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Phased Array Antenna Analysis with 
the Hvbrid Finite Element Method 

Daniel T. McGrath, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMember, IEEE, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand Vitta1 P. Pyati 

Abstract- A new analysis technique for infinite phased array 
antennas was developed and demonstrated. It consists of the finite 
element method (FEM) in combination with integral equation 
radiation conditions and a novel periodic boundary condition 
for 3-D FEM grids. Accurate modeling of rectangular, circular 
and circular-coaxial feeds is accomplished by enforcing continuity 
between the FEM solution and several waveguide modes across 
an aperture in the array’s ground plane. The radiation condition 
above the array is enforced by a periodic integral equation 
in the form of a Floquet mode summation, thus reducing the 
solution to that of a single array unit cell. The periodic boundary 
condition at unit cell side walls is enforced through a matrix 
transformation that mathematically “folds” opposing side walls 
onto each other with a phase shift appropriate to the array lattice 
and scan angle. The unit cell electric field is expanded in vector 
finite elements. Galerkin’s method is used to cast the problem 
as a matrix equation, which is solved by the conjugate gradient 
method. A general-purpose computer code was developed and 
validated for cases of open-ended waveguides, microstrip patches, 
clad monopoles and printed flared notches, showing that the 
analysis method is accurate and versatile. 

I. INTRODUCTION 

UCCESSFUL phased array element design has usually S required the use of accurate numerical methods for pre- 
dicting the scan-dependent gain and impedance 111, [2 ] .  Recent 
attempts to develop phased arrays for broadband applications 
have led to radiator designs whose structures could not be 
adequately modeled with existing numerical methods. The 
need for a method that could account for complex feed 
structures, irregular conductor configurations and inhomoge- 
neous dielectrics led to consideration of the finite element 
method (FEM), which has been used successfully for problems 
in electromagnetic scattering by using integral equations to 
impose radiation conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[3]-[5]. These combinations of 
FEM with the method of moments (MOM) are usually referred 
to as hybrid finite element methods (HFEM). 

This paper describes a hybrid finite element method for 
predicting the performance of radiators in an infinite phased 
array. The analysis considers the general case of one radiator in 
an infinite array, fed through a ground plane by a cylindrical 
waveguide. Accurate feed modeling is accomplished by en- 
forcing continuity between the FEM solution and an arbitrary 
number of waveguide modes across the ground plane aperture. 
A periodic integral equation is imposed at a plane above the 
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antenna’s physical structure to enforce the radiation condition 
and to confine the analysis to a single array unit cell. The 
electric field is expanded in terms of vector finite elements 
inside the unit cell, and Galerkin’s method is used to write 
the problem as a matrix equation. The Floquet conditions on 
the unit cell side walls are enforced as transformations of the 
matrix that effectively “wrap” opposing unit cell walls onto 
each other with a phase shift appropriate to the scan angle and 
unit cell dimensions. The solution of the linear system gives 
a piecewise-linear approximation to the electric field, from 
which active reflection coefficient and active element gain are 
computed. Validation tests with a general-purpose computer 
code confirm that the method is versatile, accurate and reliable. 

11. FORMULATION 

A. General Description 

Fig. 1 illustrates the generic problem geometry. The array 
is planar, periodic in both the x and y directions, and has an 
arbitrary skew angle, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy. The volume region R is a single unit 
cell truncated below at the waveguide aperture, and at a plane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z = h above the radiator’s physical structure. The surface 
r bounding R is the union of a) all perfectly conducting 
surfaces; b) the “radiation boundary,” r R ;  c) the waveguide 
aperture, I’w; and d) the unit cell side walls rz+, rz-, rY+, 
and ry-. R may contain any number of material regions with 
distinct complex permittivity, E, and permeability, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, as well 
as any number of perfectly conducting obstacles, including 
infinitely thin wires and plates. 

A numerical description of the problem geometry is created 
by subdividing R into small volume elements, or “cells.” In 
this work, the cells are tetrahedra. The example exploded mesh 
shown in Fig. 2 is for a unit cell of a printed flared notch array. 
The cells in the center represent the dielectric substrate, while 
those on the left and right are free space. This radiator is one 
of the types that motivated this work because it includes an 
inhomogeneous dielectric and irregularly-shaped conductors. 

B. Expansion, Weighting and the Matrix Equation 

surfaces is approximated by the following expansion: 
The electric field everywhere inside R and on its bounding 

N 

s=l 

where each e, is a complex scalar and each & is a real-valued 
vector function. N is the number of mesh edges that are not 
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expansion (1) will satisfy the divergence condition; and b) 
they enforce continuity of the tangential field components 
across cell boundaries while allowing the normal component 
to be discontinuous, so that they correctly model dielectric 

The electric field must satisfy the source-free, time- 

(RADIATION BOUNDARY) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z - h  

2 . 0  discontinuities [6], [8]. 

harmonic vector wave equation 

(3) 
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL(E)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= v x -v x F - l&,E = 0 

where ko is the free space wavenumber. This form allows 6, 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, to be functions of position. The rtsidual error due 
to the approximation (1) is _ -  = L(E)  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL(E) .  The weighted 
residuals procedure sets < R, W >=O, where w is a weighting 
function and the inner product integration is taken over all of 
0. Applying a Green’s identity to the integral produces the 
“weak form”: 

BOUNDARIES 

I d x  

(b) 

Fig. 1 .  
lattice. 

Generic problem geometry: (a) unit cell cross section; and (b) array 

AIR 

Fig. 2. 
with coaxial feed. Conducting surface is shaded. 

Example unit cell finite element mesh: printed flared notch radiator 

on perfectly conducting surfaces. Each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 is defined within 
the mesh cells adjacent to edge s, and is zero elsewhere. 6 
is the “vector edge element” [4], [6]: 

where f i  is the outward normal to R and qo is the impedance 
of free space. The discretization of this functional using 
Galerkin’s method generates a system of equations. That 
system is modified by a transformation R representing side 
wall periodicity conditions, giving 

[ R ] [ S ’ +  Sw + S R ] [ R ] H E = E i n c .  ( 5 )  

(Superscript H denotes Hermitian, or conjugate transpose.) The 
matrix Sr originates in the volume integral in (4), while Sw 
and S R  originate in the surface integral taken over I’w and 
FR, respectively. The right side column vector E’”“ results 
from integrating the incident field term over r w .  Finally, the 
solution vector E gives the coefficients e, in (1). 

C. Interior Discretization 

Initially, the unit cell mesh is treated as though all noncon- 
ducting portions of I? are open-circuit walls, where the mesh is 
simply truncated without regard to boundary conditions. When 
the expansion (1) is substituted into (4), it gives one equation in 
N unknowns. Using Galerkin’s method, each & is substituted 
in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAturn for w, giving N equations. The result is that the terms 
of SI are given by the volume integrals 

- 
$, =Ci j ( f ;Vf j  - f j V f i )  (2) 

where i and j are the indexes of the nodes bounding edge s, 
and fi and fj are the corresponding linear scalar node-based 
elements [7]. The scaling by the edge length Ci j  ensures that 
the component of & tangent to the edge is a unit vector. 
These expansion functions have two important advantages 
over scalar functions: a) they are divergenceless, so that the 

The domain of integration, RSt, is the union of all cells shared 
by edges s and t. 

D. Waveguide Integra’ ‘quation 

Satisfying field continuity across I‘w requires an integral 
equation for tangential in terms of E on r. This is obtained 
in a manner similar to that used by Harrington and Mautz to 
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solve for waveguide radiation with the method of moments 
[9], starting with a modal expansion from Marcuvitz [lo]: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

00 

(7) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i =O 

The superscript t denotes transverse (to z), is an orthonor- 
mal mode function with propagation constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyi, and the index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i includes all TE,, and TM,, modes. The first term is due 
to a unit-amplitude incident field in the mode v, usually the 
dominant mode. The unknown coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACi may be found 
from the transverse electric field over r w  as 

l ‘w 

where 6,i is a Kronecker delta. CO is the reflection coefficient 
for the dominant waveguide mode. The transverse magnetic 
field is given in terms of the modal admittances Y,: 

00 

-t 
H = Y v e - Y ” Z ( 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAij,)-C C i Y i e Y t z ( i  x s i ) .  (9) 

Substituting (8) into (9) gives Ht in terms of Et on r w .  Then 
evaluating ii x Ht on I‘w(ii = 2 )  gives the integral equation 

i=O 

The result of substituting the right side into (4), followed by 
expansion and testing is 

00 

S 2 = j k O q o x Y , Q s i Q t i ,  s , t  E r w  (11) 
i=O 

The inner products of expansion functions and waveguide 
mode functions may be carried out in closed form for rect- 
angular waveguide; or numerically for circular and circular 
coaxial waveguide [ 121. 

E. Periodic Integral Equation 

Each radiator in the infinite array is assumed to be excited 
by a unit-amplitude incident field in the waveguide from z 
< 0. The excitation phases produce a beam directed toward 
Bo& in spherical coordinates. The fields above z = 0 must 
obey the condition 

- 

E ( .  + m d ,  + n d , c o t y ,  y + n d , )  
- 

(14) - - E ( e - j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPT ( m d= + n d y  cot7 I e - j  Py n d, 

P, = kosin Bocos #J0 (15) 

An integral equation for the magnetic field transverse to r R  

in terms of the electric field transverse to rR is 

- ii x H ( r R )  

2 w m  
k,,, = kosin80cos#Jo - - 

d, 

(19) 
2 w n  2 w m c o t y  

k y m n  = kosinBosinq5o - - + 
dY d ,  

where the negative imaginary result is chosen when the square 
root is negative, and E u C ( k x ,  Icy) is the two-dimensional 
Fourier transform of the unit cell electric field transverse to 
rR: 

N - 
- E,, = x es T s  ( ICx 3 k, ) 

s = l  

= $ e s  J ? / l s e j k x x e j k y Y d x d y .  (21) 

Substituting this expression into the surface integral of (4), 

then testing with each gives 

r R  
s = 1  

m n  

. e-jkxmnx e-jkymnY d x d y ,  3 ,  t E rR 
r R  

(22) 

where t,,, denotes ~ s ( k , , n ,  kymn).  The integral in (22) 

Fourier transform is Hermitian [13:193], i.e., &(-IC,, -ky) = 
ct ( k ,  , IC,)) ,  so the final expression for the entries in the matrix 
SR is 

is equivalent to -* ttmn (qt is a real function, therefore its 

-* 

m n  
(23) 

The edges that are on both I’R and a unit cell boundary are 
treated differently. There are no entries in SR for edges on 
I?,+ and rY+. Instead, the entries for edges on rx- and rv- 
are computed as if the mesh extended into the adjacent unit 
cells. This is consistent with Gedney’s concept of “overlap 
elements” [14]. It ensures that there is no conflict between 
the periodic radiation condition and the side-wall periodicity 
conditions. 
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F. Side- Wall Periodicity Conditions 

The mesh is assumed to have been created so that the surface 
mesh on opposing side walls is identical. Then each mesh edge 
on rz+ or ry+ has an “image edge” (the term does not relate to 
electric or magnetic images) on the opposing boundary that is 
identical except for a translation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-d,,O) or (-dycoty,-d,), 
respectively. The implementation of Floquet’s condition on 
these boundaries may be viewed conceptually as follows: 
The r,+ and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAry+ edges will be merged with their zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA--5 and 
- y counterparts, effectively re-creating an infinite mesh by 
wrapping opposing side walls onto each other. Suppose, for 
example, that edge #19 is on r,+ and its image edge on rz- 
is edge #2. The original matrix will have a pair of entries 
S l g $  and S k , l g  for every edge k that shares at least one cell 
with edge #19. In transforming the matrix, these entries will 
be eliminated and new ones added. The new entries are: s 2 , k  

= Slg,kexpIj$wL 1 and Sk,2 = Sk,lgexpI - j$wL I for edges 
IC that are not also on r,+; and 
= S j , 2  + S k , l S  for each edge k on rz+ whose image edge is 
edge j .  r,+is handled similarly, except that the phase shift 
terms are exp(fj(&d,coty + $,d,)]. 

= ~ 2 , j  + s 1 9 , k  and 

This procedure may be regarded as the transformation 

sf = R S R ~ .  (24) 

The matrix R is M x N ,  where N - M is the number of 
edges on I?,+ and ry+ combined. Its first M columns are the 
M x M identity matrix. In the remaining columns, there is an 
entry Rik for each pair of image edges: 

&k = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e j P =  dz , 

ej(PzdYcot7+PYdY),  
IC E r,+, i E r,- 
IC E ry+,i E ry- 

ej(Pzdz+Pydycoty+Pyd,) ,  E r,+ n ry+, i E r,- n ry- 
(25) 

This assumes an ordering of edges so that those in r,+ and 
ry+ are last. The transformation does not affect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASw or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS R  
because those matrices do not have any nonzero entries for 
edges in r,+ or ry+. 

{ 

111. VALIDATION AND DEMONSTRATION 

The preceding theory was implemented in a general-purpose 
computer code. The code is geometry-independent, owing to 
the use of commercial software for geometry definition and 
mesh generation. It uses the conjugate gradient method (CGM) 
[15] to solve the system of equations. The example results 
that follow are both validation (comparisons to solutions 
obtained by other methods) and demonstration (calculations 
for problems that have not been addressed by other methods). 
In all cases, the incident field was in the dominant waveguide 
mode and 32 waveguide modes (05 m, 7253) and 121 Floquet 
modes (-55m,n55) were included in calculating Sw and SR, 
respectively. 

A. Waveguide Arrays 

Arrays of open-ended waveguides, horns, and slots are a 
simplified case of the preceding analysis [16]. These cavity- 

(a) (b) 

Fig. 3. 
plane; and (b) unit cell section above ground plane. 

Two circular waveguide models: (a) waveguide section below ground 

0 10 20 30 40 50 60 
SCAN ANGLE 8 (deg.) 

Fig. 4. Comparison of multimode [2] and hybrid finite element calcula- 
tions of active reflection coefficient magnitude: dZ=0.714Xo, dV=0.619~o, 
a=0.343& (waveguide radius), y=6Oo. 

type elements couple only through apertures in a common, 
conducting ground plane. Hence, the formulation may be 
simplified by excluding the matrix transformation (24). Fig. 
3 shows two alternative representations of a unit cell for a 
circular waveguide. In Fig. 3(a), the mesh represents a section 
of waveguide under the ground plane, while Fig. 3(b) is a 
section of unit cell above the ground plane. In each case the 
cell faces bordering conductors are shaded. 

Fig. 4 compares Amitay’s multimode calculations [2:276] 

with HFEM using the model from Fig. 3(a). This close 
agreement establishes the validity of the waveguide and peri- 
odic radiation conditions. Similar agreement was obtained for 
circular waveguides with dielectric plugs, rectangular wave- 
guides, and pyramidal horns [ 113, [ 161. Fig. 5 compares HFEM 
calculations for both models in Fig. 3 (different lattice spacing 
than the Fig. 4 calculations). The agreement between these two 
validates the side wall periodicity conditions. 

B. Microstrip Arrays 

Two cases of rectangular microstrip patch arrays on high- 
permittivity substrates (t,=12.8, representing Gallium Ar- 

senide) were modeled by Pozar and Schaubert [17] using 
the method of moments to demonstrate surface wave effects. 
The two substrate thicknesses were h=0.02Xo (thin case) and 
h=0.06Xo (thick case). In the finite element model, the patch 
feed pin is an extension of the coaxial feed’s center conductor. 
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I 

* + *  + m + * , c  

- 
w I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 1 1 

Fig. 5. 
models (Fig. 3(a) and (b): d2=0.92Xo, dy=0.8Xo, a=0.32Xo, y=6Oo. 

Comparison of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHFEM using altemate circular waveguide array 

0 10 20 30 40 50 60 70 80 90 
SCAN ANGLE e(deg.). E-PLANE 

Fig. 6. Comparison of moment method [17] and HFEM calculations 
of active reflection coefficient for two microstrip patch arrays with 
d2=0.5Xo, dy=0.5Xo and e,=12.8. Thin Case: h=0.02Xo, width=0.15Xo and 
length=0.131Xo; Thick Case: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh=0.06Xo, width4.15Xo and length=0.@8Xo. 

Fig. 6 is a comparison of the MOM calculations and the 
HFEM calculations. It shows the normalized active reflection 
coefficient, emulating the effect of a matching network that 
adjusts for zero reflection coefficient at broadside scan: 

Both MOM and HFEM are predicting the existence and ap- 
proximate angular location of blindnesses due to surface waves 
in the dielectric slabs. The slight disagreement for the thick 
case is due to a difference in the feed model: while the MOM 

used an idealized probe, the HFEM used a coaxial aperture 
(inner and outer radii of 0.0075Ao and 0.0175X0, respectively). 
Aberle and Pozar [18] showed that when an accurate coaxial 
feed model is included, the MOM calculations also give a 
reflection coefficient that is slightly below 1 .O at the blindness 
angle. 

C. Printed Flared Notch Array 

The final test case, a printed flared notch, is representative of 
the initial motivation for this work. The design shown in Fig. 

I I I I I I I 
0 10 20 30 40 50 60 70 80 90 

SCAN ANGLE e(deg.). E-PLANE 

(a) 

I I 
1 I 0 1 

0 10 20 30 40 50 60 70 80 90 
SCAN ANGLE 8 (deg.). H-PLANE 

(b) 

Fig. 7. HFEM predictions of active reflection coefficient versus scan angle 
for printed flared notch (Fig. 2): d2=36 mm, dy=34 mm, rectangular lattice, 
substrate thickness=1.27 mm with ~ , = 6 ,  flare length=33.3 mm, overall length= 
38.1 mm: (a) E-plane scans; (b) H-plane scans. 

2 uses a novel coplanar waveguide (CPW)-slotline transition 
by Ho and Hart [19] to restrict metallization to one side 
of the substrate only. The coaxial waveguide feeds a short 
section of coplanar waveguide that transitions to slotline by 
terminating one of the parallel slots in a broadband open. The 
slotline then leads into an exponential flare [20]. Note that 
since the substrate has a much higher permittivity (cr=6) than 
the surrounding air, the mesh is much finer in the substrate, 
and gradually relaxes going out towards the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+x and -x unit 
cell side walls. The mesh is made even finer in the vicinity 
of the coax and CPW-slotline transition in order to accurately 
capture the details of the geometw. 

The HFEM predictions for active reflection coefficient ver- 
sus scan angle are shown in Figs. 7(a) and (b). The radiator 
is well-matched to the array environment, with reflection 
coefficient less than 0.3 from 3.0 to 5.0 GHz. Scan blindnesses 
occur at the grating lobe angle in both E and H planes 
when the frequency exceeds that at which the inter-element 
spacing is more than one half wavelength (4.4 GHz in the 
E plane; 4.2 GHz in the H plane). There is an additional E 
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plane blindness that moves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoutward in angle with increasing 
frequency. Schaubert and Aas have shown that this unusual 
behavior is due to the excitation of a waveguide mode on the 
corrugated structure [21]. 

IV. CONCLUSIONS 

The finite element method was applied to the analysis of 
phased array radiators. This required developing boundary 
conditions for waveguide feeds, a periodic radiation condition, 
and side wall periodicity conditions. The first of these pro- 
vides an accurate means of modeling rectangular, circular and 
coaxial waveguide feeds. The second and third allow accurate 
modeling of radiation from elements in large (assumed infinite) 
arrays, including scan blindness effects. The validation and 
demonstration cases showed that the techniques are valid for 

radiators with complex feed structures, irregular conductor 
configurations and inhomogeneous dielectrics. Finally, the fact 
that the same computer code was used for all of these cases 
demonstrates the unprecedented versatility obtainable using 
the hybrid finite element method. 
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