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Abstract

Suppose we wish to recover a signal x ∈ Cn from m intensity measurements of
the form |〈x,zi〉|2, i = 1,2, . . . ,m; that is, from data in which phase information
is missing. We prove that if the vectors zi are sampled independently and uni-
formly at random on the unit sphere, then the signal x can be recovered exactly
(up to a global phase factor) by solving a convenient semidefinite program—
a trace-norm minimization problem; this holds with large probability provided
that m is on the order of n logn, and without any assumption about the signal
whatsoever. This novel result demonstrates that in some instances, the combina-
torial phase retrieval problem can be solved by convex programming techniques.
Finally, we also prove that our methodology is robust vis a vis additive noise.
c© 2000 Wiley Periodicals, Inc.

1 Introduction

In many applications, one would like to acquire information about an object but it
is impossible or very difficult to measure and record the phase of the signal. The
problem is then to reconstruct the object from intensity measurements only. A
problem of this kind that has attracted a considerable amount of attention over the
last hundred years or so, is of course that of recovering a signal or image from the
intensity measurements of its Fourier transform [15, 16] as in X-ray crystallogra-
phy. As is well-known, such phase retrieval problems are notoriously difficult to
solve numerically.
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Formally, suppose x ∈ Cn is a discrete signal and that we are given information
about the squared modulus of the inner product between the signal and some vec-
tors zi, namely,

(1.1) bi = |〈x,zi〉|2, i = 1, . . . ,m.

In truth, we would like to know 〈x,zi〉 and record both phase and magnitude in-
formation but can only record the magnitude; in other words, phase information is
lost. In the classical example discussed above, the zi’s are complex exponentials
at frequency ωi so that one collects the squared modulus of the Fourier transform
of x. Of course, many other choices for the measurement vectors zi are frequently
discussed in the literature, see [2, 12] for instance.

We wish to recover x from the data vector b, and suppose first that x is known to
be real valued a priori. Then assuming that x is uniquely determined by b up to a
global sign, the recovery may be cast as a combinatorial optimization problem: find
a set of signs σi such that the solution to the linear equations 〈x,zi〉= σi

√
bi, call it

x̂, obeys | 〈x̂,zi〉 |2 = bi. Clearly, there are 2m choices for σi and only two choices
of these signs yield x up to global phase. The complex case is harder yet, since
resolving the phase ambiguities now consists of finding a collection σi of complex
numbers, each being on the unit circle. Formalizing matters, it has been shown that
at least one version of the phase retrieval problem is NP-hard [20]. Thus, one of
the major challenges in the field is to find conditions on m and zi which guarantee
efficient numerical recovery.

A frame-theoretic approach to signal recovery from magnitude measurements has
been proposed in [1–3], where the authors derive various necessary and sufficient
conditions for the uniqueness of the solution, as well as various polynomial-time
numerical algorithms for very specific choices of zi. While theoretically quite
appealing, the drawbacks are that the methods are (1) either algebraic in nature,
thus severely limiting their stability in the presence of noise or slightly inexact
data, or (2) the number m of measurements is on the order of n2, which is much
too large compared to the number of unknowns.

This paper follows a very different route and establishes that if the vectors zi are
independently and uniformly sampled on the unit sphere, then our signal can be re-
covered exactly from the magnitude measurements (1.1) by solving a simple con-
vex program we introduce below; this holds with high probability with the proviso
that the number of measurements is on the order of n logn. Since there are n com-
plex unknowns, we see that the number of samples is nearly minimal. To the best
of our knowledge, this is the first result establishing that under appropriate con-
ditions, the computationally challenging nonconvex problem of reconstructing a
signal from magnitude measurements is formally equivalent to a convex program
in the sense that they are guaranteed to have the same unique solution.
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Finally, our methodology is robust with respect to noise in the measurements. To
be sure, when the data are corrupted by a small amount of noise, we also prove that
the recovery error is small.

1.1 Methodology

We introduce some notation that shall be used throughout to explain our method-
ology. Letting A be the linear transformation

(1.2)
H n×n → Rm

X 7→ {z∗i Xzi}1≤i≤m

which maps Hermitian matrices into real-valued vectors, one can express the data
collection bi = |〈x,zi〉|2 as

(1.3) b= A (xx∗).

For reference, the adjoint operator A ∗ maps real-valued inputs into Hermitian ma-
trices, and is given by

Rm → H n×n

y 7→ ∑i yiziz
∗
i .

As observed in [7,10] (see also [17]), the phase retrieval problem can be cast as the
matrix recovery problem

(1.4)
minimize rank(X)
subject to A (X) = b

X � 0.

Indeed, we know that a rank-one solution exists so the optimalX has rank at most
one. We then factorize the solution as xx∗ in order to obtain solutions to the phase-
retrieval problem. This gives x up to multiplication by a unit-normed scalar. This
is all we can hope for since if x is a solution to the phase retrieval problem, then
cx for any scalar c ∈ C obeying |c|= 1 is also solution.1

Rank minimization is in general NP hard, and we propose, instead, solving a trace-
norm relaxation. Although this is a fairly standard relaxation in control [4,18], the
idea of casting the phase retrieval problem as a trace-minimization problem over
an affine slice of the positive semidefinite cone is very recent [7,10]. Formally, we
suggest solving

(1.5)
minimize Tr(X)
subject to A (X) = b

X � 0.

If the solution has rank one, we factorize it as above to recover our signal. This
method which lifts up the problem of vector recovery from quadratic constraints

1 When the solution is unique up to multiplication by such a scalar, we shall say that unicity holds
up to global phase.
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into that of recovering a rank-one matrix from affine constraints via semidefinite
programming is known under the name of PhaseLift [7].

The program (1.5) is a semidefinite program (SDP) in standard form, and there
is a rapidly growing list of algorithms for solving problems of this kind as effi-
ciently as possible. The crucial question is whether and under which conditions
the combinatorially hard problem (1.4) and the convex problem (1.5) are formally
equivalent.

1.2 Main result

In this paper, we consider the simplest and perhaps most natural model of mea-
surement vectors. In this statistical model, we simply assume that the vectors zi
are independently and uniformly distributed on the unit sphere of Cn or Rn. To be
concrete, we distinguish two models.

• The real-valued model. Here, the unknown signal x is real valued and the
zi’s are independently sampled on the unit sphere of Rn.
• The complex-valued model. The signal x is now complex valued and the
zi’s are independently sampled on the unit sphere of Cn.

Our main result is that the convex program recovers x exactly (up to global phase)
provided the number m of magnitude measurements is on the order of n logn.

Theorem 1.1. Consider an arbitrary signal x in Rn or Cn and suppose that the
number of measurements obeys m ≥ c0 n logn, where c0 is a sufficiently large
constant. Then in both the real and complex cases, the solution to the trace-
minimization program is exact with high probability in the sense that (1.5) has
a unique solution obeying

(1.6) X̂ = xx∗.

This holds with probability at least 1−3e−γ
m
n , where γ is a positive absolute con-

stant.

Expressed differently, Theorem 1.1 establishes a rigorous equivalence between a
class of phase retrieval problems and a class of semidefinite programs. Clearly, any
phase retrieval algorithm, no matter how complicated or intractable, would need
at least 2n quadratic measurements to recover a complex valued object x ∈ Cn.
In fact recent results, compare Theorem II in [12], show that for complex-valued
signals, one needs at least 3n−2 intensity measurements to guarantee uniqueness
of the solution to (1.4). Further, Balan, Casazza and Edidin have shown that with
probability 1, 4n− 2 generic measurement vectors (which includes the case of
random uniform vectors) suffice for uniqueness in the complex case [3]. Hence,
Theorem 1.1 shows that the oversampling factor for perfect recovery via convex
optimization is rather minimal.
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To be absolutely complete, we would like to emphasize that our discrete signals
x may represent 1D, 2D, 3D and higher dimensional objects. For instance, in 2D
the vector x ∈ Cn might be a family of samples of the form x[t1, t2], 1 ≤ t1 ≤ n1,
1 ≤ t2 ≤ n2, and with n = n1n2, so that x is a discrete 2D image. In this case, we
would record the squared magnitudes of the dot product

〈x,zi〉= ∑
t1,t2

x̄[t1, t2]zi[t1, t2].

Hence, our framework and theory apply to one- or multi-dimensional signals.

1.3 Geometry

We find it rather remarkable that the only solution to (1.5) is X̂ =xx∗. To see why
this is perhaps unexpected, suppose for simplicity that the trace of the solution
were known (we might be given some side information or just have additional
measurements giving us this information) and equal to 1, say. In this case, the
objective functional is of course constant over the feasible set, and our problem
reduces to solving the feasibility problem

(1.7)
find X
such that A (X) = b, X � 0

with again the proviso that knowledge of A (X) determines Tr(X) (equal to
Tr(xx∗) = ‖x‖2 = 1). In this context, our main theorem states that xx∗ is the
unique feasible point. In other words, there is no other positive semidefinite matrix
X in the affine space A (X) = b. Naively, we would not expect this affine space
of enormous dimension—it is of co-dimension about n logn and thus of dimension
n2−O(n logn) in the complex case—to intersect the positive semidefinite cone in
only one point. Indeed, counting degrees of freedom suggests that there are in-
finitely many candidates in the intersection. The reason why this is not the case,
however, is precisely because there is a feasible solution with low rank. Indeed,
the slice of the positive semidefinite cone {X : X � 0}∩ {Tr(X) = 1} is quite
‘pointy’ at xx∗ and it is, therefore, possible for the affine space {A (X) = b} to
be tangent even though it is of very small codimension.

Figure 1.1 represents this geometry. In this example,

x=
1√
2

[
1
−1

]
=⇒ xx∗ =

1
2

[
1 −1
−1 1

]
and the affine space A (X) = b is tangent to the positive semidefinite cone at the
point xx∗.

Mathematically speaking, phase retrieval is a problem in algebraic geometry since
we are trying to find a solution to a set of polynomial equations. The originality in
our approach is that we do not use tools from this field. For instance, we prove that
there is no other positive semidefinite matrix X in the affine space A (X) = b,
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FIGURE 1.1. Representation of the affine space A (X) = b (gray) and

of the semidefinite cone
[

x y
y z

]
� 0 (red) which is a subset of R3. These

two sets are drawn so that they are tangent to each other at the rank 1

matrix 1
2

[
1 −1
−1 1

]
(black dot). Two views of the same 3D figure are

provided for convenience.

or equivalently, that a certain system of polynomial equations (a symmetric matrix
is positive semidefinite if and only if the determinants of all the leading principal
minors are nonnegative) only has one solution; this is a fact that general techniques
from algebraic geometry appear to not detect.

1.4 Stability

In the real world, measurements are contaminated by noise. Using the frameworks
developed in [8] and [14], it is possible to extend Theorem 1.1 to accommodate
noisy measurements. One could consider a variety of noise models as discussed
in [7] but we work here with a simple generic model in which we observe

(1.8) bi = |〈x,zi〉|2 +νi,

where νi is a noise term with bounded `2 norm, ‖ν‖2 ≤ ε . This model is non-
standard since the usual statistical linear model posits a relationship of the form
bi = 〈x,zi〉+νi in which the mean response is a linear function of the unknown sig-
nal, not a quadratic function. Furthermore, we prefer studying (1.8) rather than the
related model bi = |〈x,zi〉|+νi (the modulus is not squared) because in many ap-
plications of interest in optics and other areas of physics, one can measure squared
magnitudes or intensities—not magnitudes.
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We now consider the solution to

(1.9)
minimize Tr(X)
subject to ‖A (X)−b‖2 ≤ ε

X � 0.

We do not claim that X̂ has low rank so we suggest estimating x by extracting the
largest rank-1 component. Write X̂ as

X̂ =
n

∑
k=1

λ̂kûkû
∗
k , λ̂1 ≥ . . .≥ λ̂n ≥ 0,

where û1, . . . , ûn are mutually orthogonal, and set

x̂=

√
λ̂1 û1.

We prove the following estimate.

Theorem 1.2. Fix x ∈Cn or Rn and assume the zi’s are uniformly sampled on the
sphere of radius

√
n. Under the hypotheses of Theorem 1.1, the solution to (1.9)

obeys (‖X‖2 is the Frobenius norm ofX)

(1.10) ‖X̂−xx∗‖2 ≤C0 ε

for some positive numerical constant C0. We also have

(1.11) ‖x̂− eiφx‖2 ≤C0 min(‖x‖2,ε/‖x‖2)

for some φ ∈ [0,2π]. Both these estimates hold with nearly the same probability as
in the noiseless case.

Thus our approach also provides stable recovery in presence of noise. This impor-
tant property is not shared by other reconstruction methods, which are of a more
algebraic nature and rely on particular properties of the measurement vectors, such
as the methods in [2, 3, 12], as well as the methods that appear implicitly in Theo-
rem 3.1 and Theorem 3.3 of [7].

We note that one can further improve the accuracy of the solution x̂ by “debias-

ing” it. We replace x̂ by its rescaled version sx̂ where s =
√

∑
n
k=1 λ̂k/‖x̂‖2. This

corrects for the energy leakage occurring when X̂ is not exactly a rank-1 solution,
which could cause the norm of x̂ to be smaller than that of the actual solution.
Other corrections are of course possible.

1.5 Organization of the paper

The remainder of the paper is organized as follows. Subsection 1.6 introduces some
notation used throughout the paper. In Section 2 we present the main architecture
of the proof of Theorem 1.1, which comprises two key ingredients: approximate `1
isometries and approximate dual certificates. Section 3 is devoted to establishing
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approximate `1 isometries. In Section 4, we construct approximate dual certificates
and complete the proof of Theorem 1.1 in the real-valued case. Section 5 shows
how the proof for the real-valued case can be adapted to the complex-valued case.
Section 6 is concerned with the proof of Theorem 1.2. Numerical simulations,
illustrating our theoretical results, are presented in Section 7. We conclude the
paper with a short discussion in Section 8.

1.6 Notations

It is useful to introduce notations that shall be used throughout the paper. Matrices
and vectors are denoted in boldface (such as X or x), while individual entries of
a vector or matrix are denoted in normal font; e.g. the ith entry of x is xi. For
matrices, we define

‖X‖p =
[
∑

i
σ

p
i (X)

]1/p
,

(where σi(X) denotes the ith singular value of X), so that ‖X‖1 is the nuclear
norm, ‖X‖2 is the Frobenius norm and ‖X‖∞ is the operator norm also denoted
by ‖X‖. For vectors, ‖x‖p is the usual `p norm. We denote the n−1 dimensional
sphere by Sn−1, i.e. the set {x ∈ Rn : ‖x‖2 = 1}.

Next, we define Tx to be the set of symmetric matrices of the form

(1.12) Tx = {X = xy∗+yx∗ : y ∈ Rn}

and denote T⊥x by its orthogonal complement. Note that X ∈ T⊥x if and only if
both the column and row spaces ofX are perpendicular to x. Further, the operator
PTx is the orthogonal projector onto Tx and similarly for PT⊥x . We shall almost
always useXTx as a shorthand for PTx(X).

Finally, we will abuse language and say that a symmetric matrix H is feasible if
and only if xx∗+H is feasible for our problem (1.5). This means thatH obeys

(1.13) xx∗+H � 0 and A (H) = 0.

2 Architecture of the Proof

In this section, we introduce the main architecture of the argument and defer the
proofs of crucial intermediate results to later sections. We shall prove Theorem 1.1
in the real case first for ease of exposition. Then in Section 5, we shall explain how
to modify the argument to the complex and more general case.

Suppose then that x ∈ Rn and that the zi’s are sampled on the unit sphere. It is
clear that we may assume without loss of generality that x is unit-normed. Further,
since the uniform distribution on the unit sphere is rotationally invariant, it suffices
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to prove the theorem in the case where x = e1. Indeed, we can write any unit
vector x as x=Ue1 where U is orthogonal. Since

|〈x,zi〉|2 = |〈Ue1,zi〉|2 = |〈e1,U
∗zi〉|2 =d |〈e1,zi〉|2,

the problem is the same as that of finding e1. We henceforth assume that x= e1.

Finally, the theorem can be equivalently stated in the case where the zi’s are
i.i.d. copies of a white noise vector z ∼N (0, I) with independent standard nor-
mals as components. Indeed, if zi ∼N (0, I),

|〈x,zi〉|2 = bi ⇐⇒ |〈x,ui〉|2 = bi/‖zi‖2
2,

where ui = zi/‖zi‖2 is uniformly sampled on the unit sphere. Since ‖zi‖2 does not
vanish with probability one, establishing the theorem for Gaussian vectors estab-
lishes it for uniformly sampled vectors and vice versa. From now on, we assume
zi i.i.d. N (0, I).

2.1 Key lemma

The set T := Te1 defined in (1.12) may be interpreted as the tangent space at e1e
∗
1 to

the manifold of symmetric matrices of rank 1. Now standard duality arguments in
semidefinite programming show that a sufficient (and nearly necessary) condition
for xx∗ to be the unique solution to (1.5) is this:

• the restriction of A to T is injective (X ∈ T and A (X) = 0⇒X = 0),
• and there exists a dual certificate Y in the range of A ∗ obeying2

(2.1) YT = e1e
∗
1 and YT⊥ ≺ IT⊥ .

The proof is straightforward and omitted. Our strategy to prove Theorem 1.1 hinges
on the fact that a strengthening of the injectivity property allows to relax the prop-
erties of the dual certificate, as in the approach pioneered in [13] for matrix com-
pletion. We establish the crucial lemma below.

Lemma 2.1. Suppose that the mapping A obeys the following two properties: for
all positive semidefinite matrices X,

(2.2) m−1‖A (X)‖1 < (1+1/9)‖X‖1;

and for all matricesX ∈ T

(2.3) m−1‖A (X)‖1 > 0.94(1−1/9)‖X‖.

Suppose further that there exists Y in the range of A ∗ obeying

(2.4) ‖YT −e1e
∗
1‖2 ≤ 1/3 and ‖YT⊥‖ ≤ 1/2.

Then e1e
∗
1 is the unique minimizer to (1.5).

2 The notation A≺ B means that B−A is positive definite.
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The first property (2.2) is reminiscent of the (one-sided) Restricted Isometry Prop-
erty (RIP) in the area of compressed sensing [9]. The difference is that it is ex-
pressed in the 1-norm rather than the 2-norm. Having said this, we note that RIP-1
properties have also been used in the compressed sensing literature, see [6] for ex-
ample. We use this property instead of a property about ‖A (X)‖2, because a RIP
property in the 2-norm does not hold here (essentially because ‖A (X)‖2

2 involves
fourth moments of Gaussian variables), as we demonstrate in the Appendix. The
second property (2.3) is a form of local RIP-1 since it holds only for matrices in T .

We would like to emphasize that the bound for the dual certificate in (2.4) is loose
in the sense that YT and e1e

∗
1 may not be that close, a fact which will play a crucial

role in our proof. This is in stark contrast with the work of David Gross [13], which
requires a very tight approximation.

2.2 Proof of Lemma 2.1

We need to show that there is no feasible xx∗+H 6= xx∗ with Tr(xx∗+H) ≤
Tr(xx∗). Consider then a feasibleH 6= 0 obeying Tr(H)≤ 0, write

H =HT +HT⊥ ,

and observe that

(2.5) 0 = ‖A (H)‖1 = ‖A (HT )‖1−‖A (HT⊥)‖1.

Now it is clear that xx∗+H � 0⇒HT⊥ � 0 and, therefore, (2.2) gives

m−1‖A (HT⊥)‖1 ≤ (1+δ )Tr(HT⊥)

for some δ < 1/9. Also, Tr(HT )≤−Tr(HT⊥)≤ 0, which implies that |Tr(HT )| ≥
Tr(HT⊥). We then show that the operator and Frobenius norms ofHT must nearly
be the same.

Lemma 2.2. Any feasible matrixH such that Tr(H)≤ 0 must obey

‖HT‖2 ≤
√

17
16
‖HT‖.

Proof. Since the matrix HT has rank at most 2 and cannot be negative definite, it
is of the form

−λ (u1u
∗
1− tu2u

∗
2),

where u1 and u2 are orthonormal eigenvectors, λ ≥ 0 and t ∈ [0,1]. We claim that
we cannot have t ≥ 1/4.3 Suppose the contrary and fix t ≥ 1/4. By (2.3), we know
that

m−1 ‖A (HT )‖1 ≥ 0.94(1−δ )‖HT‖.

3 The choice of 1/4 is somewhat arbitrary here.
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Further, since

‖HT‖=
|Tr(HT )|

1− t
≥ 4

3
|Tr(HT )|

for t ≥ 1/4, it holds that

0≥ 5
4
(1−δ ) |Tr(HT )|− (1+δ )Tr(HT⊥).

The right-hand side above is positive if Tr(HT⊥) <
5
4
(1−δ )
(1+δ ) |Tr(HT )|, so that we

may assume that

Tr(HT⊥)≥
5
4
(1−δ )

(1+δ )
|Tr(HT )| .

Since |Tr(HT )| ≥ Tr(HT⊥), this gives

0≥
[5

4
(1−δ )− (1+δ )

]
Tr(HT⊥).

If δ < 1/9, the only way this can happen is if Tr(HT⊥) = 0⇒HT⊥ = 0. So we
would haveH =HT of rank 2 and A (HT ) = 0. Clearly, (2.3) implies thatH = 0.

Now that it is established that t ≤ 1/4, the chain of inequalities follow from the
relation between the eigenvalues ofHT . �

To conclude the proof of Lemma 2.1, we show that the existence of an inexact dual
certificate rules out the existence of matrices obeying the conditions of Lemma 2.2.
From

0.94(1−δ )‖HT‖ ≤ m−1‖A (HT )‖1 = m−1‖A (HT⊥)‖1 ≤ (1+δ )Tr(HT⊥),

we conclude that

(2.6) Tr(HT⊥)≥ 0.94
1−δ

1+δ
‖HT‖ ≥ 0.94

1−δ

1+δ

√
16
17
‖HT‖2,

where we used Lemma 2.2. Next,

0≥ Tr(HT )+Tr(HT⊥) = 〈H,e1e
∗
1〉+Tr(HT⊥)

= 〈H,e1e
∗
1−Y 〉+ 〈H,Y 〉+Tr(HT⊥)

= 〈HT ,e1e
∗
1−YT 〉−〈HT⊥ ,YT⊥〉+Tr(HT⊥)

≥ 1
2

Tr(HT⊥)−
1
3
‖HT‖2.

The third line above follows from 〈H,Y 〉= 0 and the fourth from Cauchy-Schwarz
together with |〈HT⊥ ,YT⊥〉| ≤ 1

2 Tr(HT⊥). Hence, it follows from (2.6) that

0≥ 1
2

(
0.94

1−δ

1+δ

√
16
17
− 2

3

)
‖HT‖2.

Since the numerical factor is positive for δ < 0.155, the only way this can happen
is ifHT = 0. In turn, ‖A (HT⊥)‖1 = 0≥ (1−δ )Tr(HT⊥) which givesHT⊥ = 0.
This concludes the proof.
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3 Approximate `1 Isometries

We have seen that in order to prove our main result, it suffices to show 1) that the
measurement operator A enjoys approximate isometry properties (in an `1 sense)
when acting on low-rank matrices and 2) that an inexact dual certificate exists.
This section focuses on the former and establishes that both (2.2) and (2.3) hold
with high probability. In fact, we shall prove stronger results than what is strictly
required.

Lemma 3.1. Fix any δ in (0,1/2) and assume m ≥ 20δ−2 n. Then for all unit
vectors u,

(3.1) (1−δ )≤ 1
m
‖A (uu∗)‖1 ≤ (1+δ )

on an event Eδ of probability at least 1− 2e−mε2/2, where δ/4 = ε2 + ε . On the
same event,

(1−δ )‖X‖1 ≤
1
m
‖A (X)‖1 ≤ (1+δ )‖X‖1

for all positive semidefinite matrices. The right inequality holds for all Hermitian
matrices.

Proof. This lemma has an easy proof. LetZ be the m×n matrix with zi’s as rows.
Then

‖A (uu∗)‖1 = ∑
i
|〈zi,u〉|2 = ‖Zu‖2

so that
σ

2
min(Z)≤ ‖A (uu∗)‖1 ≤ σ

2
max(Z).

The claim is a consequence of well-known deviations bounds concerning the sin-
gular values of Gaussian random matrices [21], namely,

P
(
σmax(Z)>

√
m+
√

n+ t
)
≤ e−t2/2(3.2)

P
(
σmin(Z)<

√
m−
√

n− t
)
≤ e−t2/2.(3.3)

The conclusion follows from taking m≥ ε−2 n and t =
√

mε (and from ε2 ≥ δ 2/20
for 0 < δ ≤ 1/2). For the second part of the lemma, observe that X = ∑ j λ ju ju

∗
j

with nonnegative eigenvalues λ j so that

‖A (X)‖1 = ∑
j
∑

i
λ j|〈u j,zi〉|2 = ∑

j
λ j‖A (u ju

∗
j)‖1.

The claim follows from (3.1). The last claim is a consequence of ‖A (X)‖1 ≤
∑ j ∑i |λ j||〈u j,zi〉|2 together with ∑ j |λ j|= ‖X‖1. �

Our next result is concerned with the mapping of rank-2 matrices.
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FIGURE 3.1. f (t) = E |Z2
1 − tZ2

2 | as a function of t.

Lemma 3.2. Fix δ > 0. Then there are positive numerical constants c0 and γ0 such
that if m ≥ c0 [δ

−2 logδ−1]n, A obeys the following property with probability at
least 1−3e−γ0mδ 2

: for any symmetric rank-2 matrixX ,

(3.4)
1
m
‖A (X)‖1 ≥ 0.94(1−δ )‖X‖.

Proof. By homogeneity, it suffices to consider the case where ‖X‖= 1. Consider
then a rank-2 matrix X with eigenvalue decomposition X = u1u

∗
1− tu2u

∗
2 with

t ∈ [−1,1] and orthonormal ui’s. Note that for t ≤ 0, Lemma 3.1 already claims a
tighter lower bound so it only suffices to consider t ∈ [0,1]. We have

1
m
‖A (X)‖1 =

1
m

m

∑
i=1

∣∣∣|〈u1,zi〉|2− t|〈u2,zi〉|2
∣∣∣= 1

m ∑
i

ξi,

where the ξi’s are independent copies of the random variable

ξ = |Z2
1 − tZ2

2 |
in which Z1 and Z2 are independent standard normal variables. This comes from
the fact that 〈u1,zi〉 and 〈u2,zi〉 are independent standard normal. We calculate
below that

(3.5) Eξ = f (t) =
2
π

(
2
√

t +(1− t)(π/2−2arctan(
√

t))
)
.

The graph of this function is shown in Figure 3.1; we check that f (t)≥ 0.94 for all
t ∈ [0,1].

We now need a deviation bound concerning the fluctuation of m−1
∑i ξi around its

mean and this is achieved by classical Chernoff bounds. Note that ξ ≤ Z2
1 + |t|Z2

2
is a sub-exponential variable and thus, ‖ξ‖ψ1 := supp≥1 [E |ξ |p]1/p is finite.4

4 It would be possible to compute a bound on this quantity but we will not pursue this at the
moment.
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Lemma 3.3 (Bernstein-type inequality [21]). Let X1, . . . ,Xm be i.i.d. sub-exponential
random variables. Then

P
(∣∣∣ 1

m

m

∑
i=1

Xi−EX1

∣∣∣≥ ε

)
≤ 2exp

[
−c0 mmin

(
ε2

‖X‖2
ψ1

,
ε

‖X‖ψ1

)]
in which c0 is a positive numerical constant.

We have thus established that for a fixed X ,

m−1‖A (X)‖1 ≥ (0.94− ε0)‖X‖

with probability at least 1−2e−γ0mε2
0 (provided ε0 ≤ ‖ξ‖ψ1 , which we assume).

To complete the argument, let Sε be an ε net of the unit sphere, Tε be an ε net of
[0,1], and set

Nε = {X = u1u
∗
1− tu2u

∗
2 : (u1,u2, t) ∈Sε ×Sε ×Tε}.

Since |Sε | ≤ (3/ε)n, we have

|Nε | ≤ (3/ε)2n+1.

Now for anyX =uu∗− tvv∗, consider the approximationX0 =u0u
∗
0− t0v0v

∗
0 ∈

Nε , where ‖u0−u‖2, ‖v−v0‖2 and |t− t0| are each at most ε . We claim that

(3.6) ‖X−X0‖1 ≤ 9ε,

and postpone the short proof. On the intersection of E1 = {m−1‖A (X)‖1 ≤ (1+
δ1)‖X‖1, for allX} with E2 := {m−1‖A (X0)‖1 ≥ (0.94−ε)‖X0‖, for allX0 ∈
Nε},

m−1‖A (X)‖1 ≥ ‖A (X0)‖1−‖A (X−X0)‖1

≥ (0.94− ε)‖X0‖−9(1+δ1)ε

≥ (0.94− ε)(‖X‖−‖X0−X‖)−9(1+δ1)ε

≥ (0.94− ε)(1−5ε)−9(1+δ1)ε

≥ 0.94− (15+9δ1)ε,

which is the desired bound by setting 0.94δ = (15+9δ1)ε . In conclusion, set δ1 =

1/2 and take ε = 0.94δ/20. Then E1 holds with probability at least 1−O(e−γ1mε2
)

provided m obeys the condition of the theorem. Further, Lemma 3.2 states that E2
holds with probability at least 1− 2e−γ2m. This concludes the proof provided we
check (3.6).

We begin with

‖X−X0‖1 ≤ ‖uu∗−u0u
∗
0‖1 + |t− t0|‖vv∗‖1 + |t0|‖vv∗−v0v

∗
0‖1.

Now
‖uu∗−u0u

∗
0‖1 ≤ 2‖uu∗−u0u

∗
0‖ ≤ 4‖u−u0‖2,

14



where the first inequality follows from the fact that uu∗−u0u
∗
0 is of rank at most

2, and the second follows from

‖uu∗−u0u
∗
0‖= sup

‖x‖2=1

∣∣∣〈u0,x〉2−〈u,x〉2
∣∣∣

= sup
‖x‖2=1

∣∣∣〈u−u0,x〉〈u+u0,x〉
∣∣∣≤ ‖u−u0‖2‖u+u0‖2 ≤ 2‖u−u0‖2.

Similarly, ‖vv∗−v0v
∗
0‖1 ≤ 4ε and this concludes the proof.5 �

Lemma 3.4. Let Z1 and Z2 be independent N (0,1) variables and t ∈ [0,1]. We
have

E|Z2
1 − tZ2

2 |= f (t),
where f (t) is given by (3.5).

Proof. Set

ρ =
1− t
1+ t

and cosθ = ρ

in which θ ∈ [0,π/2]. By using polar coordinates, we have

E |Z2
1 − tZ2

2 |=
1

2π

∫
∞

0
r3e−r2/2 dr

∫ 2π

0
|cos2

φ − t sin2
φ |dφ

=
1
π

∫ 2π

0
|cos2

φ − t sin2
φ |dφ

=
2
π

∫
π

0
|cos2

φ − t sin2
φ |dφ

Now using the identities cos2 φ = (1+ cos2φ)/2 and sin2
φ = (1− cos2φ)/2, we

have

E |Z2
1 − tZ2

2 |=
1+ t

π

∫
π

0
|cos2φ +ρ|dφ

=
1+ t
2π

∫ 2π

0
|cosφ +ρ|dφ

=
1+ t

π

∫
π

0
|cosφ +ρ|dφ

=
1+ t

π

∫
π

0
|ρ− cosφ |dφ

=
1+ t

π

[∫ θ

0
cosφ −ρ dφ +

∫
π

θ

ρ− cosφ dφ

]
=

2
π
(1+ t)[sinθ +ρ(π/2−θ)].

We recognize (3.5). �

5 The careful reader will remark that we have also used ‖X−X0‖≤ 5ε , which also follows from
our calculations.
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4 Dual Certificates

To prove our main theorem, it remains to show that one can construct an inexact
dual certificate Y obeying the conditions of Lemma 2.1.

4.1 Preliminaries

The linear mapping A ∗A is of the form6

A ∗A =
m

∑
i=1
ziz
∗
i ⊗ziz

∗
i ,

which is another way to express that A ∗A (X) = ∑i〈ziz
∗
i ,X〉ziz

∗
i . Now observe

the simple identity:

(4.1) E[ziz
∗
i ⊗ziz

∗
i ] = 2I +In⊗In := S ,

where I is the identity operator and In the n-dimensional identity matrix. Put
differently, this means that for allX ,

S (X) = 2X+Tr(X)I.

The proof is a simple calculation and omitted. It is also not hard to see that the
mapping S is invertible and its inverse is given by

S −1 =
1
2

(
I − 1

n+2
In⊗In

)
⇔ S −1(X) =

1
2

(
X− 1

n+2
Tr(X)In

)
.

We will use this object in the definition of our dual certificate.

4.2 Construction

For pedagogical reasons, we first introduce a possible candidate certificate defined
by

(4.2) Ȳ :=
1
m

A ∗A S −1(e1e
∗
1).

Clearly, Ȳ is in the range of A ∗ as required. To justify this choice, the law of large
numbers gives that in the limit of infinitely many samples,

lim
m→∞

1
m ∑

i
(ziz

∗
i ⊗ziz

∗
i )S

−1(e1e
∗
1) = E(ziz

∗
i ⊗ziz

∗
i )S

−1(e1e
∗
1) = e1e

∗
1.

In other words, in the limit of large samples, we have a perfect certificate since
ȲT = e1e

∗
1 and ȲT⊥ = 0. Our hope is that the sample average is sufficiently close

to the population average so that one can check (2.4). In order to show that this is
the case, it will be useful to think of Ȳ (4.2) as the random sum

Ȳ =
1
m ∑

i
Yi,

6 For symmetric matrices,A⊗B is the linear mappingH 7→ 〈A,H〉B.
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where each matrix Yi is an independent copy of the random matrix

1
2

[
z2

1−
1

n+2
‖z‖2

2

]
zz∗

in which z = (z1, . . . ,zn)∼N (0, I).

We would like to make an important point before continuing. We have seen that all
we need from Ȳ is

‖ȲT −e1e
∗
1‖2 ≤ 1/3

(and ‖ȲT⊥‖ ≤ 1/2). This is in stark contrast with David Gross’ approach [13]
which requires a very small misfit, i.e. an error of at most 1/n2. In turn, this loose
bound has an enormous implication: it eliminates the need for the golfing scheme
and allows for the simple certificate candidate (4.2). In fact, our certificate can be
seen as the first iteration of Gross’ golfing scheme.

4.3 Truncation

For technical reasons, it is easier to work with a truncated version of Ȳ and our
dual certificate is taken to be

(4.3) Y =
1
m ∑

i
Yi 1Ei ,

where the Yi’s are as before and 1Ei are independent copies of 1E (1E denotes the
indicator function for the event E) with

E = {|z1| ≤
√

2β logn} ∩{‖z‖2 ≤
√

3n}.

We shall work with β = 3 so that |z1| ≤
√

6logn.

Lemma 4.1. Let Y be as in (4.3). Then

(4.4) P
(
‖YT −e1e

∗
1‖2 ≥

1
3

)
≤ 2exp

(
−γ

m
n

)
,

where γ > 0 is an absolute constant. This holds with the proviso that m≥ c1 n for
some numerical constant c1 > 0, and that n is sufficiently large.

Lemma 4.2. Let Y be as in (4.3). Then

(4.5) P
(
‖YT⊥‖ ≥

1
2

)
≤ 4exp

(
− γ

m
logn

)
.

where γ > 0 is an absolute constant. This holds with the proviso that m≥ c1 n logn
for some numerical constant c1 > 0, and that n is sufficiently large.
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4.4 Y on T and proof of Lemma 4.1

It is obvious that for any symmetric matrixX ∈ T ,

‖X‖2 ≤
√

2‖Xe1‖2

since only the first row and column are nonzero. We have

(4.6) YTe1−e1 =
1
m

m

∑
i=1
yi1Ei−

1
m

m

∑
i=1
e1 1Ec

i
,

where the yi’s are independent copies of the random vector

(4.7) y =
1
2

[
z2

1−
1

n+2
‖z‖2

2

]
z1z−e1 := (ξ z1)z−e1.

We claim that ∥∥∥ 1
m

m

∑
i=1
e1 1Ec

i

∥∥∥
2
≤ 1/9,

with probability at least 1−2e−γm for some γ > 0. This is a simple application of
Bernstein’s inequality. Set π(β ) = P(Ec

i ) and observe that

(4.8) π(β ) = P(|z1| ≥
√

2β logn)+P(‖z‖2
2 ≥ 3n)≤ n−β + e−

n
3 .

The right-hand side follows from P(|z1| ≥ t) ≤ e−t2/2 which holds for t ≥ 1 and
from P(‖z‖2

2 ≥ 3n)≤ e−n/3. In turn, this last bound follows from

P(‖z‖2
2−n≥

√
2nt + t2)≤ e−t2/2.

Returning to Bernstein, this gives

P
(∣∣∣ 1

m

m

∑
i=1

1Ec
i
−π(β )

∣∣∣≥ t)≤ 2exp
(
− mt2

2π(β )+2t/3

)
.

Setting t = 1/18, β = 3 and taking n large enough so that π(3)≤ 1/18 proves the
claim.

The main task is to bound the 2-norm of the sum ∑
m
i=1yi1Ei and a convenient way

to do this is via the vector Bernstein inequality, cf. [13, Theorem 12].

Theorem 4.3 (Vector Bernstein inequality). Let xi be a sequence of independent
random vectors and set V ≥ ∑iE‖xi‖2

2. Then for all t ≤V/max‖xi‖2, we have

P(‖∑
i
(xi−Exi)‖2 ≥

√
V + t)≤ e−t2/4V .

It is because this inequality requires bounded random vectors that we work with
the truncation ∑

m
i=1yi1Ei .

Put ȳ = y1E . Since ‖ȳ‖2
2 ≤ ‖y‖2

2, we first compute E‖y‖2
2. We have

‖y‖2
2 = ‖z‖2

2z2
1ξ

2−2z2
1ξ +1, ξ =

1
2

[
z2

1−
1

n+2
‖z‖2

2

]
,
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and a little bit of algebra yields

‖y‖2
2 =

1
4

z6
1‖z‖2

2−
1

2(n+2)
z4

1‖z‖4
2 +

1
4(n+2)2 z2

1‖z‖6
2− z4

1 +
1

n+2
z2

1‖z‖2
2 +1.

Thus,

E
[
‖y‖2

2
]
=

1
4
(15n+90)− 1

2(n+2)
(3n2 +30n+72)+

1
4(n+2)

(n+4)(n+6)−1

≤ 4(n+4),(4.9)

where we have used the following identities

E
[
z2

1‖z‖2
2
]
= n+2,

E
[
z2

1‖z‖6
2
]
= (n+2)(n+4)(n+6),

E
[
z4

1‖z‖4
2
]
= 3n2 +30n+72,

E
[
z6

1‖z‖2
2
]
= 15n+90.

Second, on the event of interest we have |ξ | ≤ β logn (assuming 2β logn ≥ 3),
|z1| ≤

√
2β logn and ‖z‖2 ≤

√
3n and, therefore,

‖ȳ‖2 ≤
√

6n(β logn)3/2 +1≤
√

7n(β logn)3/2

provided n is large enough.

Third, observe that by symmetry, all the entries of ȳ but the first have mean zero.
Hence,

‖E ȳ‖2 = |Ey1− ȳ1|= |E 1Ecy1| ≤
√

P(Ec)
√

Ey2
1.

We have

y2
1 = (ξ z2

1−1)2 =
1
4

z8
1− z4

1+
1

n+2
‖z‖2

2z2
1−

1
2(n+2)

‖z‖2
2z6

1+
1

4(n+2)2 ‖z‖
4
2z4

1+1

and using the identities above

Ey2
1 =

101
4
− 27n2 +210n+288

4(n+2)2 ≤ 22,

which gives

‖E ȳ‖2 ≤
√

22(n−β + e−
n
3 ).

Finally, with V = 4m(n+ 4), Bernstein’s inequality gives that for each t ≤ 4(n+
4)/[
√

7n(β logn)3/2],

‖m−1
∑

i
(ȳi−E ȳi)‖2 ≥ 2

√
n+4

m
+ t
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with probability at most exp
(
− mt2

16(n+4)

)
. It follows that

‖m−1
∑

i
ȳi‖2 ≥

√
22(n−β + e−

n
3 )+2

√
n+4

m
+ t

with at most the same probability. Our result follows by taking t = 1/6, β = 3,
m≥ c1n where n and c1 are sufficiently large such that√

22(n−β + e−
n
3 )+2

√
n+4

m
+

1
6
≤ 2

9
.

4.5 Y on T⊥ and proof of Lemma 4.2

We have
YT⊥ =

1
m ∑

i
Xi 1Ei ,

where theXi’s are independent copies of the random matrix

(4.10) X =
1
2

[
z2

1−
1

n+2
‖z‖2

2

]
PT⊥(zz

T ).

One natural way to bound the norm of this random sum is via the operator Bern-
stein’s inequality. We develop a more customized approach, which gives sharper
results.

DecomposeX as

X =
1
2

[
z2

1−1
]
PT⊥(zz

T )+
1
2

[
1− 1

n+2
‖z‖2

2

]
PT⊥(zz

T ) :=X(0)+X(1).

Note that since z1 and PT⊥(zz
T ) are independent, we have EX(0) = 0 and thus,

EX(1) = 0 since EX = 0. With X̄(0)
i =X

(0)
i 1Ei and similarly for X̄(1)

i , it then
suffices to show that

(4.11)
∥∥∥∑

i
X̄

(0)
i

∥∥∥≤ m/4 and
∥∥∥∑

i
X̄

(1)
i

∥∥∥≤ m/4

with large probability. Write the norm as∥∥∥∑
i
X̄

(0)
i

∥∥∥= sup
u

∣∣∣∑
i
〈u,X̄(0)

i u〉
∣∣∣,

where the supremum is over all unit vectors u that are orthogonal to e1. The
strategy is now to find a bound on the right-hand side for each fixed u and apply
a covering argument to control the supremum over the whole unit sphere. In order
to do this, we shall make use of a classical large deviation result.

Theorem 4.4 (Bernstein inequality). Let {Xi} be a finite sequence of independent
random variables. Suppose that there exist Vi and c such that for all Xi and all
k ≥ 3,

E |Xi|k ≤
1
2

k!Vick−2
0 .
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Then for all t ≥ 0,

(4.12) P
(∣∣∣∑

i
Xi−EXi

∣∣∣≥ t
)
≤ 2exp

(
− t2

2∑iVi +2c0t

)
.

For the first sum in (4.11), we write

∑
i
〈u,X̄(0)

i u〉= ∑
i

ηi 1Ei ,

where the ηi’s are independent copies of

η =
1
2

[
z2

1−1
]
〈z,u〉2.

The point of the decomposition X(0)+X(1) is that z1 and 〈z,u〉 are independent
since u is orthogonal to e1. We have Eη = 0 and for k ≥ 2,

E |η 1E |k ≤ 2−kE |(z2
1−1)1{z2

1≤2β logn}|
k E |〈z,u〉|2k.

First,

E |(z2
1−1)1{z2

1≤2β logn}|
k ≤ (2β logn)k−2E(z2

1−1)2 = 2(2β logn)k−2.

Second, the moments of a chi-square variable with one degree of freedom are well
known:

E |〈z,u〉|2k = 1×3× . . .× (2k−1)≤ 2kk!

Hence we can apply Bernstein inequality with Vi = 4, i= 1, . . . ,m, and c0 = 2β logn
and, obtain

P
(∣∣∣∑

i
ηi 1Ei−E[ηi 1Ei ]

∣∣∣≥ mt
)
≤ 2exp

(
−m

4
t2

2+β t logn

)
.

We now note that

|Eηi1Ei |= |Eηi1Ec
i
| ≤
√

P(Ec
i )
√
Eη2

i =

√
3π(β )

2
which gives

P
(

m−1
∣∣∣∑

i
ηi 1Ei

∣∣∣≥ t +

√
3π(β )

2

)
≤ 2exp

(
−m

4
t2

2+β t logn

)
.

For instance, take t = 1/12, β = 3, m≥ c1n and n large enough to get

P
(

m−1
∣∣∣∑

i
ηi 1Ei

∣∣∣≥ 1/8
)
≤ 2exp

(
−γ

m
logn

)
.

To derive a bound about ‖X̄(0)‖, we use (see Lemma 4 in [21])

sup
u

∣∣∣〈u,X̄(0)u〉
∣∣∣≤ 2 sup

u∈N1/4

∣∣∣〈u,X̄(0)u〉
∣∣∣,

21



where N1/4 is a 1/4-net of the unit sphere {u : ‖u‖2 = 1,u⊥ e1}. Since |N1/4| ≤
9n,

P(m−1‖X̄(0)‖> 1/4)≤P
(

m−1 sup
u∈N1/4

∣∣∣〈u,X̄(0)u〉
∣∣∣> 1/8

)
≤ 9n×2exp

(
−γ

m
logn

)
.

Choosing m ≥ cn logn, where c > 0 is a sufficiently large numerical constant, en-
sures that the expression 9n×2exp

(
−γ

m
logn

)
will be sufficiently small.

We deal with the second term in a similar way, and write

∑
i
〈u,X̄(1)

i u〉= ∑
i

ηi 1Ei ,

where the ηi’s are now independent copies of

η =
1
2

[
1− ‖z‖

2
2

n+2

]
〈z,u〉2.

On E, ‖z‖2
2 ≤ 3n and, therefore, E |η 1E |k ≤ 2kk!. We can apply Bernstein’s in-

equality with c0 = 2 and V = 8m, which gives

P
(∣∣∣∑

i
ηi 1Ei−E[ηi 1Ei ]

∣∣∣≥ mt
)
≤ 2exp

(
−m

4
t2

4+ t

)
.

The remainder of the proof is identical to that above and is therefore omitted.

4.6 Proof of Theorem 1.1

We now assemble the various intermediate results to establish Theorem 1.1. As
pointed out, Theorem 1.1 follows immediately from Lemma 2.1, which in turn
hinges on the validity of the conditions stated in (2.2), (2.3), and (2.4).

Lemma 3.1 asserts that condition (2.2) holds with probability of failure at most p1,
where p1 = 2e−γ1m and here and below, γ1, . . . ,γ4 are positive numerical constants.
Similarly, Lemma 3.2 shows that condition (2.3) holds with probability of failure
at most p2, where p2 = 3e−γ2m. In both cases we need that m > cn for an absolute
constant c > 0.

Proceeding to the dual certificate in (2.4), we note that Lemma 4.1 establishes the
first part of the dual certificate with a probability of failure at most p3, where p3 =
3e−γ3m/n. The second part of the dual certificate in (2.4) is shown in Lemma 4.2
to hold with probability of failure at most p4, where p4 = 4e−γ4

m
logn . In the former

case we need m > cn for an absolute constant c > 0 and in the latter m > c′n logn.

Finally, the union bound gives that under the hypotheses of Theorem 1.1, exact
recovery holds with probability at least 1−3e−γm/n for some γ > 0, as claimed.
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5 The Complex Model

This section proves that Theorem 1.1 holds for the complex model as well. Not
surprisingly, the main steps of the proof are the same as in the real case, but there
are here and there some noteworthy differences. Instead of deriving the whole
proof, we will carefully indicate the nontrivial changes that need to be carried out.

First, we can work with x= e1 because of rotational invariance, and with indepen-
dent complex valued Gaussian sequences zi ∼ C N (0, I,0). This means that the
real and imaginary parts of zi are independent white noise sequences with variance
1/2.

The key Lemma 2.1 only requires a slight adjustment in the numerical constants.
The reason for this is that while Lemma 3.1 does not require any modification,
Lemma 3.2 changes slightly; in particular, the numerical constants are somewhat
different. Here is the properly adjusted complex version.

Lemma 5.1. Fix δ > 0. Then there are positive numerical constants c0 and γ0
such that if m ≥ c0 [δ

−2 logδ−1]n, A has the following property with probability
at least 1−3e−γ0mδ 2

: for any Hermitian rank-2 matrix X,

(5.1)
1
m
‖A (X)‖1 ≥ 2(

√
2−1)(1−δ )‖X‖ ≥ 0.828(1−δ )‖X‖.

The proof of this lemma follows essentially the proof of Lemma 3.2. The function
f (t) (cf. equation (3.5)) now takes the form

(5.2) Eξ = f (t) =
1+ t2

1+ t
,

where ξ =
∣∣|Z1|2− t|Z2|2

∣∣, with Z1 and Z2 independent C N (0,1,0), as demon-
strated in the following lemma.

Lemma 5.2. Let Z1 and Z2 be independent C N (0,1,0) variables and t ∈ [0,1].
We have

E||Z1|2− t|Z2|2|= f (t),
where f (t) is given by (5.2).

Proof. Set

ρ =
1− t
1+ t

and cosθ = ρ

in which θ ∈ [0,π/2]. By using polar coordinates for the variables (x1,y1) associ-
ated with Z1 and (x2,y2), associated with Z2 we have

E ||Z1|2− t|Z2|2|=
1
2

∫
∞

0

∫
∞

0
|r2

1− tr2
2|r1r2e−r2

1/2e−r2
2/2 dr1dr2

=
1
8

∫
∞

0
r5e−r2/2 dr

∫ 2π

0
|sinφ cosφ ||cos2

φ − t sin2
φ |dφ ,

23



FIGURE 5.1. The function f (t) in (5.2) as a function of t.

where we used polar coordinates again in variables (r1,r2). Now using the identi-
ties cos2 φ = (1+ cos2φ)/2, sin2

φ = (1− cos2φ)/2 and 2sinφ cosφ = sin2φ we
have

E |Z2
1 − tZ2

2 |=
1
2

∫
π

0
|sin2φ ||cos2φ +ρ|dφ

=
1
2

[∫ θ

0
sinφ(cosφ −ρ)dφ +

∫
π

θ

sinφ(ρ− cosφ)dφ

]
=

1
2
(1+ t)[−1

2
cos2θ +2ρ cosθ +

1
2
]

=
1
2
(1+ t)[ρ2 +1]

=
1+ t2

1+ t

as claimed. �

The graph of f (t) is shown in Figure 5.1. The minimum of this function on [0,1]
is 2(
√

2−1)> 0.828. Furthermore, the covering argument in that proof has to be
adapted; for example, unit spheres need to be replaced by complex unit spheres.

A consequence of this change in numerical values is that the numerical factors in
Lemma 2.2 need to be adjusted.

Lemma 5.3. Any feasible matrixH such that Tr(H)≤ 0 must obey

‖HT‖2 ≤
√

5
4
‖HT‖.

Finally, with all of this in place, Lemma 2.1 becomes this:
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Lemma 5.4. Suppose that the mapping A obeys the following two properties: for
some δ ≤ 3/13: 1) for all positive semidefinite matricesX ,

(5.3) m−1‖A (X)‖1 ≤ (1+δ )‖X‖1;

2) for all matricesX ∈ T

(5.4) m−1‖A (X)‖1 ≥ 2(
√

2−1)(1−δ )‖X‖ ≥ 0.828(1−δ )‖X‖.

Suppose further that there exists Y in the range of A ∗ obeying

(5.5) ‖YT −e1e
∗
1‖2 ≤ 1/5 and ‖YT⊥‖ ≤ 1/2.

Then e1e
∗
1 is the unique minimizer to (1.5).

We now turn our attention to the properties of the dual certificate we studied in
Section 4. The first difference is that the expectation of A ∗A in (4.1) is different
in the complex case. A simple calculation yields

E
1
m

A ∗A = I + In⊗ In := S .

This means that for allX ,

(5.6) S (X) =X+Tr(X)I.

We note that in this case

(5.7) S −1 = I − 1
n+1

In⊗In ⇔ S −1(X) =X− 1
n+1

Tr(X)In.

We of course use this new S −1 in the complex analog of the candidate certificate
(4.3). A consequence is that in the proof of Lemma 4.1, for instance, (4.7) now
takes the form

(5.8) X =
[
|z1|2−

1
n+1

‖z‖2
2

]
z̄1z−e1 := (ξ z̄1)z−e1.

To bound the 2-norm of a sum of i.i.d. such random variables (as in Lemma 4.1), we
employ the same Bernstein inequality for real vectors, using the fact that ‖z‖2 =
‖(ℜ(z),ℑ(z))‖2 for any complex vector z. Similarly (4.10) becomes

(5.9) X =
[
|z1|2−

1
n+1

‖z‖2
2

]
PT⊥(zz

∗).

To bound the operator norm of a sum of i.i.d. such random matrices (as in Lemma 4.2),
we again use a covering argument, this time working with chi-square variables with
two degrees of freedom, since |〈z,u〉|2 is distributed as 1

2 χ2(2). Since |〈z,u〉|2 are
real random variables, we use the same version of the Bernstein inequality as in the
real-valued case. The only difference is that the moments are now

E |〈z,u〉|2k = 2−k× (2+0)× (2+2)× (2+4)× . . .× (2+2k−2) = k!
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6 Stability

This section proves the stability of our approach, namely, Theorem 1.2. Our proof
parallels the argument of Candès and Plan for showing the stability of matrix com-
pletion [8] as well as that of Gross et al. in [14].

Just as before, we prove the theorem in the real case since the complex case is
essentially the same. Further, we may still take x = e1 without loss of generality.
We shall prove stability when the zi’s are i.i.d. N (0,In) and later explain how
one can easily transfer a result for Gaussian vectors to a result for vectors sampled
on the sphere. Under the assumptions of the theorem, the RIP-1-like properties,
namely, Lemmas 3.1 and 3.2 hold with a numerical constant δ1 we shall specify
later. Under the same hypotheses, the dual certificate Y (4.2) obeys

‖PT (Y −e1e
∗
1)‖2 ≤ γ, ‖YT⊥‖ ≤

1
2
,

in which γ is a numerical constant also specified later.

Set X = xx∗ = e1e
∗
1 and write X̂ =X+H . We begin by recording two useful

properties. First, sinceX is feasible for our optimization problem, we have

(6.1) Tr(X+H)≤ Tr(X) ⇐⇒ Tr(H)≤ 0.

Second, the triangle inequality gives

(6.2) ‖A (H)‖2 = ‖A (X̂−X)‖2 ≤ ‖A (X̂)−b‖2 +‖b−A (X)‖2 ≤ 2ε.

In the noiseless case, A (H) = 0 =⇒ 〈H,Y 〉 = 0, by construction. In the noisy
case, a third property is that |〈H,Y 〉| is at most on the order of ε . Indeed,

m|〈H,Y 〉|= |〈A (H),A S −1(X)〉| ≤ ‖A (H)‖∞‖A S −1(X)‖1.

Since ‖A (H)‖∞ ≤ ‖A (H)‖2 and

‖A S −1(X)‖1 ≤ m(1+δ1)‖S −1(X)‖1 ≤ m(1+δ1),

we obtain

(6.3) |〈H,Y 〉| ≤ 2ε(1+δ1).

We now reproduce the steps of the proof of Lemma 2.1, and obtain

0≥ Tr(HT )+Tr(HT⊥)≥
1
2

Tr(HT⊥)− γ‖HT‖2−|〈H,Y 〉|,

which gives

(6.4) Tr(HT⊥)≤ 4ε(1+δ1)+2γ‖HT‖2 ≤ 4ε(1+δ1)+2
√

2γ‖HT‖,
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where we recall thatHT has rank at most 2. We also have

0.94(1−δ1)‖HT‖ ≤ m−1‖A (HT )‖1 ≤ m−1‖A (H)‖1 +m−1‖A (HT⊥)‖1

≤ m−1/2‖A (H)‖2 +(1+δ1)Tr(HT⊥)(6.5)

≤ 2m−1/2
ε +(1+δ1)Tr(HT⊥),(6.6)

where the second inequality follows from the RIP-1 property together with the
Cauchy-Schwarz inequality. Plugging this last bound into (6.4) gives

Tr(HT⊥)≤ 4ε(1+δ1 + γαm−1/2)+βγ Tr(HT⊥),

where

α =

√
2

0.94(1−δ1)
, β = 2α(1+δ1).

Hence, when βγ < 1, we have

Tr(HT⊥) = ‖HT⊥‖1 ≤
4(1+δ1 + γαm−1/2)

1−βγ
ε = c1 ε.

In addition, (6.6) then gives

‖HT‖ ≤
2m−1/2 +(1+δ1)c1

0.94(1−δ1)
ε = c2 ε.

In conclusion,

‖H‖2 ≤ ‖HT‖2 +‖HT⊥‖2 ≤
√

2‖HT‖+‖HT⊥‖1 ≤ (
√

2c2 + c1)ε = c0 ε,

and we also have ‖H‖ ≤ (c2 + c1)ε .

It remains to show why the fact that X̂ is close to X = xx∗ in the Frobenius
or operator norm produces a good estimate of x (recall that x = e1). Set ε0 :=
‖X̂ −X‖ ≤ c0 ε . Below, λ̂1 ≥ 0 is the largest eigenvalue of X̂ � 0, and û1 the
first eigenvector. Likewise, λ1 = 1 is the top eigenvalue of X = e1e

∗
1. Since

Tr(X̂)≤ Tr(X),
λ̂1 ≤ λ1.

In the other direction, we know from perturbation theory that

|λ1− λ̂1| ≤ ‖X̂−X‖= ε0.

Assuming that ε0 < 1, this gives λ̂1 ∈ [1− ε0,1]. The sin-θ -Theorem [11] implies
that

|sinθ | ≤ ‖X̂−X‖
|λ̂1|

≤ ε0

1− ε0
,

where 0≤ θ ≤ π/2 is the angle between the spaces spanned by û1 and e1. Writing

û1 = cosθe1 + sinθe⊥1
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in which e⊥1 is a unit vector orthogonal to e1, Pythagoras’ relationship gives

‖e1−
√

λ̂1û1‖2
2 = (1−

√
λ̂1 cosθ)2 + λ̂1 sin2

θ .

Since cosθ =
√

1− sin2
θ , we have

1≥
√

λ̂1 cosθ ≥

√
1− ε0−

ε2
0

1− ε0
≥ 1− ε0

for ε0 < 1/3. Hence,

‖e1−
√

λ̂1û1‖2
2 ≤ ε

2
0 +

ε2
0

(1− ε0)2 ≤
13
4

ε
2
0

provided ε0 < 1/3. Since we always have

‖e1−
√

λ̂1û1‖2 ≤ ‖e1‖2 +

√
λ̂1‖û1‖2 ≤ 2,

we have established

‖e1−
√

λ̂1û1‖2 ≤C0 min(ε,1).
This holds for all values of ε0 and proves the claim in the case where ‖x‖2 = 1.
The general case is obtained via a simple rescaling.

As mentioned above, we proved the theorem for Gaussian zi’s but it is clear that our
results hold true for vectors sampled uniformly at random on the sphere of radius√

n. The reason is that of course, ‖zi‖2 deviates very little from
√

n. Formally,
set z̃i = [

√
n/‖zi‖2]zi so that these new vectors are independently and uniformly

distributed on the sphere of radius
√

n. Then

〈X, z̃iz̃
∗
i 〉=

n
‖zi‖2

2
〈X,ziz

∗
i 〉,

and thus 〈X,ziz
∗
i 〉 is between (1−δ2)〈X, z̃iz̃

∗
i 〉 and (1+δ2)〈X, z̃iz̃

∗
i 〉 with very

high probability. This holds uniformly over all Hermitian matrices. Thus if ˜A (X)=
{z̃∗i X z̃i}1≤i≤m,

(1−δ2)‖ ˜A (X)‖q ≤ ‖A (X)‖q ≤ (1+δ2)‖ ˜A (X)‖q

for any 1≤ q≤ ∞.

Now take bi = |〈x, z̃i〉|2 +νi and solve (1.9) to get X̃ =X+ H̃ . Going through
the same steps as above by using the relationships between A and ˜A throughout,
and by using the dual certificate Y associated with A , we obtain

‖ ˜A (H̃)‖2 ≤ 2ε, |〈H̃,Y 〉| ≤ 2ε(1+δ1)(1+δ2),

and
Tr(H̃T⊥)≤ (1+δ2)c1ε, ‖H̃T‖ ≤ (1+δ2)c2ε.

Therefore,
‖H̃‖2 ≤ (1+δ2)(

√
2c2 + c1)ε.
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The rest of the proof goes through just the same.

7 Numerical Simulations

In this section we illustrate our theoretical results with numerical simulations. In
particular, we will demonstrate PhaseLift’s robustness vis a vis additive noise.

We consider the setup in Section 1.4, where the measurements are contaminated
with additive noise. The solution to (1.9) is computed using the following regular-
ized nuclear-norm minimization problem:

(7.1) minimize 1
2‖A (X)−b‖2

2 +λ Tr(X)
subject to X � 0.

It follows from standard optimization theory [19] that (7.1) is equivalent to (1.9)
for some value of λ . Hence, we use (7.1) to compute the solution of (1.9) by
determining via a simple and efficient bisection search the largest value λ (ε) such
that ‖A (X)−b‖2 ≤ ε . The numerical algorithm to solve (7.1) was implemented
in Matlab using TFOCS [5]. We then extract the largest rank-1 component as
described in Section 1.4 to obtain an approximation x̂.

We will use the relative mean squared error (MSE) and the relative root mean
squared error (RMS) to measure performance. However, since a solution is only
unique up to global phase, it does not make sense to compute the distance between
x and its approximation x̂. Instead we compute the distance modulo a global phase
term and define the relative MSE between x and x̂ as

min
c:|c|=1

‖cx− x̂‖2
2

‖x‖2
2

.

The (relative) RMS is just the square root of the (relative) MSE.

In the first set of experiments, we investigate how the reconstruction algorithm
performs as the noise level increases. The test signal is a complex-valued signal
of length n = 128 with independent Gaussian complex entries (each entry is of the
form a+ ib where a and b are independent N (0,1) variables) so that the real and
imaginary parts are independent white noise sequences. Obviously, the signal is
arbitrary. We use m = 6n measurement vectors sampled independently on the unit
sphere Cn.

We generate noisy data from both a Gaussian model and a Poisson model. In the
Gaussian model, bi ∼N (µi,σ

2) where µi = |〈x,zi〉|2 and σ is adjusted so that
the total noise power is bounded by ε2. In the Poisson model, bi ∼ Poi(µi) and
the noise bi−µi is rescaled to achieve a desired total power as above (we might do
without this rescaling as well but have decided to work with a prescribed signal-
to-noise ratio SNR for simplicity of exposition). We do this for five different SNR
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(a) (b)

FIGURE 7.1. Performance of PhaseLift for Poisson noise. The stability
of the algorithm is apparent as its performance degrades gracefully with
decreasing SNR. (a) Relative MSE on a log-scale for the non-debiased
recovery. (b) Relative RMS for the original and debiased recovery.

levels,7 ranging from 5dB to 100dB. However, we point out that we do not make
use of the noise statistics in our reconstruction algorithm8 , since our purpose is
only to assume an upper bound on the total noise power, as in Theorem 1.2.

For each SNR level, we repeat the experiment ten times with different noise terms,
different signals, and different random measurement vectors; we then record the
average relative RMS over these ten experiments. Figure 7.1(a) shows the average
relative MSE in dB (the values of 10log10(rel. MSE) are plotted) versus the SNR
for Poisson noise. In each case, the performance degrades very gracefully with
decreasing SNR, as predicted by Theorem 1.2. Debiasing as described at the end
of Section 1.4 leads to a further improvement in the reconstruction for low SNR,
as illustrated in Figure 7.1(b). The results for Gaussian noise are comparable, see
Figure 7.2.

In the next experiment, we collect Poisson data about a complex-valued random
signal just as above, and work with a fixed SNR set to 15dB. The number of mea-
surements varies so that the oversampling rate m/n is between 5 and 22 (m is thus
between n logn and 4.5n logn). We repeat the experiment ten times with differ-
ent noise terms and different random measurement vectors for each oversampling
rate; we then record the average relative RMS. Figure 7.3 shows the average rel-
ative RMS of the solution to (1.5) versus the oversampling rate. We observe that
the decrease in the RMS is inversely proportional to the number of measurements.

7 The SNR of two signals x, x̂ with respect to x is defined as 10log10 ‖x‖2
2/‖x− x̂‖2

2. So we
say that the SNR is 10dB if 10log10 ‖x‖2

2/‖ν‖2
2 = 10.

8 We refer to [7] for efficient ways to incorporate statistical noise models into the reconstruction
algorithm.
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(a) (b)

FIGURE 7.2. Performance of PhaseLift for Gaussian noise. (a) Relative
MSE on a log-scale for the non-debiased recovery. (b) Relative RMS for
the original and the debiased recovery.

FIGURE 7.3. Oversampling rate versus relative RMS.

For instance, the error reduces by a factor of two when we double the number of
measurements. If instead we hold the standard deviation of the errors at a constant
level, the mean squared error (MSE) reduces by a factor of about two when we
double the number of measurements.
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8 Discussion

In this paper, we have shown that it is possible to recover a signal exactly (up to a
global phase factor) from the knowledge of the magnitude of its inner products with
a family of sensing vectors {zi}. The fact that on the order of n logn magnitude
measurements |〈x,zi〉|2 uniquely determine x is not surprising. The part we find
unexpected, however, is that what appears to be a combinatorial problem is solved
exactly by a convex program. Further, we have established the existence of a noise-
aware recovery procedure—also based on a tractable convex program—which is
robust vis a vis additive noise. To the best of our knowledge, there are no other
results—about the recovery of an arbitrary signal from noisy quadratic data—of
this kind.

An appealing research direction is to study the recovery of a signal from other
types of intensity measurements, and consider other families of sensing vectors.
In particular, structured random families would be of great interest. It also seems
plausible that assuming stochastic errors in Theorem 1.2 would allow to derive
sharper error bounds; it would be of interest to know if this is indeed the case. We
leave this to future work.

Appendix

We prove that the RIP in the 2-norm (and in any p-norm with p> 1) cannot hold for
A . We derive the claim for the real-valued setting, but the arguments can be easily
extended to the complex-valued setting. Here and below, |y|= (|y1|, . . . , |ym|).

Consider an m× n matrix A with i.i.d. rows zi =
d N (0, I) and set A (X) =

{z∗i Xzi}m
i=1. Then for x ∈ Rn, A (xx∗) = |Ax|2 and

‖A (xx∗)‖2 =
( m

∑
i=1
| 〈zi,x〉 |4

)1/2
.

Taking x= z1/‖z1‖2, we get

sup
u∈S n−1

‖A (uu∗)‖2 ≥ ‖A (xx∗)‖2 =

(
m

∑
i=1

∣∣∣∣〈zi,
z1

‖z1‖2

〉∣∣∣∣4
)1/2

≥
∣∣∣∣〈z1,

z1

‖z1‖2

〉∣∣∣∣2 = ‖z1‖2
2 = Ω(n),

where the last equality holds with high probability.

Now, expand A into its singular value decomposition A= ∑
n
i=1 σiuiv

∗
i with σ1 ≥

σ2 . . .≥ σn. As a consequence of (3.2), the inequalities

m(1−δ )≤ σ
2
n ≤ σ

2
1 ≤ m(1+δ )
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for some δ with 0 < δ < 1 hold with high probability provided that m ≥Cn logn,
where C > 0 is a suitable constant. All singular values of A are simple with prob-
ability 1 and thus un, the singular vector corresponding to the smallest singular
value, is well-defined and we can think of it as being distributed uniformly at ran-
dom on the unit sphere. Therefore, with high probability

‖un‖∞ = O(

√
logn√

m
).

This gives

inf
u∈S n−1

‖A (uu∗)‖2 ≤ ‖A (vnv
∗
n)‖2 = ‖|Avn|2‖2 = ‖|σnun|2‖2

= σ
2
n

( m

∑
i=1
|uni|4

)1/2
= σ

2
n O

(
logn√

m

)
= O(

√
m logn)

(also with high probability). This implies that

supu∈S n−1 ‖A (uu∗)‖2

infu∈S n−1 ‖A (uu∗)‖2
= Ω

(
n√

m logn

)
w.h.p.

Therefore, unless we take m to be at least on the order of n2/ log2 n (which is much
too large to be of interest), the RIP-2 cannot hold. Similar arguments show that

supu∈S n−1 ‖A (uu∗)‖p

infu∈S n−1 ‖A (uu∗)‖p
= Ω

(
n

m
1
p logn

)
w.h.p.,

and thus the RIP-p cannot hold for p > 1, unless m is at least on the order of
np/(logn)p. Obviously, since the RIP does not hold for rank-1 matrices, it cannot
hold for higher ranks.
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