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Abstract

Time-frequency (T-F) domain masking is a mainstream ap-
proach for single-channel speech enhancement. Recently,
focuses have been put to phase prediction in addition to
amplitude prediction. In this paper, we propose a phase-
and-harmonics-aware deep neural network (DNN), named
PHASEN, for this task. Unlike previous methods which di-
rectly use a complex ideal ratio mask to supervise the DNN
learning, we design a two-stream network, where amplitude
stream and phase stream are dedicated to amplitude and phase
prediction. We discover that the two streams should commu-
nicate with each other, and this is crucial to phase prediction.
In addition, we propose frequency transformation blocks to
catch long-range correlations along the frequency axis. Visu-
alization shows that the learned transformation matrix implic-
itly captures the harmonic correlation, which has been proven
to be helpful for T-F spectrogram reconstruction. With these
two innovations, PHASEN acquires the ability to handle de-
tailed phase patterns and to utilize harmonic patterns, getting
1.76dB SDR improvement on AVSpeech + AudioSet dataset.
It also achieves significant gains over Google’s network on
this dataset. On Voice Bank + DEMAND dataset, PHASEN
outperforms previous methods by a large margin on four met-
rics.

1 Introduction

Single-channel speech enhancement aims at separating the
clean speech from a noise-corrupted speech signal. Existing
methods can be classified into two categories according to
the signal domain they work on. The time domain methods
directly operate on the one-dimensional (1D) raw waveform
of speech signals, while the time-frequency (T-F) domain
methods manipulate the two-dimensional (2D) speech spec-
trogram. Mainstream methods in the second category for-
mulate the speech enhancement problem as to predict a T-F
mask over the input spectrogram. Early T-F masking meth-
ods only try to recover the amplitude of the target speech.
When the importance of phase information was recognized,
complex ideal ratio mask (cIRM) (Williamson, Wang, and
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Figure 1: Straightforward cIRM estimation does not achieve
desired results. Although the imaginary part of the cIRM, as
shown in (b), contains much information, that of a predicted
cRM, as shown in (c), is almost zero.

Wang 2016) was proposed aiming at faithfully recovering
the complex T-F spectrogram.

Williamson et al. (Williamson, Wang, and Wang 2016)
observed that, in Cartesian coordinates, structure exists in
both real and imaginary components of the cIRM, so they
designed deep neural network (DNN)-based methods to es-
timate the real and imaginary parts of cIRM. However, on
large dataset AVSpeech, our evaluations of a modern DNN-
based cIRM estimation method (Ephrat et al. 2018) shows
that simply changing the training target to cIRM did not
generate desired prediction results. Fig.1(a) shows the am-
plitude of the noisy signal where the stripe pattern is caused
by noise. Fig.1(b) and (c) show the imaginary parts of the
ideal mask and the estimated mask, respectively. Surpris-
ingly, Fig.1(c) is almost zero, meaning that the estimated
cIRM is downgraded to IRM. In another word, the phase
information is not recovered at all.

This observation motivates us to design a novel archi-
tecture to improve the phase prediction. A straightforward
idea is to separately predict amplitude mask and phase
with a two-stream network. However, Willianson et al.
(Williamson, Wang, and Wang 2016) also pointed out that,
in polar coordinates, structure does not exist in the phase
spectrogram. This suggests that independent phase estima-
tion is very difficult, if not completely impossible. In view
of this, we add two-way information exchange for the two-
stream architecture, so that the predicted amplitude can
guide the prediction of phase. Results show that such infor-
mation exchange is critical to the successful phase predic-
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tion of the target speech.
In the design of the amplitude stream, we find that conven-

tional CNN kernels which are widely used in image process-
ing do not capture the harmonics in T-F spectrogram. The
reason is that correlations in natural images are mostly local
while those in speech T-F spectrogram along the frequency
axis are mostly non-local. In particular, at a given point of
time, the value at a base frequency f0 is strongly correlated
with the values at its overtones. Unfortunately, previous
DNN models cannot efficiently exploit harmonics although
backbones like U-net (Jansson et al. 2017) and dilated 2D
convolution (Ephrat et al. 2018) can increase the receptive
field. In this paper, we propose to insert frequency transfor-
mation blocks (FTBs) to capture global correlations along
the frequency axis. Visualization of FTB weights shows that
FTBs implicitly learn the correlations among harmonics.

In a nutshell, we design a phase-and-harmonics-aware
speech enhancement network, dubbed PHASEN, for
monaural speech enhancement. The contributions of this
work are three-fold:

• We propose a novel two-stream DNN architecture with
two-way information exchange for efficient speech en-
hancement in T-F domain. The proposed architecture is
capable of recovering phase information of the target
speech.

• We design frequency transformation blocks in the ampli-
tude stream to efficiently exploit global frequency correla-
tions, especially the harmonic correlation in spectrogram.

• We carry out comprehensive experiments to justify the de-
sign choices and to demonstrate the performance superi-
ority of PHASEN over existing noise reduction methods.

The rest of this paper is organized as follows. Section
2 introduces related work. Section 3 presents the proposed
PHASEN architecture and its implementation details. Sec-
tion 4 shows the experimental results. Section 5 concludes
this paper with discussions on limitations and future work.

2 Related Work

This section reviews both time-frequency domain methods
and time-domain methods for single-channel speech en-
hancement. Within T-F domain methods, we are only inter-
ested in T-F masking methods. Special emphases are put to
phase estimation and the utilization of harmonics.

2.1 T-F Domain Masking Methods

T-F domain masking methods for speech enhancement usu-
ally operate in three steps. First, the input time-domain
waveform is transformed into T-F domain and represented
by a T-F spectrogram. Second, a multiplicative mask is pre-
dicted based on the input spectrogram and applied to it.
Last, an inverse transform is applied to the modified spec-
trogram to obtain the real-valued time-domain signal. The
most widely used T-F spectrogram is computed by the short-
time Fourier transform (STFT) and it can be convert back to
time-domain signal by the inverse STFT (iSTFT). The key
problems to be solved in T-F domain masking methods are
what type of mask to be used and how to predict it.

Early T-F masking methods only try to estimate the am-
plitudes of a spectrogram by using real-valued ideal bi-
nary mask (IBM) (Hu and Wang 2001), ideal ratio mask
(IRM) (Srinivasan, Roman, and Wang 2006; Narayanan and
Wang 2013), or spectral magnitude mask (SMM) (Wang,
Narayanan, and Wang 2014). After the enhanced ampli-
tudes are obtained, they are combined with the noisy phase
to produce the enhanced speech. Later, research (Paliwal,
Wójcicki, and Shannon 2011) reveals that phase plays an
important role in speech quality and intelligibility. In order
to recover phase, phase sensitive mask (PSM) (Erdogan et al.
2015; Weninger et al. 2015) and cIRM (Williamson, Wang,
and Wang 2016) are proposed. PSM is still a real-valued
mask, extending SMM by simply adding a phase measure.
In contrast, cIRM is a complex-valued mask which has the
potential to faithfully recover both amplitude and phase of
the clean speech.

Williamson et al. (Williamson, Wang, and Wang 2016)
propose a DNN-based approach to estimate the real and
imaginary components of the cIRM, so that both amplitude
and phase spectra can be simultaneously enhanced. How-
ever, their experimental results show that using cIRM does
not achieve significantly better results than using PSM. We
believe that the potential of a complex mask is not fully ex-
ploited. In (Ephrat et al. 2018), a much deeper neural net-
work with dilated convolution and bi-LSTM is employed for
speech separation with visual clues. It also achieves state-of-
the-art speech enhancement performance when visual clues
are absent. We carry out experiments on the network and
surprisingly find that the imaginary components of the esti-
mated cIRM is almost zero. This suggests that directly using
cIRM to supervise a single-stream DNN cannot achieve sat-
isfactory results.

There exist some other methods (Takahashi et al. 2018;
Takamichi et al. 2018; Masuyama et al. 2019) which process
phase reconstruction asynchronously with amplitude esti-
mation. Their goal is to reconstruct phase based on a given
amplitude spectrogram, which could be the amplitude spec-
trogram of a clean speech or the output from any speech de-
noising model. In particular, Takahashi et al. (Takahashi et
al. 2018) observe the difficulty in phase regression, so they
treat the phase estimation problem as a classification prob-
lem by discretizing phase values and assigning class indices
to them. While all these methods demonstrate the benefits
of phase reconstruction, their approach does not fully utilize
the rich information in the input noisy phase spectrogram.

2.2 Time Domain Methods

Time domain methods belong to the other camp for speech
enhancement. We briefly mention several pieces of work
here because they are proposed to avoid the phase prediction
problem in T-F domain methods. SEGAN (Pascual, Bona-
fonte, and Serra 2017) uses generative adversarial networks
(GANs) to directly predict the 1D waveform of the clean
speech. Rethage et al. (Rethage, Pons, and Serra 2018) mod-
ify Wavenet for the speech enhancement task. conv-TasNet
(Luo and Mesgarani 2019) uses a learnable encoder-decoder
in time domain as an alternative to the hand-crafted STFT-
iSTFT for a speech separation task. However, when it is ap-

9459



C
o
n
v
 1

x
7

C
o

n
v

 7
x

1

C
o
n
v

 5
x
3

C
o

n
v

 2
5

x
1

C
o

n
v

 5
x

5

C
o

n
v

 1
x

1

B
iL

S
T

M

C
o
n
v
 5

x
5

C
o

n
v

 2
5

x
1

C
o

n
v

 5
x

3

C
o

n
v

 2
5

x
1

C
o

n
v

 1
x

1

fc
 6

0
0

fc
 6

0
0

fc
 2

5
7

N
o

rm
a
liz

e 

a
m

p
litu

d
e

F
T
B

F
T
B

TSBx3

S
in

S
A0

S
P0

Amplitude mask

Phase.re Phase.im

Stream A:

Stream P:

S
A3

S
P3

S
A1

, S
A2

S
P1

, S
P2

Figure 2: The proposed two-stream PHASEN architecture. The amplitude stream (Stream A) is in the upper portion and the
phase stream (Stream P) is in the lower portion. The outputs of Stream A and Stream P are the amplitude mask and the estimated
(complex) phase, respectively. Three two-stream blocks (TSBs) are stacked in the network.

plied to the speech enhancement task, the 2ms frame length
appears to be too short. TCNN (Pandey and Wang 2019)
adopts a similar approach as TasNet, but it uses non-linear
encoder-decoder and longer frame length than TasNet. Al-
though these methods divert around the difficult phase es-
timation problem, they also give up the benefits of speech
enhancement in T-F domain, as it is widely recognized that
most speech and noise patterns are separately distributed or
easily distinguishable on T-F domain features. As a result,
the performance of time domain methods is not among the
first tier in the speech enhancement task.

2.3 Harmonics in Spectrogram

Plapous et al. (Plapous, Marro, and Scalart 2005) discover
that common noise reduction algorithms suppress some har-
monics existing in the original signal and then the en-
hanced signal sounds degraded. They propose to regener-
ate the distorted speech frequency bands by taking into
account the harmonic characteristic of speech. Other re-
search (Krawczyk and Gerkmann 2014; Mowlaee and Kul-
mer 2015) also show that phase correlation between har-
monics can be used for speech phase reconstruction. A re-
cent work (Wakabayashi et al. 2018) further propose a phase
reconstruction method based on harmonic enhancement us-
ing the fundamental frequency and phase distortion feature.
All these work demonstrate the importance of harmonics in
speech enhancement. In this paper, we also try to exploit
harmonic correlation, but this is achieved by designing an
integral block in the end-to-end learning DNN.

3 PHASEN Architecture

3.1 Overview

The basic idea behind PHASEN is to separate the predic-
tions of amplitude and phase, as the two prediction tasks
may need different features. In our design, we use two paral-
lel streams, denoted by stream A for amplitude mask predic-

tion and stream P for phase prediction. The entire PHASEN
architecture is shown in Fig. 2.

The input to the network is the STFT spectrogram, de-
noted by Sin. Here, Sin ∈ R

T×F×2 is a complex-valued
spectrogram, where T represents the number of time steps
and F represents the number of frequency bands. Sin is fed
into both streams and two different groups of 2D convolu-
tional layers are used to produce feature SA0 ∈ R

T×F×CA

for stream A and feature SP0 ∈ R
T×F×CP for stream P .

Here, CA and CP are the number of channels for stream A
and stream P , respectively.

The key component in PHASEN is the stacked two-
stream blocks (TSBs), in which stream A and stream P
features are computed separately. Note that at the end of
each TSB, stream A and stream P exchange information.
This design is critical to the phase estimation, as phase itself
does not have structure and is hard to estimate (Williamson,
Wang, and Wang 2016). However, with the information from
the amplitude stream, the features for phase estimation is
significantly improved. In Section 4, we will visualize the
difference between the estimated phase spectrograms when
the information communication is present and absent. The
output features of the three TSBs are denoted by SAi and
SPi , for i ∈ {1, 2, 3}. They have the same dimensions as
SA0 and SP0 . In stream A, frequency transformation blocks
(FTBs) are used to capture non-local correlation along the
frequency axis.

After the three TSBs, SA3 and SP3 are used to predict
amplitude mask and phase. For SA3 , channel is reduced to
Cr = 8 by a 1 × 1 convolution, then reshaped into a 1D
feature map, whose dimension is T × (F · Cr), and finally
fed into a Bi-LSTM and three fully connected (FC) layers to
predict an amplitude mask M ∈ R

T×F×1. Sigmoid is used
as activation function of the last FC layer. For the other FC
layers, ReLU is used as activation function.

For SP3 , a 1 × 1 convolution is used to reduce channel
number to 2 to form a complex-valued feature map SPc ∈
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R
T×F×2, where the two channels correspond to the real and

the imaginary parts. Then, amplitude of this complex feature
map is normalized to 1 for each T-F bin. As such, the feature
map only contains phase information. The phase prediction
result is denoted by Ψ.

Finally, the predicted spectrogram can be computed by:

Sout = abs(Sin) ◦M ◦Ψ, (1)

where ◦ denotes element-wise multiplication.

3.2 Two-Stream Blocks (TSBs)

Stream A In each TSB, three 2D convolutional layers are
used for stream A to handle local time-frequency correla-
tion of the input feature. To capture global correlation on
frequency axis such as harmonic correlation, we propose fre-
quency transformation blocks (FTBs) to be used before and
after the three convolutional layers. The FTB design will be
detailed in the next subsection. The combination of 2D con-
volutions and FTBs efficiently captures both global and local
correlations, allowing the following blocks to extract high-
level features for amplitude prediction. Stream A of each
TSB performs the following computation:

SAi

0 = FTBi
in(S

Ai), (2)

SAi

j+1
= convAi

j (SAi

j ), j ∈ {0, 1, 2}, (3)

SAi

4 = FTBi
out(S

Ai

3 ). (4)

Here, convAi

j represents the j-th convolutional layer in

stream A of the i-th TSB. SAi

j+1
and SAi

j represent its out-

put and input, respectively. FTBi
in and FTBi

out represent
the FTB before and after the three 2D convolutional layers.
Each 2D convolutional layer is followed by batch normal-
ization (BN) and activation function ReLU.

Stream P Stream P is designed to be light-weight. We
only use two 2D convolutional layers in each TSB to process
the input feature SPi(i = 1, 2, 3). Mathematically,

SPi

0 = SPi , (5)

SPi

j+1
= convPi

j (SPi

j ), for j ∈ {0, 1}. (6)

Here, convPi

j represents the j-th convolutional layer in

stream P of the i-th TSB. SPi

j+1
and SPi

j denote its output
and input, respectively. The second convolutional layer uses
a kernel size of 25×1 to capture long-range time-domain
correlation. Global Layer Normalization(gLN) is performed
before each convolutional layer. In stream P , no activation
function is used. We will later show in ablation studies that
this choice increases performance.

Information Communication Information communica-
tion is critical to the success of the two-stream structure.
Without the information from Stream A, Stream P by it-
self cannot successfully make phase prediction. Conversely,
successfully predicted phases can also help Stream A to bet-
ter predict amplitude. The communication takes place just

before TSB generates output features. Let SAi

4 and SPi

2 be
the amplitude features and phase features computed from eq.

T-F attention

Concat

Conv 1x1

Reshape

Conv1D (9)

Conv 1x1

Freq-FC

Input

Output

Point-wise

multiply

Figure 3: Flowchart of the proposed FTBs. Here, Cr = 5,
and the kernel size of Conv 1D is 9.

(4) and eq. (6), the output feature of TSB after information
communication can be written as:

SAi+1 = fP2A(S
Ai

4 , SPi

2 ), (7)

SPi+1 = fA2P (S
Pi

2 , SAi

4 ), (8)

where fP2A and fA2P are information communication func-
tions of the two directions. In this work, we adopt the gating
mechanism. For i ∈ {P2A,A2P}, we have:

fi(x1, x2) = x1 ◦ Tanh(conv(x2)). (9)

Here, ◦ denotes element-wise multiplication and conv
represents a 1× 1 convolution. The number of output chan-
nels is the same as the number of channels in x1.

3.3 Frequency Transformation Blocks (FTBs)

Non-local correlations exist in a T-F spectrogram along the
frequency axis. A typical example is the correlations among
harmonics, which has been shown to be helpful for the re-
construction of corrupted T-F spectrograms. However, sim-
ply stacking several 2D convolution layers with small ker-
nels cannot capture such global correlation. Therefore, we
design FTBs to be inserted at the beginning and the end
of each TSB, so that the output features of TSB have full-
frequency receptive field. At the kernel of an FTB is the
learning of a transformation matrix, which is applied on the
frequency axis. Fig. 3 shows the flowchart of the proposed
FTB. The three groups of operations in each FTB can be
represented by:

Sa = fattn(S
I), (10)

Str = FreqFC(Sa), (11)

SO = conv(concat(Str, SI)). (12)

Eq. (10) describes the T-F attention module as highlighted
in the dotted box in Fig. 3. With the input feature SI , it uses
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2D and 1D convolutional layers to predict an attention map,
which is then point-wise multiplied to SI to obtain Sa. The
2D 1×1 convolution reduces the channel number to Cr = 5
and the kernel size of the 1D convolution is 9.

Freq-FC is the key component in FTB. It contains a train-
able frequency transformation matrix (FTM) which is ap-
plied to the feature map slice at each point in time. Let Xtr ∈
R

F×F denote the trainable FTM and let Sa(t0) ∈ R
F×CA

(t0 ∈ {0, 1, ..., T − 1}) denote the feature slice at time step
t0. The transformation can be simply represented by the fol-
lowing equation:

Str(t0) = Xtr · S
a(t0). (13)

The transformed feature slice at time step t0, denoted by
Str(t0), has the same dimension as Sa(t0). Stacking them
along the time axis and we can get the transformed feature
map Str. After Freq-FC, each T-F bin in Str will contain the
information from all the frequency bands of Sa. This allows
the following blocks to exploit global frequency correlations
for amplitude and phase estimation.

The output of an FTB, denoted by SO, is calculated by
concatenating Str with SI and fusing them with a 1×1 con-
volution. In the proposed FTBs, batch normalization (BN)
and ReLU are used after all convolutional layers as normal-
ization method and activation function.

3.4 Implementation

PHASEN is implemented in Pytorch. The dimension of fea-
ture maps and the kernel size of convolutional layers are
shown in Fig. 2 and Fig. 3. Both streams use convolution op-
eration with zero padding, dilation=1 and stride=1, making
sure the input and output feature map size are the same. All
the conv layers’ output channel in Stream A and P are 96 and
48, except the last 1x1 conv, respectively. The Bi-LSTM unit
number is 600. All audios are resampled to 16kHz. STFT
is calculated using Hann window, whose window length is
25ms. The hop length is 10ms and FFT size is 512.

The network is trained using MSE loss on the power-
law compressed STFT spectrogram. The loss consists of two
parts: amplitude loss La and phase-aware loss Lp.

L = 0.5× La + 0.5× Lp, (14)

La = MSE(abs(Sout
cprs), abs(S

gt
cprs)), (15)

Lp = MSE(Sout
cprs, S

gt
cprs), (16)

where Sout
cprs and Sgt

cprs are the power-law compressed spec-

trogram of output spectrogram Sout and ground truth spec-
trogram Sgt. The compression is performed on amplitude
with p = 0.3 (A0.3, where A is the amplitude of the spectro-
gram.)

Note that instead of only using pure phase, whole spectro-
gram (phase and amplitude) is taken into consideration for
Lp. In this way, phase of T-F bins with higher amplitude is
emphasized, helping the network to focus on the high am-
plitude T-F bins where most speech signals are located.

4 Experiments

4.1 Datasets

Two datasets are used in our experiments.

AVSpeech+AudioSet: This is a large dataset proposed by
(Ephrat et al. 2018). Clean speech dataset AVSpeech is col-
lected from YouTube, containing 4700 hours of video seg-
ments with approximately 150,000 distinct speakers, span-
ning a wide variety of people and languages. Noise dataset
AudioSet (Gemmeke et al. 2017) contains a total of more
than 1.7 million 10-second segments of 526 kinds of noise.
3-second segments Speechj and Noisek are firstly ran-
domly sampled from clean speech and noise dataset, then
the noisy speech Mixi is calculated by Mixi = Speechj +
0.3×Noisek. Mixi and Speechj form a noisy-clean speech
pair for training and testing. Because of the wide energy dis-
tribution in both datasets, the created noisy speech dataset
has a wide range of SNR. In our experiments, 100k seg-
ments randomly sampled from AVSpeech dataset and the
“Balanced Train” part of AudioSet are used to synthesize
the training set, while the validation set is the same as the
one used in (Ephrat et al. 2018), synthesized by the test part
of AVSpeech dataset and the evaluation part of AudioSet.

Voice Bank+DEMAND: This is an open dataset1 pro-
posed by (Valentini-Botinhao et al. 2016). Speech of 30
speakers from the Voice Bank corpus (Ephrat et al. 2018)
are selected as clean speech: 28 are included in the training
set and 2 are in the validation set. The noisy speech is syn-
thesized using a mixture of clean speech with noise from Di-
verse Environments Multichannel Acoustic Noise Database
(DEMAND) (Thiemann, Ito, and Vincent 2013). A total of
40 different noise conditions are considered in training set
and 20 different conditions are considered in test set. Finally,
the training and test set contain 11572 and 824 noisy-clean
speech pairs, respectively. Both speakers and noise condi-
tions in the test set are totally unseen by the training set. Our
system comparison is partly done on this dataset.

4.2 Evaluation Metrics

The following six metrics are used to evaluate PHASEN and
state-of-the-art competitors. All metrics are better if higher.

• SDR (Vincent, Gribonval, and Févotte 2006): Signal-to-
distortion ratio from the mir eval library;

• PESQ: Perceptual evaluation of speech quality (from -0.5
to 4.5).

• STOI: Short-time objective intelligibility measure (from
0 to 1)

• CSIG (Hu and Loizou 2007): Mean opinion score (MOS)
prediction of the signal distortion attending only to the
speech signal (from 1 to 5).

• CBAK (Hu and Loizou 2007): MOS prediction of the in-
trusiveness of background noise (from 1 to 5).

• COVL (Hu and Loizou 2007): MOS prediction of the
overall effect (from 1 to 5).

• SSNR: Segmental SNR .

4.3 Ablation Study

In the ablation study, networks of different settings are
trained with the same random seed for 1 million steps. Adam

1https://datashare.is.ed.ac.uk/handle/10283/1942
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Table 1: Ablation study on AVSpeech + AudioSet
Method SDR(dB) PESQ STOI

PHASEN-baseline 15.08 2.87 0.844

PHASEN-1strm 15.99 2.98 0.856

PHASEN-w/o-FTBs 16.10 3.31 0.874

PHASEN-w/o-A2PP2A 16.13 3.33 0.876
PHASEN-w/o-P2A 16.62 3.38 0.880

PHASEN 16.84 3.40 0.884

optimizer with a fixed learning rate of 0.0002 is used and the
batch size is set to 8. We use mean SDR, PESQ and STOI
on test dataset as the evaluation metric.

The ablation results are shown in Table 1. Among these
methods, PHASEN represents our full model. PHASEN-
baseline represents a single-stream network which uses
cIRM as training target. We use the network structure in
stream A for PHASEN-baseline and replace the FTBs with
5×5 convolutions. The comparison between PHASEN and
PHASEN-baseline shows that our two innovations, namely
two-stream architecture and FTBs, provide a total improve-
ment of 1.76dB on SDR, 0.53 on PESQ, and 0.04 on STOI.

Two-Stream Architecture PHASEN-1strm shows the
performance of single-stream architecture with cIRM as
training target. In this experiment, stream P and informa-
tion communication are removed from PHASEN architec-
ture, while FTBs are preserved. The output of stream A is the
predicted cRM. Comparison between PHASEN-1strm and
PHASEN shows that the two-stream architecture provides
gain of 0.85dB on SDR, 0.42 on PESQ and 0.028 on STOI.
The large gain on PESQ and STOI indicates the proposed
two-stream architecture can largely improve the perceptual
quality and intelligibility of the denoised speech.

FTBs The proposed method uses FTBs at both the begin-
ning and the end of each TSB. In ablation study, PHASEN-
w/o-FTBs try to replace all the FTBs in PHASEN archi-
tecture with 5×5 convolutions. By comparing PHASEN to
PHASEN-w/o-FTBs we find that FTBs can provide 0.74 dB,
0.09 and 0.01 gain on SDR, PESQ and STOI, respectively.
We have also tried to replace the FTBs on either location of
each TSB with 5×5 convolutions. Both attempts result into
0.31dB-0.39dB drop on SDR, 0.03-0.05 drop on PESQ and
0.005 drop on STOI, showing that FTBs on both locations
are equally important and the gain is accumulative.

In order for a better understanding of FTBs, we visualize
the weights of Xtr, the matrix that reflects the learned global
frequency correlation. From Fig. 4, we show that the energy
map of Xtr resembles the harmonic correlation, especially
when higher harmonics (larger H) are taken into consider-
ation. This phenomenon confirms that FTBs really capture
the harmonic correlation, and that harmonic correlation is
really useful to a speech enhancement network, because the
network can learn this correlation implicitly.

Information communication mechanism PHASEN-
w/o-P2A, and PHASEN-w/o-A2PP2A are two settings that
remove the information communication mechanism partly

H=5 H=9 Learned FTM weights

Figure 4: Comparison of different level of harmonic corre-
lation: f2 = m

n
f1,m �= n,m, n ∈ {0, 1, ..., H} and learned

FTM weights. f1 = f2 = 0 is on the upper-left corner of
each sub-figure.

and fully. The former one removes the communication
from stream P to stream A, and the latter one removes
communication of both directions. In SDR and PESQ
result, significant gain of 0.49dB and 0.05 is observed when
comparing PHASEN-w/o-P2A to PHASEN-w/o-A2PP2A.
This indicates that the information in the intermediate
steps of amplitude prediction is very helpful to phase
prediction. In comparison between our full model PHASEN
and PHASEN-w/o-P2A, we also see that when integrating
stream P information into stream A, the model gets 0.22dB
gain on SDR and 0.02 gain on PESQ. This proves that phase
feature can also help amplitude prediction.

Fig. 5 also confirms the above improvements through vi-
sualization. Here, because the predicted phase spectrogram
has few visible patterns, we visualize ∆Ψ = Ψ/Ψin, which
represents the phase difference between predicted phase
spectrogram and input noisy spectrogram. The division op-
eration in this formula is on complex domain, and Ψin repre-
sents the phase spectrogram of input noisy speech. From the
visualization, we can conclude that information communi-
cation mechanism not only significantly improves the phase
prediction, but helps remove amplitude artifacts. To summa-
rize, information communication of both directions are use-
ful in PHASEN, while direction “A2P” plays a key role.

Other ablations Apart from the results shown in Table 1,
we also perform ablations on activation function and nor-
malization functions for stream P .

The proposed method uses no activation function on
stream P . Though this design is counter-intuitive, it is ac-
tually inspired by previous work (Luo and Mesgarani 2019)
and also supported by the ablation study. In fact, we try
to add ReLU or Tanh as activation function after each, ex-
cept the last, convolutional layer in stream P . However, this
causes 0.02dB-0.16dB drop on SDR. Moreover, if ReLU is
added after the last convolutional layer in stream P , a huge
drop of 5.52dB and 0.2 is observed on SDR and PESQ.

The proposed method uses gLN in stream P and BN
in stream A. We test other normalization method for each
stream. A performance drop of 0.97dB and 0.12 on SDR
and PESQ is observed if gLN is used in stream A, while a
drop of 0.09dB and 0.02 on SDR and PESQ is observed if
BN is used in stream P .

From these two experiments, we can observe significant
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Figure 5: The effect of information communication mech-
anism. We use the same input noisy speech as in Fig.2.
(a), (d): Amplitude of predicted spectrogram; (b), (e): real
part of ∆Ψ; (c), (f): imaginary part of ∆Ψ. (a)-(c) are ob-
tained without A2PP2A. Significant amplitude artifacts are
observed in (a) on frequency bands where speech is over-
whelmed by noise. In every T-F bins, (c) is almost zero, and
(b) is almost one, indicating failure on phase prediction. In
contrast, when A2PP2A is used, phase prediction is obvi-
ously visible in T-F bins where noise overwhelms speech, as
(e) and (f) shows. Best viewed in color.

difference between phase prediction and amplitude mask
prediction. This supports our design of using two streams
to accomplish the two prediction tasks.

Additionally, we have tried to use complex convolution
operations to replace the conv blocks in our architecture, but
this did not make much difference on performance.

4.4 System Comparison

We carry out system comparison on both datasets mentioned
in section 4.1.

AVSpeech + AudioSet On this large dataset we com-
pare our method with two other recent methods, Conv-
TasNet (Luo and Mesgarani 2019) and “Google” (Ephrat et
al. 2018). Conv-TasNet is a time domain method. The re-
sult of Conv-TasNet is produced using the released code2,
trained for the same epochs and on the same data as our
PHASEN. “Google” is a T-F domain masking method which
uses cIRM as supervision. The method is intended for both
speech enhancement and speech separation. We compare
PHASEN with their audio-only, 1S+noise setting. The result
in Table 2 shows that our method outperforms both Conv-
TasNet and “Google”. Note that this is achieved under the
condition that we only use a small fraction of training step
(1M/5M) and data (100k/2.4M) used by “Google”. Such su-
perior performance on large dataset demonstrates that our
method can be generalized to various speakers and various
kinds of noisy environments. It suggests that PHASEN is
readily applicable to complicated real-world environment.

Voice Bank + DEMAND We also train our model on
small but commonly-used dataset Voice Bank + DEMAND,

2https://github.com/funcwj/conv-tasnet

Table 2: System comparison on AVSpeech + AudioSet
Method SDR(dB) PESQ STOI

Conv-TasNet 14.19 2.93 0.833
Google(5M step, 2.4M data) 16.00 – –
PHASEN(1M step, 100k data) 16.84 3.40 0.884

Table 3: System comparison on Voice Bank + DEMAND
Method SSNR PESQ CSIG CBAK COVL

Noisy 1.68 1.97 3.35 2.44 2.63

SEGAN 7.73 2.16 3.48 2.94 2.80
Wavenet – – 3.62 3.23 2.98
DFL – – 3.86 3.33 3.22

MMSE-GAN – 2.53 3.80 3.12 3.14

MDPhD 10.22 2.70 3.85 3.39 3.27

PHASEN 10.18 2.99 4.21 3.55 3.62

so that we can fairly compare our PHASEN with many
other methods. In this experiment, our network is trained on
the training set for 40 epochs, with Adam optimizer using
warm-up step number of 6000, learning rate of 0.0005, and
batch size of 12.

Table 3 shows the comparison result. Firstly, our method
has very large gain over time-domain methods like SEGAN
(Pascual, Bonafonte, and Serra 2017), Wavenet (Rethage,
Pons, and Serra 2018), and DFL (Germain, Chen, and
Koltun 2018) on all the five metrics, even though these time-
domain methods are free of phase-prediction problem. This
proves the advantage of our method over the time-domain
methods on capturing phase-related information. Also, our
method shows great improvement over time-frequency do-
main method like MMSE-GAN (Soni, Shah, and Patil 2018)
on all metrics, indicating the superiority of our network de-
sign. Finally, we also compare our method with a recent
hybrid model of time-domain and time-frequency domain
called MDPhD (Kim et al. 2018). Our method significantly
outperforms it on four metrics, and there is only a small dif-
ference of about 0.04dB on SSNR metric.

5 Conclusion

We have proposed a two-stream architecture with two-
way information communication for efficient phase predic-
tion in monaural speech enhancement. We have also de-
signed a learnable frequency transformation matrix in the
network. It implicitly learns a pattern that is consistent
with harmonic correlation. Comprehensive ablation stud-
ies have been carried out, justifying almost every design
choices we have made in PHASEN. Comparison with state-
of-the-art systems on both AVSpeech+AudioSet and Voice
Bank+DEMAND datasets demonstrates the superior per-
formance of PHASEN. Note that the current design of
PHASEN does not allow it to be used for low-latency ap-
plications, such as voice over IP. In the future, we plan to
explore the potential of PHASEN in low-latency settings
and mobile settings which require a smaller model size and
shorter inference time. We also plan to expand this architec-
ture to other related tasks such as speech separation.
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