of a slow
nonlinear process and Gaussian white noise. The small embedded window shows the
corresponding power spectrum. Right: Frequency dependent SRT for the time series.
All curves exhibit very high values for low frequencies and clearly decrease with higher
frequencies k, indicating that the underlying nonlinear process dominates at low frequencies.
Non frequency dependent S(κ) reaches a maximum of 3.54 at κ = 4985 (not visible in the
figure).

become leptokurtic (the procedure is also outlined in Section 4.8.3). Subsequently,
uncorrelated Gaussian white noise has been added to generate unbiased high frequency
modes. S(κ, k) appropriately detects the nonlinearities on the low frequency scales
while not displaying any significance for the higher modes.

4.5 SR-Maps

Another way to illustrate S(κ, k) is to color-code the values on a two-dimensional k-
κ-map (SR-map). Fig. 4.5 shows the SR-map for the time series from Eq. 3.1/Fig. 3.1
(in sub-figure B) and for its background noise η(t) (in sub-figure A). (Hence, the
upper two images correspond to Fig. 4.3.) Here, S(κ, k) increases quite continuously
with κ and shows no significant trends in k-direction.
Further, the SR-map for the artificial time series from Fig. 4.4 is pictured in sub-
figure D and for its background noise in sub-figure C. (Hence, the lower two images
correspond to Fig. 4.4.) Here, it is now clearly visible that S(κ, k) increases massively
at low frequencies, while for high frequencies only regular variations appear until κ
spans over both frequency bands. Note that the pattern, produced by the background
noise, in the areas where nonlinear influence does not occur is exactly the same for
both images. Also notice that in the region around κ ≈ 500 and k ≈ 800 the test
result reaches up to ≈ 8.
SR-maps might be useful to identify specific time scales that are subject to nonlinear
influence. For the toy example from Fig. 4.4 they even revealed that nonlinearities
were only present in the low frequency bands. Other nonlinearity measures known
to the author are not able to accomplish this without evaluating and comparing
several band-pass-filtered versions of the time series. This would of course only be a
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Figure 4.5: SR-maps for various time series: A: Background noise η(t) of Eq. 3.1/Fig. 3.1.
B: ξ(t) from Eq. 3.1/Fig. 3.1. C: Background noise of the time series in Fig. 4.4. D: Time
series from Fig. 4.4.
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workaround and no intrinsic feature of the measure.

In the next section, some tricks and methods are introduced to manipulate or prepare
time series to enhance the significance of the SRT.

4.6 Rotating SRT

From Eq. 3.4 it became clear that the slope of a phase walk may depend on the
positions of prominent outliers. Further, it has already been noticed in Section 4.1
that the unwrapping procedure is not able to properly recognize slopes that are
greater or equal to π. If they are greater, the slopes are interpreted as being negative
and if they are equal, the unwrapped phase steps statistically fluctuate between π
and −π, effectively adding up to zero. It therefore suggests itself to rotate the time
series. Applying the rotation operator to a time series {x(t)}Tt=0 with T time steps
by an amount τ can be written as

Rτ ({xt}Tt=0) = {{xt}Tt=T−τ ; {xt}T−τ
t=0 }. (4.17)

For example

R3({0; 1; 2; 3; 4; 5; 6; 7; 8; 9}) = {7; 8; 9; 0; 1; 2; 3; 4; 5; 6}. (4.18)

Sometimes it may also be convenient to express the amount of rotation by an angle
ρ = 360◦ · τ/T .
The rotation does not change the linear time series properties, since those are
equivalent to the moduli of the Fourier coefficients. Applying a Fourier transform
automatically implies the assumption of a periodic function. The relative position of
this signal (also called the phase of the signal) to a reference index is encoded in the
Fourier phases alone and hence, a rotation does not affect the power spectrum. In
some cases it is therefore advisable to mask the time series with a window function
[Harris, 1978] prior to the Fourier analysis to reduce artifacts from discontinuities
between the first and the last time step.
For time series with roughly continuous transitions between the last and the first
time step and maybe even high frequency components, it is however not unalterably
a requirement to use them. Imagining the time series spliced to a closed ring, this
becomes intuitively clear: A harsh discontinuity at the splice of a smooth time series
naturally falsifies both the linear and the nonlinear features, as it corresponds to an
event that is very untypical for the rest of the time series4. Yet, a splice in a centered
and noisy time series might not even be visible to the unaided eye. For the both
examples we already exhaustively used in the previous sections, it is for example
definitely valid to do so. Fig. 4.6 shows a sequence of twelve rotated versions of the
time series ξ(t) from Eq. 3.1/Fig. 3.1. While ξ(t) caused a maximum SRT result of
∼ 3.3, R150◦(ξ(t)) elevates it to ∼ 5.8. Another way of illustrating the SRT results

4See Section 5.6 for an example.
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Figure 4.6: Left column: Versions of ξ(t) (Eq. 3.1/Fig. 3.1) for different rotation angles ρ.
Right column: SRT results for each of the versions. The saturation of the background is
proportional to the maximal value of S(κ).
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Figure 4.7: Left: S(κ) of the background noise η(t) (Eq. 3.1/Fig. 3.1) for different rotation
angles ρ. Right: Same for the modified time series ξ(t).

for different rotation angles is again to color-code it on a two-dimensional k-ρ-map.
Fig. 4.7 illustrates this for ξ(t) (right) and its background noise η(t) (left). Since
rotating alone does not induce any further nonlinearities relevant in Fourier space as
those that were already present in the time series, it might be justified to use it for
time series preparation prior to analysis. One should though bear in mind that this
does not necessarily hold true for other nonlinear measures.

4.7 Inpainting

As stated in the previous section, window functions are sometimes used to reduce
distortions of the Fourier spectrum by edge effects. Although this is a well established
and verified method, it severely falsifies the PDF. While this might be negligible in
many cases, it disadvantageously impacts the analysis presented in the current work.
For the time series where we encounter significant discontinuities between the last
and the first sample it therefore seems reasonable to seek alternatives.

As explained before, it is clever for any Fourier application to picture the time series
as a closed ring that is spliced between the last and the first time step. The idea is
to smooth out a possible discontinuity at the splice by inserting a patch between
the two ends that attaches continuously and basically matches the linear properties
of the time series. Methods to produce such patches have been proposed and very
successfully been applied for image reconstruction [Bertalmio et al., 2000; Elad et al.,
2005; Pires et al., 2009]. They are referred to as inpainting techniques. The present
analysis will orient itself towards an algorithm proposed by Elad et al. [2005]. Here
it is assumed that there exists a dictionary Φ, such that the original signal X can be
completely represented by a sparse set of coefficients αi as Φα = X. The dictionary
Φ could for example consist of wavelets [Mallat, 1989], ridgelets [Candès and Donoho,
1999] or curvelets [Starck et al., 2003], i.e. a transform that is overcomplete. Here,
overcomplete is to be understood as that more than one set α can exactly reproduce
X in real space.
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The first problem is now to find one such representation that is sparse, i.e. the
number of non-zero coefficients αi shall be small. This set would somehow represent
the minimal information needed to fully describe the data with the words accessible
in Φ. The idea is to mask the part of the data that is to be reconstructed and let
an algorithm find the sparsest description, while reproducing the unmasked regions.
The masked areas should therefore attain features as closely related to the unmasked
data as possible. This can be achieved by minimizing

||α||0 =
∑

i

(1− δαi,0) (4.19)

such that

||Y −MX||2 ≤ σ. (4.20)

Here, δαi,0 is 1, if αi is 0 and 0 else. || ◦ ||0 is the l0-pseudo-norm, which is just
the number of non-zero elements and || ◦ || is the Euclidean length

√∑
i ◦2i . M is

the mask (Mi = 0 if masked and 1 else) and Y = Φα is the reconstructed data.
The algorithm Elad et al. proposed, called MCA, solves this problem by iteratively
adjusting Y as

Yn+1 = ∆Φ,λn
[Yn +M(X − Yn)]. (4.21)

∆Φ,λn
[◦] represents an operator that first performs a transformation ΦT◦, second

thresholds the resulting components αi such that only components αi ≥ λn survive
and third transforms them back by Φα. λn is decreased after each step.

Sato et al. [2010] utilized inpainting for the first time to fill gaps in time series instead
of pictures. They succeeded in restoring the power spectra of heavily distorted data
to a quite satisfactory extend by choosing a mixture of a discrete cosine transform
and a wavelet transform as their dictionary Φ.

In the studies conducted for the present work however, it turned out that a standard
Fourier transform suffices to inpaint gaps in time series. It may even be better suited
for the current purpose since – in contrast to image reconstruction, where nonlinear
interpolation certainly leads to more convincing results – superposing of Fourier
modes alone is substantially a linear operation. The algorithm used for the later
analysis can therefore be outlined as follows:

1. Set all unmasked data points of the inpainted time series y equal to those of x:
y ← y +M(x− y).

2. Compute the Fourier transform:
ỹ ← FT(y)

3. Threshold the Fourier modes:

ỹk ←
{
ỹk if ỹk > ǫ

0 + 0i else
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4. Back transform to real space:
y ← IFT(ỹ).

5. Decrease ǫ and repeat steps 1 - 5 until ǫ is sufficiently small.

The quality of the result very sensitively depends on the function with which ǫ
decreases. In the present work, it turned out most favorable for many time series to
choose this function proportional to 1/i2, where i is the iteration index. Yet, the
decrease function should carefully be adjusted to the particular data set. If, for
example, two principal regimes of Fourier mode amplitudes are present, it might
even be considered to use two different transitions for each regime.

Examples for successful applications of the inpainting technique can be found in
sections 5.6, 5.7 and 5.8.

4.8 Surrogates

In Section 4.4, a null hypothesis that represents Gaussian white noise has already
been defined (Eq. 4.12). In the analysis of real data however, it is often interesting
to compare the test results to null hypotheses that reflect some more sophisticated
properties. In this section four methods to generate surrogate data sets are introduced
that reproduce the linear properties and / or the PDF of a model time series. The
measure of choice can then be applied to each of the generated surrogates such that
a distribution of test results appears: the null distribution.

4.8.1 FT Surrogates

A very easy and computationally efficient surrogate algorithm consists of randomizing
the Fourier phases of the original data [Theiler et al., 1992]. These so called FT
(Fourier-transformed) surrogates are basically linear Gaussian processes sharing all
linear properties of the original time series. All other properties, including the PDF
of course, are lost. The steps can easily be summarized as

1. Fourier-transform the data.

2. Randomize the phase of each Fourier coefficient.

3. Back-transform the data.

4.8.2 AAFT Surrogates

Amplitude adjusted Fourier-transformed surrogates [Theiler et al., 1992] are intended
to reproduce both the linear features and the PDF of the model time series. The
algorithmic steps are



30 4. Methodology

1. Rank-ordered remap the data to a Gaussian PDF5.

2. Execute the three steps of the FT algorithm.

3. Rank-ordered remap the data back to its original PDF.

The so obtained surrogates exactly reproduce the original PDF but only approximately
reproduce the linear properties, since the last step obviously influences them again
(remapping whitens the power spectrum). Schreiber and Schmitz [1996] showed that
AAFT surrogates can lead to a false indication of nonlinearities in linear time series.

4.8.3 IAAFT Surrogates

To overcome this problem Schreiber and Schmitz [2000] introduced the iterated
amplitude adjusted Fourier-transformed (IAAFT) surrogates. The algorithm can be
structured into the following steps.

1. Store the PDF and the power spectrum of the original time series and shuffle
the time steps.

2. Fourier-transform the data and adjust the power spectrum to match the stored
version.

3. Back-transform the data and rank-ordered remap it to the stored PDF.

4. Repeat step 2. and 3. consecutively for a defined number of times or until
no further change occurs. In any case the procedure stops after adjusting the
power spectrum (and back-transforming of course).

4.8.4 Simulated Annealing

The last surrogates introduced here are the SA (simulated annealing) surrogates
[Schreiber, 1998]. The corresponding algorithm is somewhat different from those
stated so far:

1. Compute and store the autocorrelation function Atarget(τ) of the time series
and shuffle all time steps.

2. Calculate and cache the autocorrelation function Apre(τ), then swap two
randomly chosen samples.

3. Compute the autocorrelation function Aact(τ) and the differences dpre =
||Atarget(τ) −Apre(τ)|| and dact = ||Atarget(τ) −Aact(τ)||. If dact ≤ dpre, keep
the two samples swapped. Else, reverse the swapping with a probability
exp(−(dact − dpre)/T ).

5This means that a series of Gaussian random numbers as well as the data are sorted by the
value of its samples, while the index of the time series samples is remembered. Then each data
sample is substituted with the corresponding random number and finally it is resorted by the index.
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4. Reduce T by a small amount and repeat steps 2. - 4. until dpre is sufficiently
small.

The parameter T controls the acceptance of a swap that caused the autocorrelation
function to move into the ”wrong” direction. It is therefore analogous to a process
that slowly looses temperature. Simulated annealing produces very good results but
is computationally extremely time-intense. Hence, it can practically not be used to
generate huge numbers of surrogates.

One further point to mention is that shuffling a time series causes its power
spectrum to whiten, since all temporal correlations are destroyed. Hence, surrogates
for time series with inherent white power spectra can simply be generated by shuffling
the original data. The linear properties are then reproduced statistically, which may
be even more favorable than reproducing them exactly [Dolan and Spano, 2001].
In the following analysis particularly the just described shuffling and the IAAFT
surrogates are employed to construct the null distributions.
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Chapter 5

Results

5.1 Nonlinear Effects of Leptokurtic PDFs

The first result presented in this section is the distribution of SRT results for lep-
tokurtic random time series. A parametrized Pearson-type IV distribution [Pearson,
1916], namely Student’s t-distribution [Student, 1908; Fisher et al., 1925] determines
the PDF of independent and identically distributed random samples with predefined
kurtosis γ2:

Pγ2(x) =
Γ
(
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2
+ 3
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)

√
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(
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)
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(
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)
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2
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(5.1)

For eight different values of γ2, 10
5 noise series with 2 · 104 samples where created

to obtain empirical PDFs of the corresponding SRT results. To capture long range
phase correlations, S(κ) is evaluated at a high phase index difference κ = 9800. (The
total number of phases is K = 10000.) Additionally to the leptokurtic, one set of
platykurtic noise time series and one of mesokurtic was generated. The former is a
uniform distribution with

PU(x) =

{
1√
12

if x ∈
[
−
√
12/2,

√
12/2

]

0 else
. (5.2)

The standard deviation of this distribution is equal to that of Student’s t-distribution
(Eq. 5.1) σpU = σpγ2

= 1 and the mean is also µpU = 0 of course. The kurtosis of a
uniform distribution on the other hand is negative γ2 = −6/5.
For the mesokurtic noise, a Gaussian distribution with consistent mean µpG = 0 and
standard deviation σpG = 1 perfectly suites its purpose.

Let us first analyze the statistical effect of leptokurtosis on the SRT. As clearly visible
in Fig. 5.1, the distribution of S(κ) broadens dramatically as γ2 increases. In other
words, high values of S(κ) and hence phase walks with non-zero slopes are more and
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Figure 5.1: Left: PDFs of the SRT results for noise with varied kurtosis on a linear scale.
Right: Same PDFs on a logarithmic scale. The small embedded window shows a slice
(indicated by the dashed gray line) through the PDFs at x = 2.5. The probability density
increases monotonically with γ2.

more likely to appear as the kurtosis increases, which is in excellent agreement with
the analytic results from Chapter 3.2.
The distribution for Gaussian noise (γ2 = 0) is equivalent to the distribution of
representatives of the random walk hypothesis (see Sec. 4.2). Also note that in
this case, the probabilities do indeed roughly match those given by the number of
standard deviations S(κ)1.
Maybe the most unexpected outcome however is that platykurtic noise causes the
S(κ)-PDF to narrow. This means that phase walks of platykurtic time series are
centered by tendency. On the one hand, it is clear that platykurtic PDFs have
nonlinear origin and therefore non-random phases. On the other hand, it seems
not obvious how platykurtosis induces centering of phase walks. Since this work is
especially dedicated to leptokurtic time series however, let us take this as a remarkable
observation and turn our attention back to the heavy-tailed time series.

The first result demonstrated that phase walk analysis can be used to statistically
precisely quantify the static nonlinear effect of non-Gaussian PDFs. The following
sections will focus on dynamic features of empirical time series.

1Statistical significance is often given in multiples of the standard deviations of a normal
distribution.
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Figure 5.2: Top: Logarithmic daily returns of the Dow Jones Industrial Average from
26th of May 1896 until 23rd of October 2014. Mid: Artificial time series with tailored
nonlinearities. Bottom: Wind acceleration measured at an Atlantic offshore wind turbine
from January, 1st, 2004, 00:10 until Juli, 10th, 2004, 18:20 with a sampling period of 10
minutes.
On the right of each time series is the corresponding power spectrum (gray) and its trend
(red) obtained by averaging over 2000 neighbors for each Fourier mode.

5.2 Surrogate Assisted Analysis of Empirical Time

Series

5.2.1 A Few Empirical Time Series

Let us first introduce the experimental time series that will accompany us through
the next section.

Dow Jones Industrial Average
A white leptokurtic time series stemming from a heavily nonlinear and complex
system is the series of the logarithmic daily returns of the Dow Jones Industrial Aver-
age [Williamson, 2015]. This time series has been acquired by taking the differences
between each decadic logarithm of daily closing prices from 26th of May 1896 until
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23rd of October 2014, resulting in N = 32222 time steps2. This time series will be
referred to as DJ.

Tailored Nonlinearities
The next time series example is not experimentally obtained but has been synthesized
to match all fundamental scaling properties of the PDF of the DJ data set. This
was achieved by imposing a set of six linear correlations on the Fourier phases [Räth
and Laut, 2015]. While the original time series has 15 · 105 time steps, only a shorter
version that is cropped to the exact length N of DJ is used in the current analysis.
The method Räth and Laut proposed to construct this data set can in some sense
be regarded as the inverse of the analysis method proposed in this work. Instead of
tracing phase correlations in nonlinear data, the authors succeeded in reproducing
leptokurtic PDFs with scale invariant properties by correlating the phases of Gaussian
white noise. Not only static nonlinearities have hereby been produced but also events
that appear as bursts. In this section, it is demonstrated that phase walk analysis
can confirm this and further find differences between the time series and its prototype
DJ. This time series is called TN.

Wind Acceleration
A time series of wind velocities collected at an Atlantic offshore wind turbine [Na-
tional Renewable Energy Laboratory, 2014] serves us as a leptokurtic example that
shows some relevant linear properties. To make the time series more comparable
to the previous two examples, it is convenient to center it by taking the differences
between the time steps and to also crop it to the length of DJ. As a result, the
time series reaches from January, 1st, 2004, 00:10 until Juli, 10th, 2004, 18:20. The
difference between two consecutive velocities is the change in velocities and hence, the
wind acceleration (WA). The power spectrum of this data set drops towards higher
frequencies. However, this characteristic appears only as a noisy trend and cannot
clearly be recognized as a power law decay, which would be a typical consequence of
turbulent behavior [Frisch, 1995]. This is due to rather strong under-sampling of the
data. Turbulent motion of air shows relevant effects down to time scales of a few
milliseconds3, but the present data has only been recorded with a sampling period of
10 minutes. However, the SRT enables an identification of nonlinearities in the data
set with outstanding significance, which is shown in the remainder of this chapter.
Fig. 5.2 shows all time series and the corresponding power spectra.

To obtain statistically reliable results in the following tests, one has to first define
some null hypothesis. For this, the surrogate algorithms introduced in Section 4.8

2xDJ(t) = log
10
(p(t))− log

10
(p(t− 1)), where p(t) is the closing price on day t.

3The Kolmogorov time scale can be approximated as τη =
√
ν/ǫ =

√
νL/〈u〉3 =√

1.5 · 10−5m/s · 10km/(8.7m/s)3 = 15ms. Here, ν is the kinematic viscosity of air, 〈u〉 is the
velocity mean and L is the typical length scale of the system. The latter is hard to estimate for an
outside environment but even if we choose L = 10000km ≈ dEARTH , τη does not exceed 500ms.
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Figure 5.3: Left: PDFs of the SRT results (null distributions) for the DJ and the TN data
sets. Right: The results for the WA data set and its surrogates.
The results for the different time series are grouped by their colors (orange for DJ, green for
TN and blue for WA), while the shuffled surrogates are darker than the IAAFT surrogates.
Additional to the PDFs, the vertical lines labeled by the names indicate the outcomes for
the original data sets. IAAFT surrogates tend to produce much wider distributions than
the shuffled versions.

are utilized. For each of the time series, one set of 105 shuffled and one set of 105

IAAFT surrogates have been generated. The former are especially suited for the
white time series (DJ and TN) and the latter for the data sets with possible linear
features (WA). Fig. 5.3 shows the empirical PDFs of S(κ = 16108) for the surrogate
data sets and for comparison the results of the unaltered time series. Let us first
discuss the results for the white time series DJ and TN.
As already mentioned before, TN has been tailored to exactly match the PDF of
its prototype DJ and hence, it is not surprising to find their null distributions very
similarly lying upon each other. The results for the time series themselves on the
other hand differ vastly (SDJ = 20.9 and STN = 32.9). This implies that although the
static nonlinearities have been reproduced very accurately, the dynamic nonlinearities
of both data sets still deviate by a serious amount. TN even carries nonlinear features
that are much more significant, at least when measured with the SRT.
Interesting to observe is further that the distributions associated with the IAAFT
surrogates are completely distinct from those associated with the shuffled surrogates.
This can only be explained by assuming that IAAFT surrogates carry nonlinearities
that are not solely induced by the PDF. In the next section, this issue will be
discussed in further detail.
In any case however, the time series can be attested to bear dynamic nonlinearities
with a significance of at least one in 106, most likely even orders of magnitude higher.
Tab. 5.1 summarizes the significances measured in standard deviations. Note that
this is actually not a proper way of telling the significances in the current case, since
the results are not distributed normally. In many publications though, multiples
of standard deviations are routinely used to quantify the significances of various
nonlinearity test even if only a few as maybe one hundred surrogates have been
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Time Series Surrogate S(κ = 16108) NLPE

DJ shuffled 13.7σ, 20.4σ 14.4σ 35.3σ, 35.2σ, 37.0σ
DJ IAAFT 7.4σ, 7.0σ, 8.1σ 39.6σ, 35.0σ, 30.5σ

TN shuffled 21.9σ, 22.1σ, 22.4σ 45.5σ, 52.6σ, 48.6σ
TN IAAFT 13.9σ, 12.6σ, 12.5σ 47.3σ, 51.2σ, 45.8σ

WA shuffled 14.0σ, 13.9σ, 14.0σ 44.0σ, 28.4σ, 43.6σ
WA IAAFT 10.5σ, 8.6σ, 8.6σ 32.8σ, 32.8σ, 33.8σ

Table 5.1: Significances for dynamic nonlinearities present in the empirical time series.
Each field contains three results from evaluations with 10 surrogates.

created4. The significances should in any way suffice for most purposes and can easily
compete with many established measures like those mentioned in Section 2.2.3.

For comparison, Tab. 5.1 also contains results for the NLPE. The parameters for
the analysis of the wind data were selected to match those in a publication by
Ragwitz and Kantz [2000], since their object of study has been a time series of
near-surface wind velocities, very comparable to WA. Ragwitz and Kantz embedded
a one-dimensional time series into a d = 20 dimensional phase space.
For the NLPE analysis of the Dow-Jones data the parameters were borrowed from
Small and Tse [2003] since they studied the very same time series. In their analysis,
they used an embedding dimension of d = 8 but unfortunately an unmentioned
number of nearest neighbors. A probably good choice, as Sugihara and May suggest,
is given by k = d+ 1 = 9. While Small and Tse reached a maximal confidence of
98%, the current implementation revealed ∼ 35σ. Phase walk analysis on the other
hand performed comparably well with up to ∼ 20σ5. Each entry is based on only ten
surrogates, since the NLPE is computationally extremely intense. I.e., to compute
the NLPE, one has to find k nearest neighbors (k = 50 for WA) for every one of the N
data points in the set (see also Section 2.2.3.5). The most efficient k-nearest-neighbor
algorithms known to the author scale in runtime with O(d · k ·N). Next, one has to
average over the trajectories of all of those neighbors (one average per dimension)
and compare this average to the real trajectory of the selected data point. This has
to be done for every N data points. The computational runtime hence turns out to
be approximately proportional to O(d · k ·N2), neglecting the averaging processes.

4The significance in multiples of standard deviations is commonly obtained by dividing the
absolute difference between the test result R of the time series and the mean of the null distribution
µND by the standard deviation of the null distribution σND: |µND −R|/σND. This can lead to
completely false results if the null distribution is not Gaussian, which is indeed generally to be
expected. Moreover, the smaller the cardinality of the set of surrogates, the more questionable the
result becomes.
Note that Tab. 5.1 also relies on this technique. Here, also the scattering of the significances takes
effect.

5Both significances indicate extremely unlikely events. For reference some corresponding likeli-
hoods: 7σ =̂ 10−12, 14σ =̂ 10−44, 20σ =̂ 10−89, 35σ =̂ 10−268.
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Computing S(κ = 16108) on the other hand requires a Fourier Transform and one
averaging process which results in an approximate runtime scaling of O(Nlog(N)),
also neglecting the averaging. For the analysis of the three example time series, the
number of feasible calculations of S exceeded the number of NLPE calculations by
four orders of magnitude. Note that most of the powerful, advanced measures for
nonlinearities in time series rely on embedding and clustering of data points (NLPE,
multifractal dimensions, Lyapunov exponent, network based measures), leading to a
roughly equal scaling in computational effort. Furthermore, there is no distinction
between linear and nonlinear properties in any of the methods known to us. This is
an important feature, since it allows for studying both classes of properties separately,
and hence for encircling certain features with much greater precision. The runtime
gain is not only convenient for data analysts but enables greater precision in the
result6 and utilization of the method in time critical applications.

The analysis for WA produced equally sufficient significances in both the shuffled
and IAAFT comparison. Surprisingly though, the ratio of the standard deviations of
the PDF of the shuffled surrogates to that of the IAAFT surrogates is approximately
equal to the same ratio for the Dow Jones time series.

σSDJshuffled

σSDJIAAFT

≈ 0.63,
σSWAshuffled

σSWAIAAFT

≈ 0.65 (5.3)

This may be taken as a rather unexpected result since unlike DJ, WA has substantial
linear features, which are destroyed by shuffling the data. Thus, the ratio for WA
should possibly be smaller compared to the ratio for DJ, which is not the case.

In the next chapter we will have a look at the nonlinear effects solely induced by the
IAAFT algorithm.

5.3 IAAFT-induced Nonlinearities

As already mentioned in the previous section and actually visible in Fig. 5.3, IAAFT
surrogates carry nonlinearities that can neither be explained by the PDF of their
prototype nor by linear properties of it. To verify this, 10000 shuffled surrogates for
independent and identically distributed leptokurtic noise are compared with 10000
corresponding IAAFT surrogates. The number of time steps of the prototype noise
time series is 10000 as well. Fig. 5.4 evidently exposes IAAFT-induced nonlinearities,
not present in the shuffled alternatives. As Dolan and Spano [2001] argue, it may
therefore be a preferred procedure to reproduce the power spectrum not exactly, but
only statistically instead. Since shuffling remains a satisfying surrogate generation
strategy for at least DJ and TN, however further comparisons with other surrogates
have not been included in the previous evaluations of the presented data and measures.

6Comparing the null distributions in Fig. 5.3 to the significances in Tab. 5.1 reveals that the
significances are actually less than indicated in the table.
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Figure 5.4: PDF of SRT results for surrogates of leptokurtic noise. The blue PDFs
correspond to noise time series with a kurtosis of γ2 = 44 and the reddish to noise with
γ2 = 216. In each case the IAAFT surrogates results differ from the results for shuffled
surrogates tremendously.

Moreover, as the IAAFT algorithm induces false nonlinearities, it may yield misguided
but also even stronger null hypothesis. Thus, the test significances derived for WA
(see Tab. 5.1 or Fig. 5.3) in the IAAFT assisted analysis might probably even be
understated.

5.4 Rotational Analysis of Empirical Time Series

In Section 4.6 the concept of time series rotating has already been introduced. It
will now be applied to the three example time series to derive their rotation maps
(Fig. 5.5). S(κ) could in any case be increased at least 11%.
All maps basically show two broad and asymmetric peaks separated by well pro-
nounced valleys. The positions of those can sometimes be used to hint to positions
of bursts or emergent events in the time series. In Section 4.1, we already saw that
fake wraps are caused if the dominant delta-peak sits in the second half of the time
series, since the phase difference between two consecutive Fourier modes exceeds
π. If it sits right in the middle of the time series, this difference or phase rotation
is exactly equal to π, which causes the unwrapping mechanism to stochastically
interpret the differences alternatively as clock- and counterclockwise. Hence, the
unwrapped phase differences fluctuate between −π and π, leading to a net rotation
of 0. This effect manifests itself as a relatively steep valley in the rotation map if
one especially well defined peak or bursty event influences the time series. Fig. 5.6
illustrates this incident for TN, where it is best visible among the three example
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Figure 5.5: SRT results for different rotation angles. The maximal values increase to
S = 23.2 for DJ at a rotation angle of τ = 2300 =̂ 25.7◦, to S = 39.2 for TN at a
rotation angle of τ = 15151 =̂ 169.6◦ and to S = 34.5 for WA at a rotation angle of
τ = 16251 =̂ 181.9◦. This corresponds to increases by 11.0% (DJ), 18.7% (TN) and 12.4%
(WA).

Figure 5.6: The time series TN (gray). A rotation by ρ = −112.5◦ shifts the highlighted
bursty region (red) into the middle of the time series, causing the SRT results to become
minimal (see Fig. 5.5 middle).
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Figure 5.7: SR-maps for the three time series DJ, TN and WA. All of them increase
quite homogeneously to greater values of κ and show no significant frequency dependent
irregularities.

time series. The rotation angle has been selected by the position of the right hand
minimum in the map for TN in Fig. 5.5 (−112.5◦ =̂ 247.5◦).
These minima can of course also have other reasons. For example, if the time series
is rotated such that it becomes somehow symmetric, the slopes induced by peaks or
bursty events can cancel out. This can be explained by stressing the same argument
as before: From Eq. 3.4 it follows that peaks in the first half of the time series cause
phase slopes below π, while peaks in the second half cause slopes greater than π. If
the latter is the case, they get wrapped, that is, decreased by 2π and hence negative.
Thus, peaks in the second half cause the exact opposite slope than peaks in the first
half. If in both parts comparable peaks exist, they may cancel out.
Further and more complicated reasons for the emergence of the characteristic struc-
ture in the rotation maps may exist but are not discussed here, since no deeper
insight would be gained at this point.

5.5 SR-Maps of Empirical Time Series

In Section 4.5, another way to depict SRT results was discussed, that allows for
identifying frequency bands, and hence relevant time scales of nonlinear phenomena.
Applied to the experimental time series, the maps illustrated in Fig. 5.7 appear.
None of the three maps shows significant k-dependent irregularities. Instead, S(κ, k)
increases quite homogeneously over the whole frequency band. This suggests that all
time series were subject to nonlinear influence on all time scales, which agrees with
what one would expect:
DJ is a financial time series and underlies myriads of different dynamics happening
on all time scales from Flash Crashes, lasting several minutes [Phillips, 2010] to
century-spanning economic growth periods.
TN was synthesized by correlating all its phases. Therefore, obviously all frequency
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Figure 5.8: The linear stochastic process is plotted in blue and the inpainted link in red.
Box C shows a zoom into the gray region of A. In Box B the joint between the last and
the first time step of the trimmed linear process is shown.

bands are affected as well.
WA contains outdoor wind acceleration data over a period of more than eight months.
It is reasonable to assume fully developed turbulent air flow at the location where
the data was recorded and hence, there should have appeared eddies on technically
every length and time scale [Kolmogorov, 1941b,a], maybe except for the time scales
of multiple weeks or months. This region however is presumably also subject to
complex dynamical influence by seasonal changes. Note that since amplitudes and
phases are decoupled in Fourier space, turbulent influence on weak modes has the
same impact on the phase statistics as it has on strong modes. Consequently, also
WA should carry phase correlations over the whole frequency band, which is indeed
true as Fig. 5.7 reveals.

5.6 Inpainting to Remove Edge Effects

As already brought up in Section 4.7, it might be interesting to utilize the inpainting
technique not only to remove spurious influence of discontinuities at the time series
edges on the power spectrum (the linear properties), but also on the Fourier phases.
Let us therefore investigate a linear stochastic process with dominating low frequency
modes that has been constructed by low-pass-filtering a series of Gaussian random
variables (Fig. 5.8). Constructing it this way also ensures that the process is initially
free of edge effects, since the phases remain unaltered when applying the filter.
The time series is then trimmed to simulate a stop of recording. Hence, the edges
are not smoothly closed anymore but can only be joined by a harsh discontinuity
(see Fig. 5.8 B). Since this highly nonlinear event is located at the temporal position
t = 0 =̂ t = TT (TT is the number of time steps of the trimmed version), most phases
become 0 by tendency and the phase walk is primarily centered (see Eq. 3.4 for
τj = 0). To avoid this effect in the phase walk analysis, the series has to be rotated.
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Figure 5.9: SR-maps for the linear process (left), the trimmed linear process (mid) and
the inpainted linear process (right). While the original and the inpainted variant show
very similar patterns, the trimmed version is completely dominated by the edge effects.
SLPT (κ) reaches even values of ∼ 60, which exceeds any outcome of the previous analysis.

To convince the reader that this really holds true, the rotation maps for both the
untrimmed and trimmed time series are shown in Fig. 5.9: for a rotation angle ρ = 0◦,
S(κ) is basically equal to 0 for the trimmed version. Two extremely well defined
peaks with a steep valley in between them (see Sec. 5.4 for a detailed explanation)
can also be recognized in this map and no significant feature at all in the map of
the untrimmed process. Hence, the rough transition at the edges of the time series
obviously causes indeed striking nonlinear effects directly observable in Fourier space.
Fig. 5.10 also shows the power spectra of both versions. Trimming the time series
even impacts the linear properties by lifting non-present Fourier modes into a relevant
regime.

The reader might have gained a gloomy impression about the consequences of edge
effects by now and maybe even feels motivated to add a slick solution to this problem
by inpainting a link between the two edges. To do so, one can proceed as described
in Section 4.7.
Fig. 5.8 depicts the original time series and the one with the inpainted link. For
removing artifacts a very weak noise floor has further been added to both, the
original and the inpainted time series7. The inserted segment clings neatly to the
open edges of the trimmed time series and also seems to agree quite well with its
linear properties, as can be seen in Fig. 5.10 (middle).

This example demonstrates that inpainting might state a powerful alternative to
window functions. While the latter modifies the time series itself, inpainting leaves
it unaffected while basically solving the problem. A deeper analysis would certainly
be of great interest for data- as well as signal analysis.

7Also the trimmed version carries this noise floor of course.
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Figure 5.10: Power spectra of the linear process (LP), the inpainted linear process (LPI)
and the trimmed linear process (LPT). To see how well they match, each picture shows
two of them overlaid. The original and the inpainted version comply quite good, while the
spectrum of the trimmed time series has numerous elevated modes between k ≈ 200 and
k ≈ 3000. For better comparability, the power spectrum of LPT has been stretched to the
other spectra’s length. k therefore constantly deviates by +10% for LPT.

5.7 Inpainting to Identify Dominant Regions

In this section, another application of inpainting that is especially relevant for time
series with bursty or peaky passages will be encountered. Consecutive regions of
the time series are successively masked and filled with inpainted segments. For
each position, a SRT result is recorded. All time series have first been rotated
to the position of maximum test response (see the description of Fig. 5.5 for the
actual angles). Fig. 5.11 illustrates the result. Inpainted segments in the first half
of the data cause S to drop by tendency and vice versa for the second half. This
indicates that the dominating nonlinear events are located in the first part and can
be explained the following way.
Nonlinear events in the first half result in phase slopes greater than 0, since they get
wrapped correctly, while events in the second half cause negative slopes. High SRT
results can stem from both steep positive or negative slopes. If S decreases when
passages from the first half are removed, it means that the absolute slope is reduced
when positive contributions are taken out. Hence, the phase walk must have had
an overall positive slope and therefore dominating nonlinearities in the first part.
This also suggests that S should increase if nonlinear events in the second half are
removed, since they contribute negatively. That is exactly what can be observed. To
confirm this argument, the same plots are given for all time series rotated by 180◦

in Appendix B.1. This basically exchanges the front and the rear part (moving the
dominant event to the opposite half) and causes S to acquire the opposite trend.
Let us now discuss all time series separately in detail.
DJ (top): Two regions of weighty nonlinear behavior at t ≈ 13000 and t ≈ 27500
can easily be identified. The first event reaches from ∼ 1929 to ∼ 1940 – the time of
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Figure 5.11: SRT results for time series with inpainted segments. The solid black curve in
each graph shows the result S(κ = 16108) of the SRT-test of the time series when a region
of width = 1800 at the corresponding position t was replaced by an inpainted segment.
S(κ = 16108) of the unaltered time series is also indicated as dashed black lines. The
background redundantly encodes this value: blue corresponds to a drop and red to an
increase in S(κ = 16108). The grayish curves are the time series in arbitrary units.
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the Great Depression. The second event can be identified as the Black Monday on
October 19, 1987.
TN (mid): Also here, two passages (t ≈ 9000 and t ≈ 26000) essentially govern
the trend of S. Inpainting the first event causes the SRT-result even to completely
collapse. This may have its reason in the symmetry of the residual time series: as
previously explained, similar nonlinearities in the front and rear part can cancel
out in the SRT result. This is also why swapping the second event by an inpainted
segment increases the SRT result.
WA (bottom): This curve behaves somehow different than the previous two. One
recognizes a widespread decrease of S in the first half for t ≈ 4000− 16000, corre-
sponding to the time from early May to Juli – spring to summer, when the weather
is more turbulent in the northern hemisphere. A second single peak impacts at
t ≈ 26000, which is in late February – maybe squall.
These results indicate that inpainting assisted phase walk analysis states an extremely
powerful new tool for nonlinear data analysis. The technique is not only able to
identify nonlinearities at all, but to precisely locate them in the time series.

5.8 Inpainting to Resolve Nonlinearities in Sym-

metric Time Series

The careful reader might already have noticed that symmetries in time series state a
crucial issue for SRT based phase walk analysis, because their effect on the Fourier
phases might destructively interfere (see Section 5.7). A time series that gives
a good example of this effect is TN, which is highly symmetric in its full length
NTN = 150000. The SRT results reach only maximal values of S(κ) ≈ 0.9 when
applied to the unrotated time series. Fig. 5.12 shows the results for inpainting assisted
analysis. Inpainting increases S to up to approximately 23.3 for the most influential
regions and to values over ∼ 5 for at least 4 events. Note that one of the most
striking events in the time series happens to be located at the very center and thus,
stays without effecting the SRT at all (see Section 5.4 for a detailed explanation). To
access this event anyhow would for example be possible by slightly rotating the time
series. Since this is not the aim of this chapter however, it is just left as a remark
here.

5.9 Nonlinearities in Turbulent Particle Trajecto-

ries

As one last example, SR-maps have been computed for particle accelerations in a
dusty plasma.

Complex or dusty plasmas are low temperature plasmas with embedded micrometer-
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Figure 5.12: Inpainting assisted SRT of the full-length TN. TN itself is visible as a gray
shadow. The solid black curve is the series of SRT results dependent on the position of the
inpainted segments of width 1800 and the dashed line indicates the result for the unaltered
time series. In addition the position-dependent results are redundantly color-coded in the
background: blue corresponds to a drop and red to an increase in S(κ).

sized particles [Thomas et al., 1994; Fortov et al., 2005; Ivlev et al., 2012]. Because
of the higher mobility of the electrons in an ionized gas, the particles in general
become negatively charged. Together with the resulting Debye sheath this produces
a Yukawa-like pair-potential over which they interact. As a result, dusty plasmas can
exist in all of the three classical phase states, solid, liquid and gaseous, and further
display many complex phenomena, like e.g. melting and recrystallization [Thomas
and Morfill, 1996; Knapek, 2011], wave phenomena [Merlino et al., 1998; Nosenko
et al., 2002], or self-organization [Kong et al., 2011; Wörner et al., 2012]. Since the
inter-particle distances are on the range of approximately 100− 500µm, the particle
clouds can easily be observed when illuminated by a laser. Therefore, they are ideally
suited as model systems to study generic phenomena like those just mentioned.
In huge three-dimensional particle clouds, also vortex-like streams can sometimes
be observed [Nefedov et al., 2003; Morfill et al., 2004; Heidemann et al., 2011]. In a
recent publication by Schwabe et al. [2014] a simulation of a two-dimensional dusty
plasma sheet, modeled after the PK-3 Plus laboratory [Thomas et al., 2008], has
been used to show that even turbulent characteristics develop in those vortices. In
this last chapter, these simulation results are investigated by phase walk analysis to
classify different areas in the vortices.

7100 particles of diameter 3.14µm, mass 3.1 · 10−14kg and a charge of −3481e were
simulated in an environment of argon plasma with a pressure of 10Pa, a neutral gas
temperature of 300K, an electron temperature of 2.4eV and an ion number density
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of 3.4 ·1014m−3. The frames were grabbed at a sample period of 10ms over a runtime
of 60s, resulting in N = 6000 time steps.
The time series, used for the SRT, are the accelerations in y-direction that were
calculated by simply taking the differences of the differences of the coordinates in real
space8. Fig. 5.13 (top) shows 100 randomly picked trajectories (gray) of the data set:
two counter-rotating vortices (counterclockwise rotation of the upper and clockwise
rotation of the lower vortex) are formed. In the center of each vortex mostly stable
and steady rotations occur, whereas particles that travel at the edge of the particle
cloud (at the void – the region located at x ≈ 0− 7mm, y ≈ 8− 12mm, and at the
outer edges) are subject to irregular accelerations that presumably occur whenever
they leave and enter their rather homogeneous particle dominated neighborhood. For
four representative trajectories of each area the SR-maps were computed and plotted
as well in Fig. 5.14. As expected by the previous argument, the unstable trajectories
carry significant frequency dependent anomalies, while the stable rotations do not
show any indicative features. One can observe that especially the lower or the higher
frequency regions are suspicious. The former might be explained by the overall
shape of the unstable particle trajectories, which deviates clearly from a harmonic
oscillation, compared to the stable rotations. The latter do probably result from
the transitions through the various cloud regions happening on short time scales.
Here, especially the regions at (x ≈ 8mm, y ≈ 10mm), (x ≈ 22mm, y ≈ 10mm),
(x ≈ 4mm, y ≈ 14mm) and (x ≈ 4mm, y ≈ 6mm) are addressed, where the
trajectories describe comparably sharp bends.

The result demonstrates how particle trajectories can be allocated to different
regions by merely scanning the Fourier phases for some distinctive features.
It also supports once more that phase walk analysis is applicable to most different
fields of physics and other sciences. The current example led to significant results,
although the time series do not even show leptokurtic probability distributions.
This indicates that Fourier phase-based analysis techniques may most likely find
applications for data of other characteristics as well.

8a(t) = (v(t)−v(t−10ms))/10ms = [(y(t)−y(t−10ms))−(y(t−10ms)−y(t−20ms))]/(10ms)2.
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Figure 5.13: Top: 100 randomly picked particle trajectories (gray) to visualize the system,
four trajectories from the inner region of the vortices (blue) and four trajectories from
regions near the void and / or the outer edges of the particle cloud (red). The left column
below shows the acceleration in y-direction of the four stable oscillations (blue) and the
right column the acceleration of the unstable trajectories (red). The same figure for the
x-accelerations can be found in Appendix B.2.



5.9 Nonlinearities in Turbulent Particle Trajectories 51

Figure 5.14: Top: 100 randomly picked particle trajectories (gray) to visualize the system,
four trajectories from the inner region of the vortices (blue) and four trajectories from
regions near the void and / or the outer edges of the particle cloud (red). The latter
show well-marked phase anomalies in the SRT results, while the stable vortex rotations
are rather inconspicuous by tendency. Below: The left column shows the SR-maps that
correspond to the the y-accelerations of the blue trajectories in the top figure and the right
column those corresponding to the red trajectories. Well observable, the stable rotations
(blue, left) cause no significant deviations from the random walk hypothesis, while the
outer trajectories (red, right) show large frequency dependent aberrations. The same figure
for the x-accelerations can be found in Appendix B.3.
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Chapter 6

Conclusions

Let us briefly summarize what has been encountered in the course of this work.
In the first part, it was argued that, since all nonlinear time series properties live in
the Fourier phases, a measure, able to quantify these features, would permit a whole
new class of analysis techniques selectively sensitive to nonlinear features.
An analytic description of the implications of leptokurtosis on the Fourier phases
followed then to derive a methodology that can capture various anomalies within
them. A few simple examples helped here to get familiar with the methods and
to characterize them. The tools (SRT, SR-maps and the rotational maps) turned
out to be excellently suited for leptokurtic data. This enabled the discovery and
quantification of a statistical relationship between kurtosis and the Fourier phases.
Next, a surrogate supported analysis was used to compare the test significances for
dynamic nonlinearities in empirical time series with a very reliable and commonly
used measure, the Nonlinear Prediction Error (NLPE). It turned out that phase walk
analysis performed with minor, yet more reliable and absolutely sufficient significance.
I.e., in the analysis of the time series with tailored nonlinearities, the SRT significance
reached ∼ 22σ, while it reached ∼ 48σ for the NLPE. On the other hand, the SRT
results formed a smooth null distribution that spanned over five orders of magnitude,
while only ten NLPE results could be obtained in the same time due to the high
computational effort, intrinsic to delay-time-embedding based measures. Apart from
this, the minimal significance reached by the SRT in any of the presented tests was
∼ 7σ, which corresponds to approximately one in 1012 events.
Following this, a comparison between iterated amplitude adjusted Fourier-transformed
(IAAFT) and shuffled surrogates of independent and identically distributed random
variables revealed significant dynamic nonlinearities induced by the IAAFT algorithm.
The chapter continued with applying more sophisticated variants of the SRT to the
data sets. Rotating the time series led to an improvement of the significances and
allowed for localizing especially nonlinear events in the time series. Furthermore,
SR-maps showed that all time scales of the investigated data carried nonlinear
information.
Finally, inpainting assisted investigation of the time series turned out to be extremely
powerful in removing spurious edge effects and in precisely localizing the passages
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that exert most of the nonlinear influence. It further facilitates SRT based tests of
highly symmetric time series.
Trajectories of particles from a simulation of turbulent dusty plasma supplied the
last experimental analysis with acceleration time series. Time scale dependent phase
anomalies could be verified in trajectories that traversed edge regions of the particle
cloud, while no anomalies were detected for particles that followed stable movements.

Although the results presented so far do certainly not look too bad, this work
hopefully just states some starting point in the field of Fourier phase based time
series analysis. This thesis is largely restricted to the analysis to leptokurtic data
(except for the examples in sections 5.6 and 5.9), which is of course only a tiny
fraction of possible analysis subjects. Future work may allow for unwinding other
types of phase entanglement, helping to better understand and utilizing Fourier
phase information. This might not only be interesting from a theoretical point of
view but also be of great value for financial applications, health sciences or even
disaster prevention. In all of those fields new forecasting techniques are urgently
required. Recent work even suggests promising development [Golestani and Gras,
2014; Birkholz et al., 2015], but is still based on computationally intense algorithms
and neglects the very habitat of nonlinearities, that is, the Fourier phases.
In an often quoted article from 1999, Ivanov et al. have shown that measuring
a decline in a multifractal measure can indicate life-threatening heart conditions,
but they also uncovered that the ”nonlinear properties of the healthy heart rate are
encoded in the Fourier phases”. Let this be the motivation for further research on
Fourier phases – on the nonlinear heart of time series.
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Appendix A

Further Calculations

A.1 Proof of the Wiener-Khinchin-Theorem

A(τ) =
∫

dtx∗(t)x(t+ τ) =

∫
dt

∫
dk

∫
dk′x̃∗(k)x̃(k′)e2πikte−2πik′(t+τ)

=

∫
dk

∫
dk′x̃∗(k)x̃(k′)

∫
dte2πit(k−k′)e−2πik′τ

=

∫
dk

∫
dk′x̃∗(k)x̃(k′)δ(k − k′)e−2πik′τ

=

∫
dkx̃∗(k)x̃(k)e−2πikτ

=

∫
dkP(k)e−2πikτ

A.2 No Correlation with White Power Spectra

Let us assume that the power spectrum of a time series x(t) is white, that is, constant
over all frequencies:

(P )(k) = ξ2

It follows

A(τ) =
∫

dkP(k)e−2πikτ =

∫
dkξ2e−2πikτ = ξ2δ(τ)

Hence, the autocorrelation functions is 0 everywhere except for τ = 0.

A.3 Gaussian Probability Distribution

Maximizing the entropy of a PDF f(x) with finite mean µ and variance σ2 results in
a normal distribution. To show this, one can use the method of Lagrange multipliers.
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One has to maximize the entropy

S(f) = −
∫

dxf(x) ln(f(x))

under following constraints

∫
dxf(x) = 1

∫
dxf(x)x = µ

∫
dxf(x)(x− µ)2 = σ2.

The Lagrangian then becomes

L(f, α, β, γ) =
∫

dx{ − f(x) ln(f(x))

+ α′ · [f(x)− 1] + β · [f(x) · x]
+ γ · [f(x)(x− µ)2 − σ2]}.

The functional derivative with respect to f is now set to 0:

δL
δf

= − ln(f(x)) + α + βx+ γ(x− µ)2 = 0

(A 1 has implicitly be absorbed in a constant α = α′ − 1.) Hence,

f(x) = exp(γ(x− µ)2 + βx+ α) = exp(α) exp(γ(x− µ)2 + βx)

= A exp(γ(x− µ)2 + βx)

To drastically shorten the algebraic derivation of the coefficients a symmetry argument
can be applied. If the distribution is centered around µ = 0, then it should be
symmetric: f(x|µ = 0) = f(−x|µ = 0). It follows that β = 0. Now the constraints
are used to derive the coefficients:

∫
dxA exp(γ(x− µ)2) = A

√
π

−γ = 1⇒ A =

√
−γ
π

∫
dxf(x)(x− µ)2 =

∫
dxA exp(γ(x− µ)2)(x− µ)2 =

−1
2γ

= σ2 ⇒ γ =
−1
2σ2

⇒ f(x) =
1√
2πσ

exp(
−(x− µ)2

2σ2
)
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A.4 Maximum Entropy in Fourier Space

To see that a uniform phase distribution maximizes Entropy in Fourier space can
also be shown with Lagrange multipliers. The Fourier representation is given by

x̃(k) = |x(k)| exp(iφ(k)).

Since the moduli |x(k)| and the phases φ(k) are independent, the entropy can also
be independently maximized for both. One applies the following two constraints:

∫
dφf(φ) = 1

φ ∈ {x ∈ R| − π < x ≤ π} .

Hence,

L(f, α) =
∫

dφ{−f(φ) ln(f(φ)) + α · [f(x)− 1]}

and
δL
δf

= − ln(f(φ)) + α− 1 = 0⇒ f(φ) = exp(α− 1) = const. .

Normalization by the first constraint further implies that

f(φ) =

{
1
2π

if − π < φ ≤ π

0 else
.

A.5 Variance of Random Walks

Let us consider a general random walk of the form

xn = xn−1 +∆x

and assume that the steps ∆x are independently and identically distributed with a
finite mean µ and variance σ2.
According to Tab. 2.1, the variance can in general be written as

σ2
n =

〈
(xn − µn)

2
〉
=
〈
x2
n

〉
− µ2

n,

where the mean of the nth step is given by

µn = 〈xn−1 +∆x〉 = 〈xn−1〉+ 〈∆x〉 = 〈xn−1〉+ µ

and hence,

µn = n · µ.
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For the remaining term, one can write

〈
x2
n

〉
=
〈
(xn−1 +∆x)2

〉
=
〈
x2
n−1

〉
+ 2 〈xn−1∆x〉+

〈
∆x2

〉

=
〈
x2
n−1

〉
+
〈
∆x2

〉
+ 2 〈xn−1〉 〈∆x〉 =

〈
x2
n−1

〉
+ σ2 + µ2 + 2(n− 1)µ2

=
〈
x2
n−1

〉
+ σ2 + (2n− 1)µ2.

The variance of the nth step therefore becomes

σ2
n =

〈
x2
n

〉
− µ2

n =
〈
x2
n−1

〉
+ σ2 + (2n− 1)µ2 − n2µ2 =

〈
x2
n−1

〉
+ σ2 − (n− 1)2µ2

=
〈
x2
n−1

〉
− µ2

(n−1) + σ2 = σ2
n−1 + σ2.

Thus, the variance scales linearly with n :

σ2
n = n · σ2.
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Further Figures
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Figure B.1: SRT results for time series DJ, TN and WA with inpainted segments. The
solid black curve in each graph shows the result S(κ = 16108) of the SRT-test of the time
series when a region of width = 1800 at the corresponding position position t was replaced
by a an inpainted segment. S(κ = 16108) of the unaltered time series is also indicated as
dashed black lines. The background redundantly encodes this value: blue corresponds to a
drop and red to an increase in S(κ). The grayish curves are the time series in arbitrary
units. All time series have additionally be rotated by 180◦. See Sec. 5.7 and Fig. 5.11 for
further information.
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Figure B.2: Top: 100 randomly picked particle trajectories (gray) to visualize the system,
four trajectories from the inner region of the vortices (blue) and four trajectories from
regions near the void and / or the outer edges of the particle cloud (red). The left column
below shows the acceleration in x-direction of the four stable oscillations (blue) and the
right column the acceleration of the unstable trajectories (red). See Section 5.9 for further
information.
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Figure B.3: Top: 100 randomly picked particle trajectories (gray) to visualize the system,
four trajectories from the inner region of the vortices (blue) and four trajectories from
regions near the void and / or the outer edges of the particle cloud (red). The latter
show well-marked phase anomalies in the SRT results, while the stable vortex rotations
are rather inconspicuous by tendency. Below: The left column shows the SR-maps that
correspond to the the x-accelerations of the blue trajectories in the top figure and the right
column those, corresponding to the red trajectories. Well observable, the stable rotations
(blue, left) cause no significant deviations from the random walk hypothesis, while the
outer trajectories (red, right) show large frequency dependent aberrations. See Section 5.9
for further information.
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