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Abstract
Using a deep neural network, we demonstrate a digital staining technique, which we term PhaseStain, to transform

the quantitative phase images (QPI) of label-free tissue sections into images that are equivalent to the brightfield

microscopy images of the same samples that are histologically stained. Through pairs of image data (QPI and the

corresponding brightfield images, acquired after staining), we train a generative adversarial network and demonstrate

the effectiveness of this virtual-staining approach using sections of human skin, kidney, and liver tissue, matching the

brightfield microscopy images of the same samples stained with Hematoxylin and Eosin, Jones’ stain, and Masson’s

trichrome stain, respectively. This digital-staining framework may further strengthen various uses of label-free QPI

techniques in pathology applications and biomedical research in general, by eliminating the need for histological

staining, reducing sample preparation related costs and saving time. Our results provide a powerful example of some

of the unique opportunities created by data-driven image transformations enabled by deep learning.

Introduction
Quantitative phase imaging (QPI) is a rapidly emerging

field, with a history of several decades in development1,2.

QPI is a label-free imaging technique, which generates a

quantitative image of the optical-path-delay through the

specimen. Other than being label-free, QPI utilizes low-

intensity illumination, while still allowing for a rapid

imaging time, which reduces phototoxicity in comparison

to, e.g., commonly used fluorescence imaging modalities.

QPI can be performed on multiple platforms and devi-

ces3–7, from ultra-portable instruments all the way to

custom-engineered systems integrated with standard

microscopes, with different methods of extracting the

quantitative phase information. QPI has also been

recently used for the investigation of label-free thin tissue

sections2,8, which can be considered a weakly scattering

phase object, having limited amplitude contrast modula-

tion under brightfield illumination.

Although QPI techniques result in quantitative contrast

maps of label-free objects, the current clinical and

research gold standard is still mostly based on the

brightfield imaging of histologically labeled samples. The

staining process dyes the specimen with colorimetric

markers, revealing the cellular and subcellular morpho-

logical information of the sample under brightfield

microscopy. As an alternative, QPI has been demon-

strated for the inference of local scattering coefficients of

tissue samples8,9; for this information to be adopted as a

diagnostic tool, some of the obstacles include the

requirement of retraining experts and competing with a

growing number of machine learning-based image ana-

lysis software10,11, which utilizes vast amounts of stained

tissue images to perform, e.g., automated diagnosis, image

segmentation, or classification, among other tasks. One

possible way to bridge the gap between QPI and standard

image-based diagnostic modalities is to perform digital
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(i.e., virtual) staining of the phase images of label-free

samples to match the images of histologically stained

samples. One previously used method for the digital

staining of tissue sections involves the acquisition of

multimodal, nonlinear microscopy images of the samples,

while applying staining reagents as part of the sample

preparation, followed by a linear approximation of the

absorption process to produce a pseudo-Hematoxylin and

Eosin (H&E) image of the tissue section under investi-

gation12–14.

As an alternative to model-based approximations,

deep learning has recently been successful in various

computational tasks based on a data-driven approach,

solving inverse problems in optics, such as super-

resolution15–17, holographic image reconstruction and

phase recovery18–21, tomography22, Fourier ptycho-

graphic microscopy23, localization microscopy24–26, and

ultrashort pulse reconstruction27. Recently, the appli-

cation of deep learning for the virtual staining of auto-

fluorescence images of nonstained tissue samples has

also been demonstrated28. Following the success of

these previous results, here, we demonstrate that deep

learning can be used for the digital staining of label-free

thin tissue sections using their quantitative phase ima-

ges. For this image transformation between the phase

image of a label-free sample and its stained brightfield

image, which we term PhaseStain, we used a deep neural

network trained using the generative adversarial net-

work (GAN) framework29. Conceptually, PhaseStain

(see Fig. 1) provides an image that is the digital

equivalent of a brightfield image of the same sample

after the histological staining process; stated differently,

it transforms the phase image of a weakly scattering

object (e.g., a label-free thin tissue section, which exhi-

bits low amplitude modulation under visible light) into

amplitude object information, presenting the same color

features that are observed under a brightfield micro-

scope, after the histological staining process.

We experimentally demonstrated the success of our

PhaseStain approach using label-free sections of human

skin, kidney, and liver tissue that were imaged by a

holographic microscope, matching the brightfield micro-

scopy images of the same tissue sections stained with

H&E, Jones’ stain, and Masson’s trichrome stain,

respectively.

The deep learning-based virtual-staining of label-free

tissue samples using quantitative phase images provide

another important example of the unique opportunities

enabled by data-driven image transformations. We believe

that the PhaseStain framework will be instrumental for

the QPI community to further strengthen various uses of

label-free QPI techniques30–34 for clinical applications

and biomedical research, helping to eliminate the need for

histological staining, and reduce sample preparation

associated time, labor, and costs.

Results
We trained three deep neural network models, which

correspond to the three different combinations of tissue

and stain types, i.e., H&E for skin tissue, Jones’ stain for

kidney tissue, and Masson’s trichrome for liver tissue.

Following the training phase, these three trained deep

networks were blindly tested on holographically recon-

structed quantitative phase images (see the Methods
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Fig. 1 PhaseStain workflow. A quantitative phase image of a label-free specimen is virtually stained by a deep neural network, bypassing the

standard histological staining procedure that is used as part of clinical pathology
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section) that were not part of the network’s training set.

Figure 2 shows our results for the virtual H&E staining of

a phase image of a label-free skin tissue section, which

confirms discohesive tumor cells lining papillary struc-

tures with dense fibrous cores. Additional results for the

virtual staining of quantitative phase images of label-free

tissue sections are illustrated in Fig. 3, for kidney (digital

Jones’ staining) and liver (digital Masson’s Trichrome

staining). These virtually stained quantitative phase ima-

ges show sheets of clear tumor cells arranged in small

nests with a delicate capillary bed for the kidney tissue

section, and a virtual trichrome stain highlighting the
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Fig. 2 Virtual H&E staining of label-free skin tissue using the PhaseStain framework. Top: QPI of a label-free skin tissue section and the resulting

network output. Bottom: zoom-in image of a region of interest and its comparison to the histochemically stained gold standard brightfield image
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Fig. 3 PhaseStain-based virtual staining of label-free kidney tissue (Jones’ stain) and liver tissue (Masson’s Trichrome)
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normal liver architecture without significant fibrosis or

inflammation, for the liver tissue section.

These deep learning-based virtual-staining results pre-

sented in Figs. 2 and 3 visually demonstrate the high-

fidelity performance of the GAN-based staining frame-

work. To further shed light on this comparison between

the PhaseStain results and the corresponding brightfield

images of the histologically stained tissue samples, we

quantified the structural similarity (SSIM) index of these

two sets of images using:

SSIMðU1;U2Þ ¼
1

3

X

i¼1;2;3

ð2μ1;iμ2;i þ 2σ1;2;i þ c2Þ

μ21;i þ μ22;i þ c1

� �

σ21;i þ σ22;i þ c2

� �

ð1Þ

where U1 and U2 are the PhaseStain output and the

corresponding brightfield reference image, respectively,

μk,i and σk,i are the mean and the standard deviation of

each image Uk (k= 1,2), respectively, and index i refers to

the RGB channels of the images. The cross-variance

between the i-th image channels is denoted with σ1,2,i and

c1, c2 are stabilization constants used to prevent division

by a small denominator. The result of this analysis

revealed that the SSIM was 0.8113, 0.8141, and 0.8905, for

the virtual-staining results corresponding to the skin,

kidney, and liver tissue samples, respectively, where the

analysis was performed on ~10 megapixel images, corre-

sponding to a field-of-view (FOV) of ~1.47 mm2 for each

sample.

Next, to evaluate the sensitivity of the network output to

phase noise in our measurements, we performed a

numerical experiment on the quantitative phase image of

a label-free skin tissue, where we added noise in the fol-

lowing manner:

~ϕðm; nÞ ¼ ϕðm; nÞ þ δϕðm; nÞ ¼ ϕðm; nÞ

þ βrðm; nÞ �
1

2πL2
exp �ðm2 þ n2ÞΔ2= 2 LΔð Þ2

� �� �

ð2Þ

where ~ϕ is the resulting noisy phase distribution (i.e., the

image under test), ϕ is the original phase image of the skin

tissue sample, r is drawn from a normal distribution N(0,

1), β is the perturbation coefficient, L is the Gaussian filter

size/width, and Δ is the pixel size, which spatially

smoothens the random noise into isotropic patches, as

shown in Fig. 4. We chose these parameters such that the

overall phase signal-to-noise-ratio (SNR) is statistically

identical for all the cases and made sure that no phase

wrapping occurs. We then used ten random realizations

of this noisy phase image for four combinations of (β, L)

values to generate ~ϕ, which was used as the input to our

trained deep neural network.

The deep network inference fidelity for these noisy

phase inputs is reported in Fig. 4, which reveals that it is

indeed sensitive to local phase variations and the related

noise, and it improves its inference performance as we

spatially extend the filter size, L (while the SNR remains

fixed). In other words, the PhaseStain network output is

more impacted by small scale variations, corresponding

to, e.g., the information encoded in the morphology of the

edges or the refractive index discontinuities (or sharp

gradients) of the sample. We also found that for a kernel

size of LΔ~3 µm, the SSIM remains unchanged (~0.8),

across a wide range of perturbation coefficients, β. This

result implies that the network is less sensitive to sample

preparation imperfections, such as height variations and

wrinkles in the thin tissue section, which naturally occur

during the preparation of the tissue section.

Discussion
The training process of a PhaseStain network needs to be

performed only once, following which, the newly acquired

quantitative phase images of various samples are blindly fed

to the pretrained deep network to output a digitally stained

image for each label-free sample, corresponding to the

image of the same sample FOV, as it would have been

imaged with a brightfield microscope, following the histo-

logical staining process. In terms of the computation speed,

the virtual staining using PhaseStain takes 0.617 s on

average, using a standard desktop computer equipped with

a dual-GPU for an FOV of ~0.45mm2, corresponding to

~3.22 megapixels (see the implementation details in the

Methods section). This fast inference time, even with

relatively modest computers, means that the PhaseStain

network can be easily integrated with a QPI-based whole

slide scanner, since the network can output virtually

stained images in small patches while the tissue is still

being scanned by an automated microscope, to simulta-

neously create label-free QPI and digitally stained whole

slide images of the samples.

The proposed technology has the potential to save time,

labor, and costs, by presenting an alternative to the

standard histological staining workflow used in clinical

pathology. As an example, one of the most common

staining procedures (i.e., H&E stain) takes on average

~45min and costs approximately $2–5, while the Mas-

son’s Trichrome staining procedure takes ~2–3 h, with

costs that range between $16 and $35, and often requires

monitoring of the process by an expert, which is typically

conducted by periodically examining the specimen under

a microscope. In addition to saving time and costs, by

circumventing the staining procedure, the tissue con-

stituents would not be altered; this means that the unla-

beled tissue sections can be preserved for later analysis,

such as matrix-assisted laser desorption ionization by the

microsectioning of specific areas35 for molecular analysis
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or the micromarking of subregions that can be labeled

with specific immunofluorescence tags or tested for per-

sonalized therapeutic strategies and drugs36,37.

While in this study, we trained three different neural

network models to obtain optimal results for specific

tissue and stain combinations, this does not pose a

practical limitation for PhaseStain, since we can also train

a more general digital staining model for a specific stain

type (H&E, Jones’ stain, etc.) using multiple tissue types

stained with it, at the cost of increasing the network size

as well as the training and inference times19. Additionally,

from the clinical diagnostics perspective, the tissue type

under investigation and the stain needed for its clinical

examination are both known a priori, and therefore the

selection of the correct neural network for each sample to

be examined is straightforward to implement.

It is important to note that, in addition to the lensfree

holographic microscope (see the Methods section) that

we used in this work, the PhaseStain framework can also

be applied to virtually stain the resulting images of

various other QPI techniques, regardless of their imaging

configuration, specific hardware, or phase recovery

method2,6,7,38–41 that are employed.

One of the disadvantages of coherent imaging systems is

“coherence-related image artifacts”, such as speckle noise,

or dust or other particles creating holographic inter-

ference fringes, which do not appear in the incoherent

brightfield microscopy images of the same samples. In

Fig. 5, we demonstrate the image distortions that, for

example, out-of-focus particles create on the PhaseStain

output image. To reduce such distortions in the network

output images, the coherence-related image artifacts

resulting from out-of-focus particles can be digitally

removed by using a recently introduced deep learning-

based hologram reconstruction method, which learns,

through data, to attack or eliminate twin-image artifacts

as well as the interference fringes resulting from out-of-

focus or undesired objects19,20.
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While in this manuscript, we demonstrated the applic-

ability of the PhaseStain approach to fixed paraffin-

embedded tissue specimens, our approach should also be

applicable to frozen tissue sections, involving other tissue

fixation methods as well (following a similar training

process as detailed in the Methods section). Moreover,

while our method was demonstrated for thin tissue sec-

tions, QPI has been shown to be valuable to image cells

and smear samples (such as blood and Pap smears)2,41,

and the PhaseStain technique would also be applicable to

digitally stain these types of specimens.

To summarize, our presented results demonstrate

some of the emerging opportunities created by deep

learning for label-free quantitative phase imaging. The

phase information resulting from various coherent

imaging techniques can be used to generate a virtually

stained image, translating the phase images of weakly

scattering objects such as thin tissue sections into images

that are equivalent to the brightfield images of the same

samples, after the histological labeling. The PhaseStain

framework, in addition to saving time and costs asso-

ciated with the labeling process, has the potential to

further strengthen the use of label-free QPI techniques

in the clinical diagnostics workflow, while also preser-

ving tissues for, e.g., subsequent molecular and genetic

analysis.

Materials and methods
Sample preparation and imaging

All the samples that were used in this study were

obtained from the Translational Pathology Core Labora-

tory (TPCL) and prepared by the Histology Lab at UCLA.

They were obtained after the de-identification of the

patient related information and prepared from existing

specimens. Therefore, this work did not interfere

with standard practices of care or sample collection

procedures.

Following formalin-fixing paraffin-embedding, the tis-

sue block is sectioned using a microtome into ~2–4 µm

thick sections. This step is only needed for the training

phase, where the transformation from a phase image into

a brightfield image needs to be statistically learned. These

tissue sections are then deparaffinized using Xylene and

mounted on a standard glass slide using CytosealTM

(Thermo-Fisher Scientific, Waltham, MA, USA), followed

by sealing of the specimen with a coverslip. In the

learning/training process, this sealing step presents sev-

eral advantages: protecting the sample during the imaging

and sample handling processes and reducing artifacts

such as sample thickness variations.

Following the sample preparation, the specimen was

imaged using an on-chip holographic microscope to

generate a quantitative phase image (detailed in the next
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Fig. 5 The impact of holographic fringes resulting from out-of-focus particles on the deep neural network’s digital staining performance.

Top row: QPI of a label-free liver tissue section and the resulting network output. Bottom row: zoom-in image of a region of interest where the

coherence-related artifact partially degrades the virtual staining performance
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subsection). Following the QPI process, the label-free

specimen slide was put into Xylene for ~48 h, until the

coverslip can be removed without introducing distortions

to the tissue. Once the coverslip was removed, the slide

was dipped multiple times in absolute alcohol and 95%

alcohol, and then washed in D.I. water for ~1min. Fol-

lowing this step, the tissue slides were stained with H&E

(skin tissue), Jones’ stain (kidney tissue), and Masson’s

trichrome (liver tissue) and then coverslipped. These tis-

sue samples were then imaged using a brightfield auto-

mated slide scanner microscope (Aperio AT, Leica

Biosystems) with a 20×/0.75NA objective (Plan Apo),

equipped with a 2×magnification adapter, which results in

an effective pixel size of ~0.25 µm.

Quantitative phase imaging

Lensfree imaging setup

The quantitative phase images of label-free tissue samples

were acquired using an in-line lensfree holography setup41.

A light source (WhiteLase Micro, NKT Photonics,

Denmark) with a center wavelength at 550 nm and a

spectral bandwidth of ~2.5 nm was used as the illumination

source. The uncollimated light emitted from a single-mode

fiber was used for creating a quasi-plane-wave that illumi-

nated the sample. The sample was placed between the light

source and the CMOS image sensor chip (IMX 081,

Sony Corp., Minato, Tokyo, Japan, pixel size of 1.12 μm)

with a source-to-sample distance (z1) of 5–10 cm and a

sample-to-sensor distance (z2) of 1–2mm. This on-chip

lensfree holographic microscope has a submicron resolu-

tion with an effective pixel size of 0.37 µm, covering a

sample FOV of ~20mm2 (which accounts for the

entire active area of the sensor). The positioning stage

(MAX606, Thorlabs Inc., Newton, NJ, USA), which held-

the CMOS sensor, enabled the 3D translation of the imager

chip for performing pixel super-resolution (PSR)5,41,42

and multiheight-based iterative phase recovery41,43.

All imaging hardware was controlled automatically

by LabVIEW (National Instruments Corp., Austin, TX,

USA).

Pixel super-resolution (PSR) technique

To synthesize a high-resolution hologram (with a pixel

size of ~0.37 μm) using only the G1 channel of the Bayer

pattern (R, G1, G2, and B), a shift-and-add based PSR

algorithm was applied42,44. The translation stage that

holds the image sensor was programmed to laterally shift

on a 6 × 6 grid with a subpixel spacing at each sample-to-

sensor distance. A low-resolution hologram was recorded

at each position and the lateral shifts were precisely

estimated using a shift estimation algorithm41. This step

results in six nonoverlapping panels that were each

padded to a size of 4096 × 4096 pixels, and individually

phase-recovered, which is detailed next.

Multiheight phase recovery

Lensfree in-line holograms at eight sample-to-sensor

distances were captured. The axial scanning step size was

chosen to be 15 μm. Accurate z-steps were obtained by

applying a holographic autofocusing algorithm based on

the edge sparsity criterion (“Tamura of the gradient”, i.e.,

ToG)45. A zero-phase was assigned to the object intensity

measurement as an initial phase guess, to start the itera-

tions. An iterative multiheight phase recovery algorithm46

was then used by propagating the complex field back and

forth between each height using the transfer function of

free-space47. During this iterative process, the phase was

kept unchanged at each axial plane, where the amplitude

was updated by using the square-root of the object

intensity measurement. One iteration was defined as

propagating the hologram from the eighth height (farthest

from the sensor chip) to the first height (nearest to the

sensor) and then back propagating the complex field to

the eighth height. Typically, after 10–30 iterations, the

phase is retrieved. For the final step of the reconstruction,

the complex wave defined by the converged amplitude

and phase at a given hologram plane was propagated to

the object plane47, from which the phase component of

the sample was extracted.

Data preprocessing and image registration

An important step in our training process is to perform

an accurate image registration, between the two imaging

modalities (QPI and brightfield), which involves both

global matching and local alignment steps. Since the

network aims to learn the transformation from a label-

free phase retrieved image to a histologically stained

brightfield image, it is crucial to accurately align the FOVs

for each input and target image pair in the dataset.

We perform this cross-modality alignment procedure in

four steps; steps 1, 2, and 4 are done in MATLAB

(The MathWorks Inc., Natick, MA, USA) and step 3

involves TensorFlow.

The first step is to find a roughly matched FOV between

QPI and the corresponding brightfield image. This is done

by first bicubic downsampling of the whole slide image

(WSI) (~60 by 60 k pixels) to match the pixel size of the

phase retrieved image. Then, each 4096 × 4096-pixel

phase image was cropped by 256 on each side (resulting in

an image with 3584 × 3584 pixels) to remove the padding

that is used for the image reconstruction process. Fol-

lowing this step, both the brightfield and the corre-

sponding phase images are edge extracted using the

Canny method48, which uses a double threshold to detect

strong and weak edges on the gradient of the image. Then,

a correlation score matrix is calculated by correlating each

3584 × 3584-pixel patch of the resulting edge image to the

same size as the image extracted from the brightfield edge

image. The image with the highest correlation score

Rivenson et al. Light: Science & Applications            (2019) 8:23 Page 7 of 11    23 



indicates a match between the two images, and the cor-

responding brightfield image is cropped out from the

WSI. Following this initial matching procedure, the

quantitative phase image and the brightfield microscope

images are coarsely matched.

The second step is used to correct for potential rota-

tions between these coarsely matched image pairs, which

might be caused by a slight mismatch in the sample pla-

cement during the two image acquisition experiments

(which are performed on different imaging systems,

holographic vs. brightfield). This intensity-based regis-

tration step correlates the spatial patterns between the

two images; the phase image that is converted to an

unsigned integer format and the luminance component of

the brightfield image were used for this multimodal

registration framework implemented in MATLAB. The

result of this digital procedure is an affine transformation

matrix, which is applied to the brightfield microscope

image patch, to match it with the quantitative phase

image of the same sample. Following this registration step,

the phase image and the corresponding brightfield image

are globally aligned. A further crop of 64 pixels on each

side to the aligned image pairs is used to accommodate for

a possible rotation angle correction.

The third step involves the training of a separate neural

network that roughly learns the transformation from

quantitative phase images into stained brightfield images,

which can help the distortion correction between the two

image modalities in the fourth/final step. In other words,

to make the local registration tractable, we first train a

deep network with the globally registered images, to

reduce the entropy between the images acquired with the

two imaging modalities (i.e., QPI vs. brightfield image of

the stained tissue). This neural network has the same

structure as the network that was used for the final

training process (see the next subsection on the GAN

architecture and its training) with the input and target

images obtained from the second registration step dis-

cussed earlier. Since the image pairs are not well aligned

yet, the training is stopped early at only ~2000 iterations

to avoid a structural change at the output to be learnt by

the network. The output and target images of the network

are then used as the registration pairs in the fourth step,

which is an elastic image registration algorithm, used to

correct for local feature registration16.

GAN architecture and training

The GAN architecture that we used for PhaseStain is

detailed in Fig. 6 and Supplementary Table 1. Following

the registration of the label-free quantitative phase images

to the brightfield images of the histologically stained tis-

sue sections, these accurately aligned fields-of-view were

QPI of label-free tissue section Virtually stained tissue section

3 Convolutional layer up block

3 Convolutional layer down block

2 Convolutional layer down block. The second convolution has a stride of 2.

2 Convolutional layer

FC layer

Pointwise add 2 Stride average pooling

2 Times up-sampling

Zero padding

Concatenation

256, 256, 64

128, 128, 128

2 2 2 2 2

64, 64, 256

32, 32, 512
16, 16, 1024

(8, 8, 2048)

(2048)
Output

(probability)

Label Generator output

Discriminator

Data passing (no processing)3 Convolutional layer

Generator
N×N× 64 N×N× 32

N/2 ×N/2 × 128

2

0

4
–
5

�

+
+

+
+

+

2

2
2

2

2

2

2

2

2

N/2 ×N/2 × 64

N/4 ×N/4 × 128N/4 ×N/4 × 256

N/8 ×N/8 × 512

N/16 ×N/16 × 512

N/8 ×N/8 × 256

Fig. 6 Architecture of the generator and discriminator networks within the GAN framework
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partitioned to overlapping patches of 256 × 256 pixels,

which were then used to train the GAN model. The GAN

is composed of two deep neural networks, a generator and

a discriminator. The discriminator network’s loss function

is given by:

‘discrimnator ¼ DðGðxinputÞÞ
2 þ ð1� DðzlabelÞÞ

2 ð3Þ

where D(.) and G(.) refer to the discriminator and gen-

erator network operators, respectively, xinput denotes the

input to the generator, which is the label-free quantitative

phase image, and zlabel denotes the brightfield image of the

histologically stained tissue. The generator network, G,

tries to generate an output image with the same statistical

features as zlabel, while the discriminator, D, attempts to

distinguish between the target and the generator output

images. The ideal outcome (or state of equilibrium) will

be when the generator’s output and target images share an

identical statistical distribution, where in this case, D(G

(xinput)) should converge to 0.5. For the generator deep

network, we defined the loss function as:

‘generator ¼ L1 zlabel;G xinput
� 	� �

þ λ

´TV G xinput
� 	� �

þ α ´ 1� D G xinput
� 	� 	� 	2

ð4Þ

where the L1{.} term refers to the absolute pixel-by-pixel

difference between the generator output image and its tar-

get, TV{.} stands for the total variation regularization that is

being applied to the generator output, and the last term

reflects a penalty related to the discriminator network pre-

diction of the generator output. The regularization para-

meters (λ, α) were set to 0.02 and 2000 so that the total

variation loss term, λ ×TV{G(xinput)}, was ~2% of the L1 loss

term, and the discriminator loss term, α × (1−D(G(xinput)))
2

was ~98% of the total generator loss, lgenerator.

For the generator deep neural network, we adapted the

U-net architecture49, which consists of a downsampling

and an upsampling path, with each path containing four

blocks forming four distinct levels (see Fig. 6 and Sup-

plementary Table 1). In the downsampling path, each

residual block consists of three convolutional layers and

three leaky rectified linear (LReLU) units used as an

activation function, which is defined as:

LReLUðxÞ ¼
x for x>0

0:1x otherwise




ð5Þ

At the output of each block, the number of channels is

increased by 2-fold (except for the first block that

increases from 1 input channel to 64 channels). The

blocks are connected by an average-pooling layer of stride

two that downsamples the output of the previous block by

a factor of two for both horizontal and vertical dimensions

(as shown in Fig. 6 and supplementary Table 1).

In the upsampling path, each block also consists of three

convolutional layers and three LReLU activation func-

tions, which decrease the number of channels at its output

by fourfold. The blocks are connected by a bilinear

upsampling layer that upsamples the size of the output

from the previous block by a factor of two for both lateral

dimensions. A concatenation function with the corre-

sponding feature map from the downsampling path of the

same level is used to increase the number of channels

from the output of the previous block by two. The two

paths are connected in the first level of the network by a

convolutional layer, which maintains the number of the

feature maps from the output of the last residual block in

the downsampling path (see Fig. 6 and supplementary

Table 1). The last layer is a convolutional layer that maps

the output of the upsampling path into 3 channels of the

YCbCr color map.

The discriminator network consists of one convolu-

tional layer, five discriminator blocks, an average-pooling

layer, and two fully connected layers. The first con-

volutional layer receives 3 channels (YCbCr color map)

from either the generator output or the target and

increases the number of channels to 64. The dis-

criminator blocks consist of two convolutional layers

with the first layer maintaining the size of the feature

map and the number of channels, while the second layer

increases the number of channels by twofold and

decreases the size of the feature map by fourfold. The

average-pooling layer has a filter size of 8 × 8, which

results in a matrix with a size of (B, 2048), where B refers

to the batch size. The output of this average-pooling

layer is then fed into two fully connected layers with the

Table 1 Training details for the virtual staining of different tissue types using PhaseStain. Following the training, the

blind inference takes ~0.617 s for an FOV of ~0.45mm2, corresponding to ~3.22 megapixels (see the Discussion section)

Tissue type # of iterations # of patches (256 × 256 pixels) Training time (h) # of epochs

Liver 7500 2500 training/625 validation 11.076 25

Skin 11000 2500 training/625 validation 11.188 18

Kidney 13600 2312 training/578 validation 13.173 39
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first layer maintaining the size of the feature map, while

the second layer decreases the output channel to 1,

resulting in an output size of (B, 1). The output of this

fully connected layer is going through a sigmoid func-

tion, indicating the probability that the three-channel

discriminator input is drawn from a histologically

stained brightfield image. For the discriminator network,

all the convolutional layers and the fully connected

layers are connected by LReLU nonlinear activation

functions.

Throughout the training, the convolution filter size was

set to be 3 × 3. For the patch generation, we applied data

augmentation by using 50% patch overlap for the liver and

skin tissue images, and 25% patch overlap for the kidney

tissue images (see Table 1). The learnable parameters

including filters, weights, and biases in the convolutional

layers and the fully connected layers are updated using an

adaptive moment estimation (Adam) optimizer with a

learning rate of 1 × 10−4 for the generator network and

1 × 10−5 for the discriminator network.

For each iteration of the discriminator, there were v

iterations of the generator network; for the liver and skin

tissue training, v=max(5, floor(7−w/2)), where we

increased w by 1 for every 500 iterations (w was initialized

as 0). For the kidney tissue training, we used v=max(4,

floor(6−w/2)), where we increased w by 1 for every 400

iterations. This helped us to train the discriminator not to

overfit to the target brightfield images. We used a batch

size of ten for the training of the liver and skin tissue

sections, and five for the kidney tissue sections. All the

convolutional kernel entries are initialized using a trun-

cated normal distribution. All the network bias terms are

initialized to be zero. The network’s training stopped

when the validation set’s L1-loss did not decrease after

4000 iterations. A typical convergence plot of our training

is shown in Fig. 7.

Implementation details

The number of image patches that were used for

training, the number of epochs, and the training schedules

are shown in Table 1. The network was implemented

using Python version 3.5.0, with TensorFlow framework

version 1.7.0. We implemented the software on a desktop

computer with a Core i7-7700K CPU @ 4.2 GHz

(Intel Corp., Santa Clara, CA, USA) and 64GB of RAM,

running a Windows 10 operating system (Micro-

soft Corp., Redmond, WA, USA). Following the training

for each tissue section, the corresponding network was

tested with 4 image patches of 1792 × 1792 pixels with an

overlap of ~7%. The outputs of the network were then

stitched to form the final network output image of 3456 ×

3456 pixels (FOV ~1.7 mm2), as shown in, e.g., Fig. 2. The

network training and testing were performed using dual

GeForce GTX 1080Ti GPUs (NVidia Corp., Santa Clara,

CA, USA).

Acknowledgments

The Ozcan Research Group at UCLA acknowledges the support of NSF

Engineering Research Center (ERC, PATHS-UP), the Army Research Office (ARO;

W911NF-13-1-0419 and W911NF-13-1-0197), the ARO Life Sciences Division,

the National Science Foundation (NSF) CBET Division Biophotonics Program,

the NSF Emerging Frontiers in Research and Innovation (EFRI) Award, the NSF

INSPIRE Award, NSF Partnerships for Innovation: Building Innovation Capacity

(PFI:BIC) Program, the National Institutes of Health (NIH, R21EB023115), the

Howard Hughes Medical Institute (HHMI), Vodafone Americas Foundation, the

Mary Kay Foundation, and Steven & Alexandra Cohen Foundation. The authors

also acknowledge the Translational Pathology Core Laboratory (TPCL) and the

Histology Lab at UCLA for their assistance with the sample preparation and

staining, as well as Prof. W. Dean Wallace of Pathology and Laboratory

Medicine at UCLA’s David Geffen School of Medicine for image evaluations.

Author details
1Electrical and Computer Engineering Department, University of California, Los

Angeles, CA 90095, USA. 2Bioengineering Department, University of California,

Los Angeles, CA 90095, USA. 3California NanoSystems Institute (CNSI),

University of California, Los Angeles, CA 90095, USA. 4Department of Surgery,

David Geffen School of Medicine, University of California, Los Angeles, CA

90095, USA

50
0
15

00
25

00
35

00
45

00
55

00
65

00
75

00
85

00
95

00

10
,5

00

11
,5

00

12
,5

00

13
,5

00

14
,5

00

15
,5

00

16
,5

00

17
,5

00

18
,5

00

19
,5

00
0

5

10

15

L
o
s
s
 (

a
.u

.)

L1-loss

Number of iterations

20

25

30
a

L
o
s
s
 (

a
.u

.)

Generator loss

50
0
15

00
25

00
35

00
45

00
55

00
65

00
75

00
85

00
95

00

10
,5

00

11
,5

00

12
,5

00

13
,5

00

14
,5

00

15
,5

00

16
,5

00

17
,5

00

18
,5

00

19
,5

00

Number of iterations

535

530

525

520

515

510

505

500

495

490

485

b

Fig. 7 PhaseStain convergence plots for the validation set of the digital H&E staining of the skin tissue. a L1-loss with respect to the number

of iterations. b Generator loss, lgenerator with respect to the number of iterations

Rivenson et al. Light: Science & Applications            (2019) 8:23 Page 10 of 11    23 



Conflict of interest

A.O., Y.R., and Z.W. have a patent application on the invention reported in this

manuscript.

Supplementary information is available for this paper at https://doi.org/

10.1038/s41377-019-0129-y.

Received: 23 July 2018 Revised: 5 January 2019 Accepted: 11 January 2019

References

1. Cuche, E., Marquet, P. & Depeursinge, C. Simultaneous amplitude-contrast and

quantitative phase-contrast microscopy by numerical reconstruction of Fres-

nel off-axis holograms. Appl. Opt. 38, 6994–7001 (1999).

2. Popescu, G. Quantitative Phase Imaging of Cells and Tissues. (McGraw-Hill, New

York, 2011).

3. Shaked, N. T., Rinehart, M. T. & Wax, A. Dual-interference-channel quantitative-

phase microscopy of live cell dynamics. Opt. Lett. 34, 767–769 (2009).

4. Wang, Z. et al. Spatial light interference microscopy (SLIM). Opt. Express 19,

1016–1026 (2011).

5. Greenbaum, A. et al. Imaging without lenses: achievements and remaining

challenges of wide-field on-chip microscopy. Nat. Methods 9, 889–895 (2012).

6. Zheng, G. A., Horstmeyer, R. & Yang, C. Wide-field, high-resolution Fourier

ptychographic microscopy. Nat. Photonics 7, 739–745 (2013).

7. Tian, L. & Waller, L. Quantitative differential phase contrast imaging in an LED

array microscope. Opt. Express 23, 11394–11403 (2015).

8. Wang, Z., Tangella, K., Balla, A. & Popescu, G. Tissue refractive index as marker

of disease. J. Biomed. Opt. 16, 116017 (2011).

9. Wang, Z., Ding, H. F. & Popescu, G. Scattering-phase theorem. Opt. Lett. 36,

1215–1217 (2011).

10. Liu Y., et al. Detecting cancer metastases on gigapixel pathology images.

ArXiv: 1703.02442 (2017).

11. Litjens G., et al. A survey on deep learning in medical image analysis. Med.

Image Anal. 42: 60–88 (2017).

12. Tao, Y. K. et al. Assessment of breast pathologies using nonlinear microscopy.

Proc. Natl Acad. Sci. USA 111, 15304–15309 (2014).

13. Giacomelli, M. G. et al. Virtual hematoxylin and eosin transillumination

microscopy using epi-fluorescence imaging. PLoS ONE 11, e0159337

(2016).

14. Orringer, D. A. et al. Rapid intraoperative histology of unprocessed surgical

specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat.

Biomed. Eng. 1, 0027 (2017).

15. Rivenson, Y. et al. Deep learning microscopy. Optica 4, 1437–1443 (2017).

16. Rivenson, Y. et al. Deep learning enhanced mobile-phone microscopy. ACS

Photon. 5, 2354–2364, https://doi.org/10.1021/acsphotonics.8b00146 (2018).

17. Wang H., et al. Deep learning enables cross-modality super-resolution in

fluorescence microscopy Nat. Methods 16, 103–110 (2019).

18. Sinha, A., Lee, J., Li, S. & Barbastathis, G. Lensless computational imaging

through deep learning. Optica 4, 1117–1125 (2017).

19. Rivenson, Y., Zhang, Y. B., Günaydin, H., Teng, D. & Ozcan, A. Phase recovery

and holographic image reconstruction using deep learning in neural net-

works. Light Sci. Appl. 7, e17141 (2018).

20. Wu, Y. C. et al. Extended depth-of-field in holographic imaging using deep-

learning-based autofocusing and phase recovery. Optica 5, 704–710 (2018).

21. Jo Y., et al. Quantitative phase imaging and artificial intelligence: a review.

arXiv: 1806.03982 (2018).

22. Kamilov, U. et al. Learning approach to optical tomography. Optica 2, 517–522

(2015).

23. Nguyen T., Xue Y. J., Li Y. Z., Tian L., Nehmetallah G. Deep learning approach to

Fourier ptychographic microscopy. arXiv: 1805.00334 (2018).

24. Boyd N., Jonas E., Babcock H. P., Recht B. DeepLoco: fast 3D localization

microscopy using neural networks. bioRxiv: 267096, 2018. https://doi.org/

10.1101/267096.

25. Nehme, E., Weiss, L. E., Michaeli, T. & Shechtman, Y. Deep-STORM: super-

resolution single-molecule microscopy by deep learning. Optica 5, 458–464

(2018).

26. Ouyang, W., Aristov, A., Lelek, M., Hao, X. & Zimmer, C. Deep learning massively

accelerates super-resolution localization microscopy. Nat. Biotechnol. 36,

460–468, https://doi.org/10.1038/nbt.4106 (2018).

27. Zahavy, T. et al. Deep learning reconstruction of ultrashort pulses. Optica 5,

666–673 (2018).

28. Rivenson Y., et al. Virtual histological staining of unlabelled tissue-

autofluorescence images via deep learning. Nat. Biomed. Eng. (in the press).

29. Goodfellow I. J., et al. Generative adversarial nets. In Proceedings of the 27th

International Conference on Neural Information Processing Systems. (MIT

Press: Cambridge, MA, 2014) pp. 2672–2680.

30. Park, H. S., Rinehart, M. T., Walzer, K. A., Chi, J. T. A. & Wax, A. Automated

detection of P. falciparum using machine learning algorithms with quantita-

tive phase images of unstained cells. PLoS ONE 11, e0163045 (2016).

31. Chen, C. L. et al. Deep learning in label-free cell classification. Sci. Rep. 6, 21471

(2016).

32. Roitshtain, D. et al. Quantitative phase microscopy spatial signatures of cancer

cells. Cytometry A 91, 482–493 (2017).

33. Jo, Y. et al. Holographic deep learning for rapid optical screening of anthrax

spores. Sci. Adv. 3, e1700606, https://doi.org/10.1101/109108 (2017).

34. Javidi, B. et al. Sickle cell disease diagnosis based on spatio-temporal cell

dynamics analysis using 3D printed shearing digital holographic microscopy.

Opt. Express 26, 13614–13627 (2018).

35. Tata, A. et al. Wide-field tissue polarimetry allows efficient localized mass

spectrometry imaging of biological tissues. Chem. Sci. 7, 2162–2169 (2016).

36. Cree, I. A. et al. Guidance for laboratories performing molecular pathology for

cancer patients. J. Clin. Pathol. 67, 923–931 (2014).

37. Patel, P. G. et al. Preparation of formalin-fixed paraffin-embedded tissue cores

for both RNA and DNA extraction. J. Vis. Exp. 2016, e54299, https://doi.org/

10.3791/54299 (2016).

38. Ikeda, T., Popescu, G., Dasari, R. R. & Feld, M. S. Hilbert phase microscopy for

investigating fast dynamics in transparent systems. Opt. Lett. 30, 1165–1167

(2005).

39. Shaked, N. T., Zhu, Y. Z., Badie, N., Bursac, N. & Wax, A. Reflective interferometric

chamber for quantitative phase imaging of biological sample dynamics. J.

Biomed. Opt. 15, 030503 (2010).

40. Watanabe, E., Hoshiba, T. & Javidi, B. High-precision microscopic phase ima-

ging without phase unwrapping for cancer cell identification. Opt. Lett. 38,

1319–1321 (2013).

41. Greenbaum, A. et al. Wide-field computational imaging of pathology slides

using lens-free on-chip microscopy. Sci. Transl. Med 6, 267ra175 (2014).

42. Bishara, W., Su, T. W., Coskun, A. F. & Ozcan, A. Lensfree on-chip microscopy

over a wide field-of-view using pixel super-resolution. Opt. Express 18,

11181–11191 (2010).

43. Luo, W., Zhang, Y. B., Göröcs, Z., Feizi, A. & Ozcan, A. Propagation phasor

approach for holographic image reconstruction. Sci. Rep. 6, 22738

(2016).

44. Farsiu, S., Robinson, M. D., Elad, M. & Milanfar, P. Fast and robust multiframe

super resolution. IEEE Trans. Image Process. 13, 1327–1344 (2014).

45. Zhang, Y. B., Wang, H. D., Wu, Y. C., Tamamitsu, M. & Ozcan, A. Edge sparsity

criterion for robust holographic autofocusing. Opt. Lett. 42, 3824–3827 (2017).

46. Greenbaum, A. & Ozcan, A. Maskless imaging of dense samples using pixel

super-resolution based multi-height lensfree on-chip microscopy. Opt. Express

20, 3129–3143 (2012).

47. Goodman, J. W. Introduction to Fourier Optics. (Roberts and Company Pub-

lishers, Englewood, 2005).

48. Canny, J. A computational approach to edge detection. IEEE Trans. Pattern

Anal. Mach. Intell. PAMI-8, 679–698 (1986).

49. Ronneberger O., Fischer P., Brox T. U-Net: convolutional networks for bio-

medical image segmentation. In: Navab N., Hornegger J., Wells W. M., Frangi A.

F., (eds). Medical Image Computing and Computer-Assisted Intervention—

MICCAI 2015. (Springer, Cham, 2015) pp. 234–241 https://doi.org/10.1007/978-

3-319-24574-4_28.

Rivenson et al. Light: Science & Applications            (2019) 8:23 Page 11 of 11    23 

https://doi.org/10.1038/s41377-019-0129-y
https://doi.org/10.1038/s41377-019-0129-y
https://doi.org/10.1021/acsphotonics.8b00146
https://doi.org/10.1101/267096
https://doi.org/10.1101/267096
https://doi.org/10.1038/nbt.4106
https://doi.org/10.1101/109108
https://doi.org/10.3791/54299
https://doi.org/10.3791/54299
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28

	PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning
	Introduction
	Results
	Discussion
	Materials and methods
	Sample preparation and imaging
	Quantitative phase imaging
	Lensfree imaging setup
	Pixel super-resolution (PSR) technique
	Multiheight phase recovery

	Data preprocessing and image registration
	GAN architecture and training
	Implementation details

	ACKNOWLEDGMENTS
	ACKNOWLEDGMENTS


